首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid fibril elongation in denatured proteins involves cycles of coupled binding and misfolding. To gain insights into possible kinetic intermediates, we performed hydrogen/deuterium exchange of amide protons during fibril elongation with β2-microglobulin (β2-m) at p= 2.5, under which conditions β2-m is acid denatured. To study the conformational change in monomeric β2-m monitored by NMR spectroscopy, we used 15N-labeled monomers and nonlabeled seeds. Pulse-labeling hydrogen/deuterium exchange with a quenched-flow apparatus indicated that the rate-limiting intermediate at p= 2.5 is not protected from the exchange, even disrupting a hydrophobic cluster present in the acid-denatured β2-m. Significant protection was acquired upon transition to the fibrils. In view of the suggestion that the rate-limiting intermediates are bound to the lateral surface of seed fibrils, weak interactions with a largely unfolded conformation might be useful for their dynamic sliding to the growing ends. The results support a new model of fibril elongation with intermediates bound to the lateral surface of seeds.  相似文献   

2.
Insulin-degrading enzyme (IDE) is an interesting pharmacological target for Alzheimer's disease (AD), since it hydrolyzes β-amyloid, producing non-neurotoxic fragments. It has also been shown that the somatostatin level reduction is a pathological feature of AD and that it regulates the neprilysin activity toward β-amyloid.In this work, we report for the first time that IDE is able to hydrolyze somatostatin [kcat (s− 1) = 0.38 (± 0.05); Km (M) = 7.5 (± 0.9) × 10− 6] at the Phe6-Phe7 amino acid bond. On the other hand, somatostatin modulates IDE activity, enhancing the enzymatic cleavage of a novel fluorogenic β-amyloid through a decrease of the Km toward this substrate, which corresponds to the 10-25 amino acid sequence of the Aβ(1-40). Circular dichroism spectroscopy and surface plasmon resonance imaging experiments show that somatostatin binding to IDE brings about a concentration-dependent structural change of the secondary and tertiary structure(s) of the enzyme, revealing two possible binding sites. The higher affinity binding site disappears upon inactivation of IDE by ethylenediaminetetraacetic acid, which chelates the catalytic Zn2+ ion. As a whole, these features suggest that the modulatory effect is due to an allosteric mechanism: somatostatin binding to the active site of one IDE subunit (where somatostatin is cleaved) induces an enhancement of IDE proteolytic activity toward fluorogenic β-amyloid by another subunit. Therefore, this investigation on IDE-somatostatin interaction contributes to a more exhaustive knowledge about the functional and structural aspects of IDE and its pathophysiological implications in the amyloid deposition and somatostatin homeostasis in the brain.  相似文献   

3.
High resolution atomic force microscopy is a powerful tool to characterize nanoscale morphological features of protein amyloid fibrils. Comparison of fibril morphological properties between studies has been hampered by differences in analysis procedures and measurement error determination used by various authors. We describe a fibril morphology analysis method that allows for quantitative comparison of features of amyloid fibrils of any amyloidogenic protein measured by atomic force microscopy. We have used tapping mode atomic force microscopy in liquid to measure the morphology of fibrillar aggregates of human wild-type α-synuclein and the disease-related mutants A30P, E46K, and A53T. Analysis of the images shows that fibrillar aggregates formed by E46K α-synuclein have a smaller diameter (9.0 ± 0.8 nm) and periodicity (mode at 55 nm) than fibrils of wild-type α-synuclein (height 10.0 ± 1.1 nm; periodicity has a mode at 65 nm). Fibrils of A30P have smaller diameter still (8.1 ± 1.2 nm) and show a variety of periodicities. This quantitative analysis procedure enables comparison of the results with existing models for assembly of amyloid fibrils.  相似文献   

4.
Abstract: The serine protease inhibitor α1-antichymotrypsin (ACT) consistently colocalizes with amyloid deposits of Alzheimer's disease (AD) and may contribute to the generation of amyloid proteins and/or physically affect fibril assembly. AD amyloid fibrils are composed primarily of Aβ, which is a proteolytic fragment of the larger β-amyloid precursor protein. Using negative-stain and immunochemical electron microscopy, we have investigated the binding of ACT to the fibrils formed by four synthetic Aβ analogues corresponding to the wild-type human 1–40 sequence [HWt(1–40)], a 1–40 peptide [HDu(1–40)] containing the Glu22→ Gln mutation found in hereditary cerebral hemorrhage with amyloidosis of the Dutch type, the N-terminal 1–28 residues [β(1–28)], and an internal fragment of Aβ containing residues 11–28 [β(11–28)]. Each of these peptide analogues assembled into 70–90-Å-diameter fibrils resembling native amyloid and, except for β(11–28), bound ACT, as indicated by the appearance of 80–100-Å globular particles that adhered to preformed fibrils and that could be decorated with anti-ACT antibodies. Under the conditions used, ACT binding destabilized the in vitro fibrils and produced a gradual dissolution of the macromolecular assemblies into constituent filaments and shorter fragments. The internal fragment (11–28) did not exhibit ACT binding or any structural changes. These results suggest that a specific sequence likely contained within the N-terminal 10 residues of Aβ is responsible for the formation of the ACT-amyloid complex. Although the observed fibril disassembly is surprising in view of the notion that ACT contributes directly to the physical process involved in amyloid fibril formation, the induced structural changes may expose new domains in Aβ for additional proteolysis or for interactions with cell-surface receptors.  相似文献   

5.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel β-sheet structure, and subsequently, was further refined for Aβ(1-40) to be cross β-sheet with double layered in register parallel β-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel β-sheet structure has been reported to short fragments of Aβ-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

6.
Amyloid fibrils and their oligomeric intermediates accumulate in several age-related diseases where their presence is considered to play an active role in disease progression. A common characteristic of amyloid fibril formation is an initial lag phase indicative of a nucleation-elongation mechanism for fibril assembly. We have investigated fibril formation by human apolipoprotein (apo) C-II. ApoC-II readily forms amyloid fibrils in a lipid-dependent manner via an initial nucleation step followed by fibril elongation, breaking, and joining. We used fluorescence techniques and stopped-flow analysis to identify the individual kinetic steps involved in the activation of apoC-II fibril formation by the short-chain phospholipid dihexanoyl phosphatidylcholine (DHPC). Submicellar DHPC activates fibril formation by promoting the rapid formation of a tetrameric species followed by a slow isomerisation that precedes monomer addition and fibril growth. Global fitting of the concentration dependence of apoC-II fibril formation showed that DHPC increased the overall tetramerisation constant from 7.5 × 10− 13 to 1.2 × 10− 6 μM− 3 without significantly affecting the rate of fibril elongation, breaking, or joining. Studies on the effect of DHPC on the free pool of apoC-II monomer and on fibril formation by cross-linked apoC-II dimers further demonstrate that DHPC affects nucleation but not elongation. These studies demonstrate the capacity of small lipid compounds to selectively target individual steps in the amyloid fibril forming pathway.  相似文献   

7.
Alzheimer’s disease is associated with the fibril formation of β-amyloid peptide in extracellular plaque. β-Casein is a milk protein that has shown a remarkable ability to stabilize proteins by inhibiting their protein aggregation and precipitation. The aim of this study was to test in vitro the ability of β-casein to bind the Aβ1–40, change the structure and inhibit the formation of amyloid fibrils in Aβ1–40. Results from the ThT binding assay indicated that incubation of Aβ1–40 with β-casein retarded amyloid fibril formation of Aβ1–40 in a concentration dependent manner such that at a ratio of 1:1 (w:w) led to a significant reduction in the amount of fluorescent intensity. The results from transmission electron microscopy (TEM) also showed that β-casein significantly reduced the number and size of the Aβ1–40 fibrils, suggesting that the chaperone bound to the Aβ1–40 fibrils and/or interacted with the fibrils in some way. ANS results also showed that β-casein significantly decreased the exposed hydrophobic surface in Aβ1–40. Following an ANS binding assay, CD spectroscopy results also showed that incubation of Aβ1–40 resulted in a structural transition to a β-sheet. In the presence of β-casein, however, α-helical conformation was observed which indicated stabilization of the protein. These results reveal the highly efficacious chaperone action of β-casein against amyloid fibril formation of Aβ1–40. These results suggest that in vitro, β-casein binds to the Aβ1–40 fibrils, alters the Aβ1–40 structure and prevents amyloid fibril formation. This approach may result in the identification of a chaperone mechanism for the treatment of neurological diseases.  相似文献   

8.
β2-microglobulin (β2m) deposits as amyloid in dialysis-related amyloidosis (DRA), predominantly in joints. The molecular mechanisms underlying the amyloidogenicity of β2m are still largely unknown. In vitro, acidic conditions, pH < 4.5, induce amyloid fibrillation of native β2m within several days. Here, we show that amyloid fibrils are generated in less than an hour when a cleavage variant of β2m—found in the circulation of many dialysis patients—is exposed to pH levels (pH 6.6) occurring in joints during inflammation. Aggregation and fibrillation, including seeding effects with intact, native β2m were studied by Thioflavin T fluorescence spectroscopy, turbidimetry, capillary electrophoresis, and electron microscopy. We conclude that a biologically relevant variant of β2m is amyloidogenic at slightly acidic pH. Also, only a very small amount of preformed fibrils of this variant is required to induce fibrillation of native β2m. This may explain the apparent lack of detectable amounts of the variant β2m in extracts of amyloid from DRA patients.  相似文献   

9.
Yamamoto S  Watarai H 《Chirality》2012,24(2):97-103
The amyloid fibril of bovine insulin and its renaturing intermediates were studied by using Raman optical activity (ROA). In the spectrum of the amyloid, the sharp +/- ROA couplet of amide I band characteristic of the β-sheet-rich proteins was observed, together with a sharp peak at 1271 cm(-1) characteristic of a turn structure. The shoulder ROA peak of the native insulin at ~ 1340 cm(-1), which was assigned to the hydrated α-helix, was not observed in the amyloid, suggesting that the hydrated α-helix was converted to the parallel β-sheet structure in the amyloid. Recovery of the amyloid to the native state was also monitored by ROA. The intermediate states showed distinct features from the amyloid or native ones. The intermediates did not show a characteristic ROA peak of the poly(L-proline) II helix at ~ 1318 cm(-1). The hydrated α-helix ROA peak was not recovered in the intermediate states. In a process of the amyloid formation, at first the hydrated α-helix of the native insulin is converted to a specific partially unfolded structure, and then, it was converted to the parallel β-sheet structure with many turns.  相似文献   

10.
A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombinant mouse prion protein at pH 7 has been characterized by hydrogen–deuterium exchange and mass spectrometry. The observation that fibrils are substantially more stable to hydrogen–deuterium exchange than is native monomer allows both forms to be quantified during the course of the aggregation reaction. Under the aggregation conditions utilized, native monomeric protein and amyloid fibrils are the only forms of the protein detectable during the course of the fibril formation reaction, suggesting that monomer directly adds on to the fibril template. Conformational conversion is shown to occur in two steps after the binding of monomer to fibril, with helix 1 unfolding only after helices 2 and 3 transform into β-sheet. Local stability in the β-sheet core region (residues ~ 159–225) of the fibrils is shown to be sequence dependent in that it varies along the length of the core, and local stability in protein molecules that are ordered in the structurally heterogeneous sequence segment 109–132 is shown to be similar to that in the core. This new understanding of the structural events during prion protein aggregation has important bearing on our comprehension of the molecular basis of prion pathogenesis.  相似文献   

11.
Objectives: The goal of the current study is to determine whether the β-adrenoreceptor (β-AR) plays a role in the anti-obesity and anti-diabetic effects of zinc-α2-glycoprotein (ZAG). Material and methods: This has been investigated in CHO-K1 cells transfected with the human β1-, β2-, β3-AR and in ob/ob mice. Cyclic AMP assays were carried out along with binding studies. Ob/ob mice were treated with ZAG and glucose transportation and insulin were examined in the presence or absence of propranolol. Results: ZAG bound to the β3-AR with higher affinity (Kd 46 ± 1 nM) than the β2-AR (Kd 71 ± 3 nM) while there was no binding to the β1-AR, and this correlated with the increases in cyclic AMP in CHO-K1 cells transfected with the various β-AR and treated with ZAG. Treatment of ob/ob mice with ZAG increased protein expression of β3-AR in gastrocnemius muscle, and in white and brown adipose tissues, but had no effect on expression of β1- and β2-AR. A reduction of body weight was seen and urinary glucose excretion, increase in body temperature, reduction in maximal plasma glucose and insulin levels in the oral glucose tolerance test, and stimulation of glucose transport into skeletal muscle and adipose tissue, were completely attenuated by the non-specific β-AR antagonist propranolol. Conclusion: The results suggest that the effects of ZAG on body weight and insulin sensitivity in ob/ob mice are manifested through a β-3AR, or possibly a β2-AR.  相似文献   

12.
Misfolded protein aggregates, characterized by a canonical amyloid fold, play a central role in the pathobiology of neurodegenerative diseases. Agents that bind and sequester neurotoxic intermediates of amyloid assembly, inhibit the assembly or promote the destabilization of such protein aggregates are in clinical testing. Here, we show that the gene 3 protein (g3p) of filamentous bacteriophage mediates potent generic binding to the amyloid fold. We have characterized the amyloid binding and conformational remodeling activities using an array of techniques, including X-ray fiber diffraction and NMR. The mechanism for g3p binding with amyloid appears to reflect its physiological role during infection of Escherichia coli, which is dependent on temperature-sensitive interdomain unfolding and cistrans prolyl isomerization of g3p. In addition, a natural receptor for g3p, TolA-C, competitively interferes with Aβ binding to g3p. NMR studies show that g3p binding to Aβ fibers is predominantly through middle and C-terminal residues of the Aβ subunit, indicating β strand–g3p interactions. A recombinant bivalent g3p molecule, an immunoglobulin Fc (Ig) fusion of the two N-terminal g3p domains, (1) potently binds Aβ fibers (fAβ) (KD = 9.4 nM); (2); blocks fAβ assembly (IC50 ~ 50 nM) and (3) dissociates fAβ (EC50 = 40–100 nM). The binding of g3p to misfolded protein assemblies is generic, and amyloid-targeted activities can be demonstrated using other misfolded protein systems. Taken together, our studies show that g3p(N1N2) acts as a general amyloid interaction motif.  相似文献   

13.
1-40 and Aβ1-42 have been shown to be the main components of the amyloid plaques found in the extracellular environment of neurons in Alzheimer’s disease. β-Casein, a milk protein, has been shown to display a remarkable chaperone ability in preventing the aggregation of proteins. In this study, the ability of β-casein to suppress the amyloid fibril formation of Aβ1-42 has been examined through in vitro studies and molecular docking simulation. The results demonstrate the inhibitory effect of β-casein on fibril formation in Aβ1-42, in a concentration dependent manner, suggesting that the chaperone binds to the Aβ1-42 and prevents amyloid fibril formation. Molecular docking results show that the inhibitory effect of the β-casein may be due to binding of the chaperone with the aggregation-prone region of the Aβ1-42 mainly via hydrophobic interactions. β-Casein probably binds to the CHC and C-terminal domain of the Aβ1-42, and stabilizes proteins by inhibiting the conversion of monomeric Aβ1-42 into fibrils. Thus our data suggests that the hydrophobic interactions between β-casein and Aβ1-42 play an important role in the burial of the hydrophobic part of the Aβ1-42. This means that β-casein maybe considered for use in preventing amyloid fibril formation in degenerative diseases such as Alzheimer.  相似文献   

14.
In the future, humans may live in space because of global pollution and weather fluctuations. In microgravity, convection does not occur, which may change the amyloidogenicity of proteins. However, the effect of gravity on amyloid fibril formation is unclear and remains to be elucidated. Here, we analyzed the effect of microgravity on amyloid fibril formation of amyloidogenic proteins including insulin, amyloid β42 (Aβ42), and transthyretin (TTR). We produced microgravity (10?3 g) by using the gravity controller Gravite. Human insulin, Aβ42, and human wild-type TTR (TTRwt) were incubated at pH 3.0, 7.0, and 3.5 at 37 °C, respectively, in 1 g on the ground or in microgravity. We measured amyloidogenicity via the thioflavin T (ThT) method and cell-based 1-fluoro-2,5-bis[(E)-3-carboxy-4-hydroxystyryl]benzene (FSB) assay. ThT fluorescence intensity and cell-based FSB assay results for human insulin samples were decreased in microgravity compared with results in 1 g. Aβ42 samples did not differ in ThT fluorescence intensity in microgravity and in 1 g on the ground. However, in the cell-based FSB assay, the staining intensity was reduced in microgravity compared with that on 1 g. Human TTRwt tended to form fewer amyloid fibrils in ThT fluorescence intensity and cell-based FSB assays in microgravity than in 1 g. Human insulin and Aβ42 showed decreased amyloid fibril formation in microgravity compared with that in 1 g. Human TTRwt tended to form fewer amyloid fibrils in microgravity. Our experiments suggest that the earth's gravity may be an accelerating factor for amyloid fibril formation.  相似文献   

15.
Senile systemic amyloidosis and familial amyloid polyneuropathy are caused by oxidative deposition of conformationally altered transthyretin (TTR). We identified oxidative modification of the 10th cysteine of TTR through S-sulfonation in vitro. Based on mass spectrometric analysis, we determined the spectrophotometric, western blotting, and fluororescent microscopic properties of TTR incubated with and without cysteine-S-sulfonate in acidic (pH 4) and alkaline (pH 8) conditions at 37°. The absorption of the aggregated TTR molecules increased more with incubation time and the concentration of cysteine-S-sulfonate at pH 4 than at pH 8. The Congo red binding to the S-sulfonated TTR at pH 4 was saturated with an apparent Bmax of 2.01 mol per mole of the S-sulfonated TTR and apparent KD of 7.75 × 106 M. On the other hand, the Bmax of cysteinyl TTR was 1.38, and its KD was 3.52 × 106 M while the Bmax of reduced TTR was 0.86, and its KD was 2.86 × 106 M. Moreover, we detected positive amyloid fibril staining using Thioflavin T and Congo red with the S-sulfonated TTR but not with untreated or reduced TTR by microscopic fluororescent analysis. After modification of TTR in vitro, oligomers resisted reduction and denaturation was irreversibly induced, and which contributed differences in the Western blotting patterns obtained with four anti-TTR antibodies. In conclusion, this study showed that the formation of S-sulfonation of TTR through oxidative modifications of the thiol residue on the 10th cysteine of TTR is an important trigger step in the formation of transthyretin-related amyloid fibril.  相似文献   

16.
Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of β2-microglobulin (β2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of β2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism.  相似文献   

17.
β2-Microglobulin (β2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured β2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized β2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced β2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized β2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured β2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.  相似文献   

18.
Cerebral amyloid angiopathy is caused by deposition of the amyloid β-peptide which consists of mainly 39–40 residues to the cortical and leptomeningeal vessel walls. There are no definite in vitro systems to support the hypothesis that the vascular basement membrane may act as a scaffold of amyloid β-peptide carried by perivascular drainage flow and accelerate its amyloid fibril formation in vivo. We previously reported the critical roles of interfaces and agitation on the nucleation of amyloid fibrils at low concentrations of amyloid β-peptide monomers. Here, we reproduced the perivascular drainage flow in vitro by using N-hydroxysuccinimide-Sepharose 4 Fast flow beads as an inert stirrer in air-free wells rotated at 1 rpm. We then reproduced the basement membranes in the media of cerebral arteries in vitro by conjugating Matrigel and other proteins on the surface of Sepharose beads. These beads were incubated with 5 μM amyloid β(1–40) at 37 °C without air, where amyloid β(1–40) alone does not form amyloid fibrils. Using the initiation time of fibril growth kinetics (i.e., the lag time of fibril growth during which nuclei, on-pathway oligomers and protofibrils are successively formed) as a parameter of the efficiency of biological molecules to induce amyloid fibril formation, we found that basement membrane components including Matrigel, laminin, fibronectin, collagen type IV and fibrinogen accelerate the initiation of amyloid β-peptide fibril growth in vitro. These data support the essential role of vascular basement membranes in the development of cerebral amyloid angiopathy.  相似文献   

19.
Articulatin-D, a 66 kDa ribosome inactivating protein (RIP) comprised of 29 kDa A-chain linked to 35 kDa B-chain, is purified from leafless mistletoe (Viscum articulatum) parasitic on Dalbergia sp. from Western Ghats (India). N-terminal sequence and LC-MS/MS analyses of A- and B-chain confirmed that articulatin-D is a type-2 RIP having high homology with other mistletoe lectins. Translation inhibition and diagnostic N-glycosidase activity of articulatin-D illustrate the presence of catalytically active A-chain. Its inability to: (i) bind to acid treated Sepharose CL-6B column, (ii) agglutinate trypsin-treated and untreated RBCs of human (A, B, O, AB), mice, rat, rabbit, buffalo, porcine, pigeon, cock, fish, sheep and goat even with 10 mg/ml of purified articulatin-D, (iii) show change in circular dichroism spectra after addition of sugar to the native protein, (iv) bind to different sugars (galactose, lactose, gal-NAc, rhamnose, arabinose, fucose and mannose) immobilized on Sepharose 4B matrix, and (v) show change in enthalpy during titration with galactose confirm that the B-chain of articulatin-D lacks sugar binding activity. Despite this, articulatin-D is highly toxic as characterized with low IC50 against different cancer cell lines (Jurkat: 0.31 ± 0.02 nM, MOLT-4: 0.51 ± 0.03 nM, U-937: 0.64 ± 0.07 nM, HL-60: 0.79 ± 0.11 nM, Raji: 1.45 ± 0.09 nM). Toxicity of RIPs has been ascribed to the absence/presence of B-chain with sugar binding activity. Identification of articulatin-D, the first cytotoxic RIP with B-chain lacking sugar binding activity opens new vistas in understanding cytotoxic action of RIPs.  相似文献   

20.
Amyloid deposits are pathological hallmarks of various neurodegenerative diseases including Alzheimer's disease (AD), where amyloid β-peptide (Aβ) polymerizes into amyloid fibrils by a nucleation-dependent polymerization mechanism. The biological membranes or other interfaces as well as the convection of the extracellular fluids in the brain may influence Aβ amyloid fibril formation in vivo. Here, we examined the polymerization kinetics of 2.5, 5, 10 and 20 μM Aβ in the presence or absence of air–water interface (AWI) using fluorescence spectroscopy and fluorescence microscopy with the amyloid specific dye, thioflavin T. When the solutions were incubated with AWI and in quiescence, amyloid fibril formation was observed at all Aβ concentrations examined. In contrast, when incubated without AWI, amyloid fibril formation was observed only at higher Aβ concentrations (10 and 20 μM). Importantly, when the 5 μM Aβ solution was incubated with AWI, a ThT-reactive film was first observed at AWI without any other ThT-reactive aggregates in the bulk. When 5 μM Aβ solutions were voltexed or rotated with AWI, amyloid fibril formation was considerably accelerated, where a ThT-reactive film was first observed at AWI before ThT-reactive aggregates were observed throughout the mixture. When 5 μM Aβ solutions containing a polypropylene disc were rotated without AWI, amyloid fibril formation was also considerably accelerated, where fine ThT-reactive aggregates were first found attached at the edge of the disc. These results indicate the critical roles of interfaces and agitation for amyloid fibril formation. Furthermore, elimination of AWI may be essential for proper evaluation of the roles of various biological molecules in the amyloid formation studies in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号