首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MOTIVATION: We reformulate the problem of comparing mass-spectra by mapping spectra to a vector space model. Our search method leverages a metric space indexing algorithm to produce an initial candidate set, which can be followed by any fine ranking scheme. RESULTS: We consider three distance measures integrated into a multi-vantage point index structure. Of these, a semi-metric fuzzy-cosine distance using peptide precursor mass constraints performs the best. The index acts as a coarse, lossless filter with respect to the SEQUEST and ProFound scoring schemes, reducing the number of distance computations and returned candidates for fine filtering to about 0.5% and 0.02% of the database respectively. The fuzzy cosine distance term improves specificity over a peptide precursor mass filter, reducing the number of returned candidates by an order of magnitude. Run time measurements suggest proportional speedups in overall search times. Using an implementation of ProFound's Bayesian score as an example of a fine filter on a test set of Escherichia coli protein fragmentation spectra, the top results of our sample system are consistent with that of SEQUEST.  相似文献   

2.
Independent of the approach used, the ability to correctly interpret tandem MS data depends on the quality of the original spectra. Even in the case of the highest quality spectra, the majority of spectral peaks can not be reliably interpreted. The accuracy of sequencing algorithms can be improved by filtering out such 'noise' peaks. Preprocessing MS/MS spectra to select informative ion peaks increases accuracy and reduces the processing time. Intuitively, the mix of informative versus non-informative peaks has a direct effect on the quality and size of the resulting candidate peptide search space. As the number of selected peaks increases, the corresponding search space increases exponentially. If we select too few peaks then the ion-ladder interpretation of the spectrum will contain gaps that can only be explained by permutations of combinations of amino acids. This will result in a larger candidate peptide search space and poorer quality candidates. The dependency that peptide sequencing accuracy has on an initial peak selection regime makes this preprocessing step a crucial facet of any approach, whether de novo or not, to MS/MS spectra interpretation.We have developed a novel approach to address this problem. Our approach uses a staged neural network to model ion fragmentation patterns and estimate the posterior probability of each ion type. Our method improves upon other preprocessing techniques and shows a significant reduction in the search space for candidate peptides without sacrificing candidate peptide quality.  相似文献   

3.
Shotgun proteomics experiments are dependent upon database search engines to identify peptides from tandem mass spectra. Many of these algorithms score potential identifications by evaluating the number of fragment ions matched between each peptide sequence and an observed spectrum. These systems, however, generally do not distinguish between matching an intense peak and matching a minor peak. We have developed a statistical model to score peptide matches that is based upon the multivariate hypergeometric distribution. This scorer, part of the "MyriMatch" database search engine, places greater emphasis on matching intense peaks. The probability that the best match for each spectrum has occurred by random chance can be employed to separate correct matches from random ones. We evaluated this software on data sets from three different laboratories employing three different ion trap instruments. Employing a novel system for testing discrimination, we demonstrate that stratifying peaks into multiple intensity classes improves the discrimination of scoring. We compare MyriMatch results to those of Sequest and X!Tandem, revealing that it is capable of higher discrimination than either of these algorithms. When minimal peak filtering is employed, performance plummets for a scoring model that does not stratify matched peaks by intensity. On the other hand, we find that MyriMatch discrimination improves as more peaks are retained in each spectrum. MyriMatch also scales well to tandem mass spectra from high-resolution mass analyzers. These findings may indicate limitations for existing database search scorers that count matched peaks without differentiating them by intensity. This software and source code is available under Mozilla Public License at this URL: http://www.mc.vanderbilt.edu/msrc/bioinformatics/.  相似文献   

4.
Tandem mass spectrometry fragments a large number of molecules of the same peptide sequence into charged molecules of prefix and suffix peptide subsequences and then measures mass/charge ratios of these ions. The de novo peptide sequencing problem is to reconstruct the peptide sequence from a given tandem mass spectral data of k ions. By implicitly transforming the spectral data into an NC-spectrum graph G (V, E) where /V/ = 2k + 2, we can solve this problem in O(/V//E/) time and O(/V/2) space using dynamic programming. For an ideal noise-free spectrum with only b- and y-ions, we improve the algorithm to O(/V/ + /E/) time and O(/V/) space. Our approach can be further used to discover a modified amino acid in O(/V//E/) time. The algorithms have been implemented and tested on experimental data.  相似文献   

5.
The identification of proteins from spectra derived from a tandem mass spectrometry experiment involves several challenges: matching each observed spectrum to a peptide sequence, ranking the resulting collection of peptide-spectrum matches, assigning statistical confidence estimates to the matches, and identifying the proteins. The present work addresses algorithms to rank peptide-spectrum matches. Many of these algorithms, such as PeptideProphet, IDPicker, or Q-ranker, follow a similar methodology that includes representing peptide-spectrum matches as feature vectors and using optimization techniques to rank them. We propose a richer and more flexible feature set representation that is based on the parametrization of the SEQUEST XCorr score and that can be used by all of these algorithms. This extended feature set allows a more effective ranking of the peptide-spectrum matches based on the target-decoy strategy, in comparison to a baseline feature set devoid of these XCorr-based features. Ranking using the extended feature set gives 10-40% improvement in the number of distinct peptide identifications relative to a range of q-value thresholds. While this work is inspired by the model of the theoretical spectrum and the similarity measure between spectra used specifically by SEQUEST, the method itself can be applied to the output of any database search. Further, our approach can be trivially extended beyond XCorr to any linear operator that can serve as similarity score between experimental spectra and peptide sequences.  相似文献   

6.
In mass spectrometry-based proteomics, frequently hundreds of thousands of MS/MS spectra are collected in a single experiment. Of these, a relatively small fraction is confidently assigned to peptide sequences, whereas the majority of the spectra are not further analyzed. Spectra are not assigned to peptides for diverse reasons. These include deficiencies of the scoring schemes implemented in the database search tools, sequence variations (e.g. single nucleotide polymorphisms) or omissions in the database searched, post-translational or chemical modifications of the peptide analyzed, or the observation of sequences that are not anticipated from the genomic sequence (e.g. splice forms, somatic rearrangement, and processed proteins). To increase the amount of information that can be extracted from proteomic MS/MS datasets we developed a robust method that detects high quality spectra within the fraction of spectra unassigned by conventional sequence database searching and computes a quality score for each spectrum. We also demonstrate that iterative search strategies applied to such detected unassigned high quality spectra significantly increase the number of spectra that can be assigned from datasets and that biologically interesting new insights can be gained from existing data.  相似文献   

7.
The discovery of unanticipated protein modifications is one of the most challenging problems in proteomics. Whereas widely used algorithms such as Sequest and Mascot enable mapping of modifications when the mass and amino acid specificity are known, unexpected modifications cannot be identified with these tools. We have developed an algorithm and software called P-Mod, which enables discovery and sequence mapping of modifications to target proteins known to be represented in the analysis or identified by Sequest. P-Mod matches MS/MS spectra to peptide sequences in a search list. For spectra of modified peptides, P-Mod calculates mass differences between search peptide sequences and MS/MS precursors and localizes the mass shift to a sequence position in the peptide. Because modifications are detected as mass shifts, P-Mod does not require the user to guess at masses or sequence locations of modifications. P-Mod uses extreme value statistics to assign p value estimates to sequence-to-spectrum matches. The reported p values are scaled to account for the number of comparisons, so that error rates do not increase with the expanded search lists that result from incorporating potential peptide modifications. Combination of P-Mod searches from multiple LC-MS/MS analyses and multiple samples revealed previously unreported BSA modifications, including a novel decarboxymethylation or D-->G substitution at position 579 of the protein. P-Mod can serve a unique role in the identification of protein modifications both from exogenous and endogenous sources and may be useful for identifying modified protein forms as biomarkers for toxicity and disease processes.  相似文献   

8.
Peptide identification of tandem mass spectra by a variety of available search algorithms forms the foundation for much of modern day mass spectrometry-based proteomics. Despite the critical importance of proper evaluation and interpretation of the results generated by these algorithms there is still little consistency in their application or understanding of their similarities and differences. A survey was conducted of four tandem mass spectrometry peptide identification search algorithms, including Mascot, Open Mass Spectrometry Search Algorithm, Sequest, and X! Tandem. The same input data, search parameters, and sequence library were used for the searches. Comparisons were based on commonly used scoring methodologies for each algorithm and on the results of a target-decoy approach to sequence library searching. The results indicated that there is little difference in the output of the algorithms so long as consistent scoring procedures are applied. The results showed that some commonly used scoring procedures may lead to excessive false discovery rates. Finally an alternative method for the determination of an optimal cutoff threshold is proposed.  相似文献   

9.
Tandem mass spectrometry (MS/MS) has emerged as a cornerstone of proteomics owing in part to robust spectral interpretation algorithms. Widely used algorithms do not fully exploit the intensity patterns present in mass spectra. Here, we demonstrate that intensity pattern modeling improves peptide and protein identification from MS/MS spectra. We modeled fragment ion intensities using a machine-learning approach that estimates the likelihood of observed intensities given peptide and fragment attributes. From 1,000,000 spectra, we chose 27,000 with high-quality, nonredundant matches as training data. Using the same 27,000 spectra, intensity was similarly modeled with mismatched peptides. We used these two probabilistic models to compute the relative likelihood of an observed spectrum given that a candidate peptide is matched or mismatched. We used a 'decoy' proteome approach to estimate incorrect match frequency, and demonstrated that an intensity-based method reduces peptide identification error by 50-96% without any loss in sensitivity.  相似文献   

10.
Tandem mass spectrometry (MS/MS) combined with protein database searching has been widely used in protein identification. A validation procedure is generally required to reduce the number of false positives. Advanced tools using statistical and machine learning approaches may provide faster and more accurate validation than manual inspection and empirical filtering criteria. In this study, we use two feature selection algorithms based on random forest and support vector machine to identify peptide properties that can be used to improve validation models. We demonstrate that an improved model based on an optimized set of features reduces the number of false positives by 58% relative to the model which used only search engine scores, at the same sensitivity score of 0.8. In addition, we develop classification models based on the physicochemical properties and protein sequence environment of these peptides without using search engine scores. The performance of the best model based on the support vector machine algorithm is at 0.8 AUC, 0.78 accuracy, and 0.7 specificity, suggesting a reasonably accurate classification. The identified properties important to fragmentation and ionization can be either used in independent validation tools or incorporated into peptide sequencing and database search algorithms to improve existing software programs.  相似文献   

11.
Quantitative proteomics relies on accurate protein identification, which often is carried out by automated searching of a sequence database with tandem mass spectra of peptides. When these spectra contain limited information, automated searches may lead to incorrect peptide identifications. It is therefore necessary to validate the identifications by careful manual inspection of the mass spectra. Not only is this task time-consuming, but the reliability of the validation varies with the experience of the analyst. Here, we report a systematic approach to evaluating peptide identifications made by automated search algorithms. The method is based on the principle that the candidate peptide sequence should adequately explain the observed fragment ions. Also, the mass errors of neighboring fragments should be similar. To evaluate our method, we studied tandem mass spectra obtained from tryptic digests of E. coli and HeLa cells. Candidate peptides were identified with the automated search engine Mascot and subjected to the manual validation method. The method found correct peptide identifications that were given low Mascot scores (e.g., 20-25) and incorrect peptide identifications that were given high Mascot scores (e.g., 40-50). The method comprehensively detected false results from searches designed to produce incorrect identifications. Comparison of the tandem mass spectra of synthetic candidate peptides to the spectra obtained from the complex peptide mixtures confirmed the accuracy of the evaluation method. Thus, the evaluation approach described here could help boost the accuracy of protein identification, increase number of peptides identified, and provide a step toward developing a more accurate next-generation algorithm for protein identification.  相似文献   

12.
High-throughput proteomics experiments typically generate large amounts of peptide fragmentation mass spectra during a single experiment. There is often a substantial amount of redundant fragmentation of the same precursors among these spectra, which is usually considered a nuisance. We here discuss the potential of clustering and merging redundant spectra to turn this redundancy into a useful property of the dataset. To this end, we have created the first general-purpose, freely available open-source software application for clustering and merging MS/MS spectra. The application also introduces a novel approach to calculating the similarity of fragmentation mass spectra that takes into account the increased precision of modern mass spectrometers, and we suggest a simple but effective improvement to single-linkage clustering. The application and the novel algorithms are applied to several real-life proteomic datasets and the results are discussed. An analysis of the influence of the different algorithms available and their parameters is given, as well as a number of important applications of the overall approach.  相似文献   

13.
Clustering millions of tandem mass spectra   总被引:1,自引:0,他引:1  
Tandem mass spectrometry (MS/MS) experiments often generate redundant data sets containing multiple spectra of the same peptides. Clustering of MS/MS spectra takes advantage of this redundancy by identifying multiple spectra of the same peptide and replacing them with a single representative spectrum. Analyzing only representative spectra results in significant speed-up of MS/MS database searches. We present an efficient clustering approach for analyzing large MS/MS data sets (over 10 million spectra) with a capability to reduce the number of spectra submitted to further analysis by an order of magnitude. The MS/MS database search of clustered spectra results in fewer spurious hits to the database and increases number of peptide identifications as compared to regular nonclustered searches. Our open source software MS-Clustering is available for download at http://peptide.ucsd.edu or can be run online at http://proteomics.bioprojects.org/MassSpec.  相似文献   

14.
Reversed-phase liquid chromatography (LC) directly coupled with electrospray-tandem mass spectrometry (MS/MS) is a successful choice to obtain a large number of product ion spectra from a complex peptide mixture. We describe a search validation program, ScoreRidge, developed for analysis of LC-MS/MS data. The program validates peptide assignments to product ion spectra resulting from usual probability-based searches against primary structure databases. The validation is based only on correlation between the measured LC elution time of each peptide and the deduced elution time from the amino acid sequence assigned to product ion spectra obtained from the MS/MS analysis of the peptide. Sufficient numbers of probable assignments gave a highly correlative curve. Any peptide assignments within a certain tolerance from the correlation curve were accepted for the following arrangement step to list identified proteins. Using this data validation program, host protein candidates responsible for interaction with human hepatitis B virus core protein were identified from a partially purified protein mixture. The present simple and practical program complements protein identification from usual product ion search algorithms and reduces manual interpretation of the search result data. It will lead to more explicit protein identification from complex peptide mixtures such as whole proteome digests from tissue samples.  相似文献   

15.
MOTIVATION: Tandem mass spectrometry combined with sequence database searching is one of the most powerful tools for protein identification. As thousands of spectra are generated by a mass spectrometer in one hour, the speed of database searching is critical, especially when searching against a large sequence database, or when the peptide is generated by some unknown or non-specific enzyme, even or when the target peptides have post-translational modifications (PTM). In practice, about 70-90% of the spectra have no match in the database. Many believe that a significant portion of them are due to peptides of non-specific digestions by unknown enzymes or amino acid modifications. In another case, scientists may choose to use some non-specific enzymes such as pepsin or thermolysin for proteolysis in proteomic study, in that not all proteins are amenable to be digested by some site-specific enzymes, and furthermore many digested peptides may not fall within the rang of molecular weight suitable for mass spectrometry analysis. Interpreting mass spectra of these kinds will cost a lot of computational time of database search engines. OVERVIEW: The present study was designed to speed up the database searching process for both cases. More specifically speaking, we employed an approach combining suffix tree data structure and spectrum graph. The suffix tree is used to preprocess the protein sequence database, while the spectrum graph is used to preprocess the tandem mass spectrum. We then search the suffix tree against the spectrum graph for candidate peptides. We design an efficient algorithm to compute a matching threshold with some statistical significance level, e.g. p = 0.01, for each spectrum, and use it to select candidate peptides. Then we rank these peptides using a SEQUEST-like scoring function. The algorithms were implemented and tested on experimental data. For post-translational modifications, we allow arbitrary number of any modification to a protein. AVAILABILITY: The executable program and other supplementary materials are available online at: http://hto-c.usc.edu:8000/msms/suffix/.  相似文献   

16.
With great biological interest in post-translational modifications (PTMs), various approaches have been introduced to identify PTMs using MS/MS. Recent developments for PTM identification have focused on an unrestrictive approach that searches MS/MS spectra for all known and possibly even unknown types of PTMs at once. However, the resulting expanded search space requires much longer search time and also increases the number of false positives (incorrect identifications) and false negatives (missed true identifications), thus creating a bottleneck in high throughput analysis. Here we introduce MODa, a novel "multi-blind" spectral alignment algorithm that allows for fast unrestrictive PTM searches with no limitation on the number of modifications per peptide while featuring over an order of magnitude speedup in relation to existing approaches. We demonstrate the sensitivity of MODa on human shotgun proteomics data where it reveals multiple mutations, a wide range of modifications (including glycosylation), and evidence for several putative novel modifications. Based on the reported findings, we argue that the efficiency and sensitivity of MODa make it the first unrestrictive search tool with the potential to fully replace conventional restrictive identification of proteomics mass spectrometry data.  相似文献   

17.
Shotgun proteomics yields tandem mass spectra of peptides that can be identified by database search algorithms. When only a few observed peptides suggest the presence of a protein, establishing the accuracy of the peptide identifications is necessary for accepting or rejecting the protein identification. In this protocol, we describe the properties of peptide identifications that can differentiate legitimately identified peptides from spurious ones. The chemistry of fragmentation, as embodied in the 'mobile proton' and 'pathways in competition' models, informs the process of confirming or rejecting each spectral match. Examples of ion-trap and tandem time-of-flight (TOF/TOF) mass spectra illustrate these principles of fragmentation.  相似文献   

18.
MOTIVATION: Comparing tandem mass spectra (MSMS) against a known dataset of protein sequences is a common method for identifying unknown proteins; however, the processing of MSMS by current software often limits certain applications, including comprehensive coverage of post-translational modifications, non-specific searches and real-time searches to allow result-dependent instrument control. This problem deserves attention as new mass spectrometers provide the ability for higher throughput and as known protein datasets rapidly grow in size. New software algorithms need to be devised in order to address the performance issues of conventional MSMS protein dataset-based protein identification. METHODS: This paper describes a novel algorithm based on converting a collection of monoisotopic, centroided spectra to a new data structure, named 'peptide finite state machine' (PFSM), which may be used to rapidly search a known dataset of protein sequences, regardless of the number of spectra searched or the number of potential modifications examined. The algorithm is verified using a set of commercially available tryptic digest protein standards analyzed using an ABI 4700 MALDI TOFTOF mass spectrometer, and a free, open source PFSM implementation. It is illustrated that a PFSM can accurately search large collections of spectra against large datasets of protein sequences (e.g. NCBI nr) using a regular desktop PC; however, this paper only details the method for identifying peptide and subsequently protein candidates from a dataset of known protein sequences. The concept of using a PFSM as a peptide pre-screening technique for MSMS-based search engines is validated by using PFSM with Mascot and XTandem. AVAILABILITY: Complete source code, documentation and examples for the reference PFSM implementation are freely available at the Proteome Commons, http://www.proteomecommons.org and source code may be used both commercially and non-commercially as long as the original authors are credited for their work.  相似文献   

19.
Spectral libraries have emerged as a viable alternative to protein sequence databases for peptide identification. These libraries contain previously detected peptide sequences and their corresponding tandem mass spectra (MS/MS). Search engines can then identify peptides by comparing experimental MS/MS scans to those in the library. Many of these algorithms employ the dot product score for measuring the quality of a spectrum-spectrum match (SSM). This scoring system does not offer a clear statistical interpretation and ignores fragment ion m/z discrepancies in the scoring. We developed a new spectral library search engine, Pepitome, which employs statistical systems for scoring SSMs. Pepitome outperformed the leading library search tool, SpectraST, when analyzing data sets acquired on three different mass spectrometry platforms. We characterized the reliability of spectral library searches by confirming shotgun proteomics identifications through RNA-Seq data. Applying spectral library and database searches on the same sample revealed their complementary nature. Pepitome identifications enabled the automation of quality analysis and quality control (QA/QC) for shotgun proteomics data acquisition pipelines.  相似文献   

20.
MOTIVATION: Due to the recent advances in technology of mass spectrometry, there has been an exponential increase in the amount of data being generated in the past few years. Database searches have not been able to keep with this data explosion. Thus, speeding up the data searches becomes increasingly important in mass-spectrometry-based applications. Traditional database search methods use one-against-all comparisons of a query spectrum against a very large number of peptides generated from in silico digestion of protein sequences in a database, to filter potential candidates from this database followed by a detailed scoring and ranking of those filtered candidates. RESULTS: In this article, we show that we can avoid the one-against-all comparisons. The basic idea is to design a set of hash functions to pre-process peptides in the database such that for each query spectrum we can use the hash functions to find only a small subset of peptide sequences that are most likely to match the spectrum. The construction of each hash function is based on a random spectrum and the hash value of a peptide is the normalized shared peak counts score (cosine) between the random spectrum and the hypothetical spectrum of the peptide. To implement this idea, we first embed each peptide into a unit vector in a high-dimensional metric space. The random spectrum is represented by a random vector, and we use random vectors to construct a set of hash functions called locality sensitive hashing (LSH) for preprocessing. We demonstrate that our mapping is accurate. We show that our method can filter out >95.65% of the spectra without missing any correct sequences, or gain 111 times speedup by filtering out 99.64% of spectra while missing at most 0.19% (2 out of 1014) of the correct sequences. In addition, we show that our method can be effectively used for other mass spectra mining applications such as finding clusters of spectra efficiently and accurately. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号