首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The epizootiology of the microsporidium Amblyospora stimuli was studied in natural populations of a univoltine mosquito, Aedes stimulans, inhabiting a temporary vernal pool over an 18-year period. The yearly prevalence of benign oenocytic infections in adult females was variable, ranging from 1.0 to 9.6% (mean = 5.1%). The yearly prevalence of transovarially transmitted meiospore infections in larval populations was consistently lower but less variable, ranging from 1.3 to 5.9% (mean = 3.5%). Meiospore infections in F(1)-generation larvae were significantly correlated with infections in parental-generation females, thus suggesting that larval infection rates could be substantially increased if methods were available to facilitate transmission of A. stimuli to a larger portion of the female population via inundative or inoculative release of infected copepods. No correlation was found when infections in filial-generation adult females were measured against meiospore infections in larvae from the preceding year. Analysis of yearly prevalence data using Fine's Fundamental Vertical Transmission Equation revealed low rates of horizontal transmission from the intermediate copepod host to female larvae in most years, ranging from 0.1 to 8.7% (mean = 3.1%). A. stimuli is enzootic, persists at a very low level, and has minimal impact on Ae. stimulans populations at this site. The low incidence rate of horizontal transmission to larvae appears to be due largely to a paucity of copepods and is a major factor that limits the abundance and subsequent proliferation of A. stimuli in Ae. stimulans populations at this locale. Results support the view that host-parasite cospeciation is an important mechanism of evolution in this group of mosquito/copepod microsporidia.  相似文献   

2.
The life cycle of Amblyospora albifasciati is characterized by three sporulation sequences involving the definitive mosquito host and a copepod intermediate host. Meiospores of A. albifasciati were infectious per os to adult females of the copepod Mesocyclops annulatus. All developmental stages in the copepod had unpaired nuclei, with sporulation involving the formation of a sporontogenic interfacial envelope and the production of a second type of uninucleate spore. These spores, formed in the ovaries of M. annulatus, were large, pyriform, and measured 10.4 x 4.8 microm. They infected Aedes albifasciatus larvae when ingested to initiate a sequence that involves schizogony and gametogony and ends with plasmogamy and nuclear association to form diplokaryotic meronts. Oval binucleate spores (9.3 x 3.1 microm) are formed in the adult mosquito and are responsible for vertical transmission to the filial generation.  相似文献   

3.
Laboratory observations were made of the microsporidian parasite Amblyospora dyxenoides in its natural mosquito host, Culex annulirostris. There were no differences in the numbers of eggs laid and in the proportions which hatched between infected and uninfected females, indicating that the parasite did not affect fecundity. Unlike other species of Amblyospora which have been studied the development of binucleate spores in adult mosquitoes increase with age of the host in both sexes and in females it proceeds independently of egg development and blood feeding. The same trend is apparent for adult mosquitoes which acquired the infection in the larval stage by horizontal transmission from the intermediate copepod host as well as for mosquitoes which acquired oenocytic infections by transovarial transmission. There was considerable variation in the proportion of mosquitoes which became infected after exposure to A. dyxenoides infected copepods. Infections in larval progeny of female mosquitoes infected via spores produced in copepods ranged from 0 to 100% in individual batches and averaged 45.6% with meiospore infections, 19.3% with oenocytic infections, with the remaining 35.7% being uninfected. Similar variability was observed in the progeny of infected female mosquitoes in the second generation after exposure to infected copepods. During experiments in which the microsporidium was maintained in C. annulirostris through 9 successive transovarially transmitted cycles (by selectively rearing the progeny of females infected with binucleate spores after an initial exposure to infected copepods) the proportion of infected progeny with oenocytic infections increased from 25 to around 50% whereas the incidence of meiospore infections declined from 50 to 10%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The epizootiology of Amblyospora camposi was studied in a natural population of Culex renatoi, a bromeliad-inhabiting mosquito, and its intermediate host, Paracyclops fimbriatus fimbriatus, over a 2-year period. Twenty Eryngium cabrerae plants were sampled monthly from January 2003 to January 2005 and the prevalence of A. camposi in P.f. fimbriatus and Cx. renatoi populations was determined. The monthly prevalence rates of meiospore infections in Cx. renatoi larvae never exceeded 5.5% and was detected in 50% of the monthly samples. Meiospores were available in plants over the course of the study at a mean concentration of 2 x 10(4) meiospores/ml. Within each plant the parasite was maintained by horizontal transmission. P.f. fimbriatus with vegetative stages and mature spores were found regularly in bromeliads suggesting efficient meiospore infectivity to field copepod populations. The mean concentration of spores from copepods found in plants was 8 x 10(2) spores/ml. Infections in copepods were detected in 54% of the monthly samples with a prevalence rate ranging from 0.55 to 17.4% and an overall average of 5.1%. Vegetative stages in fourth instar mosquito larvae (probably derived from the horizontal pathway via spores formed in copepods) were detected in 12.5% of the monthly samples with an overall prevalence rate of 1.1%. Infections in female and male adults were detected in 20.8% of the monthly samples with an overall average of 4.1% and 6.8%, respectively.  相似文献   

5.
The epizootiology, transmission dynamics and survival strategies employed by the microsporidium Hyalinocysta chapmani were examined in field populations of its primary mosquito host, Culiseta melanura and its intermediate copepod host, Orthocyclops modestus over a three-year period in an aquatic subterranean habitat. H. chapmani was enzootic and was maintained in a continuous cycle of horizontal transmission between each host. There were three distinct periods during the summer and fall when developing mosquito larvae acquired infections; each was preceded by or coincident with the detection of infected copepods. Results were corroborated in laboratory bioassays, wherein transmission was achieved in mosquito larvae that were reared in water and sediment samples taken from the site during the same time periods. The highest infection rates, ranging from 60% to 48%, were repeatedly observed during the first six weeks of larval development. These were coincident with the most sustained collections of infected copepods obtained during the year and highest levels of infection achieved in the laboratory transmission studies. The high prevalence rates of lethal infection observed in larval populations of C. melanura at this site are among the highest recorded for any mosquito-parasitic microsporidium and clearly suggest that H. chapmani is an important natural enemy of C. melanura. H. chapmani appears to overwinter in diapausing mosquito larvae but may also persist in copepods. The absence of vertical transmission in the life cycle of H. chapmani and the sole reliance on horizontal transmission via an intermediate host are unique survival strategies not seen among other mosquito-parasitic microsporidia. The epizootiological data suggest that this transmission strategy is a function of the biological attributes of the hosts and the comparatively stable environment in which they inhabit. The subterranean habitat is inundated with water throughout the year; copepods are omnipresent and C. melanura has overlapping broods. The spatial and temporal overlap of both hosts affords abundant opportunity for continuous horizontal transmission and increases the likelihood that H. chapmani will find a target host. It is hypothesized that natural selection has favored the production of meiospores in female host mosquitoes rather than congenital transfer of infection to progeny via ovarian infection as a strategy for achieving greater transmission success.  相似文献   

6.
In laboratory bioassays we tested the predatory capacity of the copepod Mesocyclops annulatus on Aedes aegypti and Culex pipiens larvae. A single adult female of M. annulatus caused 51.6% and 52.3% mortality of 50 first instar larvae of Ae. aegypti and Cx. pipiens respectively, in a 72 h test period. When alternative food was added to the containers, mortality rates declined to 16% and 10.3% for Ae. aegypti and Cx. pipiens respectively. When 50 first instar larvae of each of the two mosquito species tested were placed together with a single adult female of M. annulatus, mortality rates were 75.5% for Ae. aegypti larvae and 23.5% for Cx. pipiens larvae in a three day test period. Different density of adult females of M. annulatus ranged from 5 to 25 females produced mortality rates of Ae. aegypti first instar larvae from 50% to 100% respectively. When a single adult female of M. annulatus was exposed to an increasing number of first-instar Ae. aegypti larvae ranging from 10 to 100, 100% mortality was recorded from 1 to 25 larvae, then mortality declined to 30% with 100 larvae. The average larvae killed per 24 h period by a single copepod were 29.  相似文献   

7.
The life cycle of Amblyospora indicola, a parasite of the mosquito Culex sitiens, was revealed by field observations and laboratory infection experiments conducted in Australia. In northern Queensland, infected C. sitiens larvae were often found breeding in association with two cyclopoid copepods: Apocyclops dengizicus and an undescribed species of the same genus. The latter species was found to be an intermediate copepod host of this microsporidium whereas A. dengizicus was not. One complete cycle of the parasite extends over two mosquito generations (by transovarial transmission from females with binucleate spores to their eggs) and by horizontal transmission between mosquitoes and copepods. The latter involves horizontal transmission from mosquitoes to copepods via meiospores produced in larval fat body infections and horizontal transmission from copepods to mosquitoes via uninucleate spores produced within infected copepods. Uninucleate clavate spores were formed in Apocyclops sp. nov. copepods 7-10 days after exposure to larval meiospores and were infectious to larvae of a microsporidian-free colony of C. sitiens. The development of A. indicola within mosquito larvae exposed to infected copepods is similar to that of A. dyxenoides infecting C. annulirostris. It proceeds from stages with a single nucleus to diplokaryotic binucleate cells in oenocytes. These stages persist through pupation to adult emergence after which time a proportion of male mosquitoes and female mosquitoes may develop binucleate spores without the need for a blood meal. A proportion of both male and female larval progeny of infected females with binucleate spores develop patent fat body infections via transovarial transmission and die in the fourth larval instar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Strelkovimermis spiculatus ( Poinar and Camino 1986 ) is a nematode parasite of mosquitoes isolated from the Neotropical region. We investigated the host range of this parasite in mosquito populations for a better understanding of the dynamics of temporary breeding sites. Five grassy‐pool habitats filled by rainwater were sampled from the summer 2007 through the fall 2008. Eight mosquito species were collected: Anopheles albitarsis, Culex chidesteri, Culex dolosus, Culex maxi, Aedes albifasciatus, Psorophora ciliata, Psorophora cyanescens, and Psorophora albigenu. Six of these species were parasitized: Cx. chidesteri, Cx. dolosus, Cx. maxi, Ae. albifasciatus, Ps. ciliata, and Ps. cyanescens. The occurrence of this mermithid in natural mosquito populations was increased from the end of winter to the end of the spring. Prevalence ranged from 11% to 100%. High levels of infections were registered only in Ae. albifasciatus larvae, the most abundant mosquito species (95%), followed by Cx. dolosus (2.7%). Strelkovimermis spiculatus completed its development in all infected mosquito larvae. The presence of S. spiculatus in six natural mosquito populations increases the number of susceptible species to 24.  相似文献   

9.
An inverse relationship between larval density and adult body size has been reported for several mosquito species, affecting their survival and vector competence, response to repellents and other factors. Larvae of the floodwater mosquito Aedes (Ochlerotatus) albifasciatus (Macquart) (Diptera: Culicidae) develop quickly in temporary pools, so intraspecific competition (for food or space) might regulate population abundance and affect the size of adult mosquitoes. We investigated the temporal variation of adult female wing-length (an index of body-size) in natural populations of Ae. albifasciatus, using adults collected during each phase of the rainy season. The relationships between adult mosquito abundance, female wing-length, rainfall and temperature were analysed through simple regressions. Skewness of the frequency distribution of wing-lengths showed a strong negative relationship with mean wing-length. The distribution of wing-lengths varied seasonally and was correlated with rainfall 7-15 days previously as the major consequence of breeding site volume. Thus temporal variation of body size in natural populations of Ae. albifasciatus reflected density-dependent changes in the aquatic habitat where immature stages develop, influenced more by rainfall than by temperature or other environmental variables.  相似文献   

10.
Insect larvae that live in temporary ponds must cope with a rapidly diminishing resource. We tested the hypothesis that floodwater mosquitoes would react to diminishing water levels by accelerating larval development time and emerging as smaller adults. Since a reduction in habitat size leads to increased larval densities, we also included two larval densities. Newly-hatched floodwater mosquito larvae, Aedes vexans (87.9% of emerged adults) and Ochlerotatus sticticus (12.0% of emerged adults), were taken from the field and randomly assigned to one of three water level schedules. Survival to adult emergence was significantly affected by the water level schedule. Ae. vexans adults emerged later in the decreasing schedule than the constant water schedule, but time to emergence was not affected by larval density. In the drying water schedule, Ae. vexans adults emerged 6 to 14 days after complete water removal. Adult size was significantly affected by both water level schedule and larval density. Adults of Oc. sticticus emerged earlier in the decreasing than the constant water schedule which was in accordance with our hypothesis, but size was not affected. Our results indicate two different responses of two floodwater mosquito species to diminishing larval habitat. Oc. sticticus accelerated larval development while Ae. vexans larvae showed remarkable survival in humid soil. Both species are often numerous in inundation areas of large rivers, and climatic conditions after a flood might influence which species dominates the adult mosquito fauna.  相似文献   

11.
Biotic and abiotic parameters associated with an epizootic of the fungus Coelomomyces punctatus in larval populations of the mosquito Anopheles quadrimaculatus were investigated for three mosquito breeding seasons (1986-1988) in two adjacent farm ponds in North Carolina. In the first pond, the prevalence of infected larvae averaged 42% (range 0-85%) for collections made weekly from May 1 to November 20, 1986, but larvae did not occur in this pond in 1987. Infection rates in the adjacent pond, sampled during the mosquito breeding seasons of 1987 and 1988, declined from 10.9% (range 0-27.5%) in 1987 to 2.5% (range 0-14.2%) in 1988. Correlation analyses between the number of female copepods and fungal infection rates in sentinel mosquitoes were significant (P < 0.01) for Acanthocyclops robustus but insignificant for eight other species. Infections obtained in sentinel larvae placed in the ponds for 3 hr intervals indicated that C. punctatus infected larvae around sundown. Infection rates for field-collected larvae increased with the stage of larval development. However, experiments with sentinel larvae showed that early instars were more susceptible to infection than later instars, suggesting that the higher infection rates in late instars resulted from individual larvae being infected by two or more zygotes during larval development. Standard multiple regression analyses, used to determine the relationship between seasonal infection rates and water chemistry, weather variables, and the abundance of early and late instar larvae, showed that the abundance of late instars was the only independent variable common to linear models. The models only accounted for 20 and 9% of the variation in larval infection rates for 1987 and 1988, respectively. These results indicate that of the parameters examined, the seasonal abundance of the copepod, A. robustus, was the most important factor (or variable) correlated with the prevalence of mosquito infection.  相似文献   

12.
Life tables were constructed for six cohorts of immature stages of the floodwater mosquito Ochlerotatus albifasciatus (Macquart) in a park in Buenos Aires, highlighting the mortality attributable to the parasitic nematode, Strelkovimermis spiculatus Poinar & Camino. Two cohorts were selected to compare parasite incidence in all mosquito stages when low and high parasitism occurred. Development time of Oc. albifasciatus from first instar to adult was 7.7-10 days in the spring, 6 days in the summer, and 10.9-21.9 days in the fall. Survival was estimated as 0-1.4% in the spring, 2% in the summer and 0.2-4.4% in the fall. The highest "K" value (Killing power) occurred during a fall cohort when prevalence of the parasite was 86.9%, and the lowest in a spring cohort. Parasitism occurred during all seasons, but S. spiculatus persisted to adult only in the summer and fall, when adult mosquitoes developed from parasitized third and fourth instars larvae. The abundance of S. spiculatus differed between old and young larvae only when parasite prevalence was the highest. Although pupae and adults of Oc. albifasciatus were parasitized, no pupal mortality attributable to parasitism was recorded. The proportion of parasitized adults ranged from 14.2% and 5.7% in the two cohorts compared. Pupal wet weight and adult wing lengths did not differ between parasitized and unparasitized individuals.  相似文献   

13.
We evaluated the potential of Mesocyclops annulatus as a control agent of Aedes aegypti in La Plata city (Argentina). Mosquito larval survivorship due to predation by these copepods was estimated at weekly intervals during the oviposition period of A. aegypti. Mean weekly A. aegypti larval survivorship in cylindrical plastic containers (12 cm height and 11 cm diameter) with copepods was significantly lower than in control containers. Furthermore, weekly larval survival was negatively correlated with M. annulatus adult density, and approximately 23 adult copepods/container would be a threshold density over which the weekly mosquito larval survivorship approached zero. The copepods were able to persist in all containers during approximately 100 days (in three of them until the end of the experiment: 155 days) without the resource represented by A. aegypti larvae. The predation and persistence observed suggest that M. annulatus is a potential control agent to be considered in biological control programs.  相似文献   

14.
An in vivo laboratory culture of the fungus Coelomomyces dodgei (Chytridiomycetes: Blastocladiales) was established, using the copepod Cyclops vernalis as an intermediate host and the larvae of the mosquito Anopheles quadrimaculatus as the definitive host. The culture was perpetuated by infecting copepods and mosquitoes using separate procedures. Copepods were infected by being combined with dehiscing sporangia. Patently infected copepods, which contained either light amber, bright orange, or both light amber and bright orange mycelia, were collected daily beginning 12 days later. Mosquitoes were infected by combining 100 first-instar larvae for 48 hr with a mixture of 12 infected copepods, four of each of the above types. The mean rate of infection for the first 100 trials was 41%. When groups of 100 first-, second-, third-, and fourth-instar larvae were exposed to a similar mixture of infected copepods for 48 hr, the mean rates of infection were 37.4, 27.0, 17.8, and 2.4%, respectively. Observations and experimental evidence suggest that the differentially pigmented mycelia found in infected copepods are gametophytes which develop into gametangia that subsequently release gametes of opposite mating types, the light amber gametangia producing female and the bright orange gametangia producing male gametes. Zygotes resulting from the fusion of these gametes lead to the infection of mosquito larvae. Thus, C. dodgei appears to have an Euallomyces type of life cycle with sporophyte and gametophyte generations alternating between mosquito and copepod hosts, respectively, with differentially pigmented sexual structures present in the gametophyte phase.  相似文献   

15.
The complete life cycle of Amblyospora campbelli (Kellen and Wills, 1962) (Microsporida: Amblyosporidae) requires a two-host system involving the mosquito host, Culiseta incidens (Thomson), and an obligatory intermediate copepod host. The parasite has dimorphic spore development producing meiospores (haploid condition) and binucleated spores (diploid condition), either as an exclusive infection or simultaneously (within females only). This is the 1st known report of concurrent spore development within an adult mosquito host, and, therefore, shows the Amblyospora campbelli system to be uniquely different from other Amblyospora spp. cycles previously described. The significance of dimorphic spore development is discussed. In females, diplokaryotic meronts may invade oenocytes, causing a benign-type of infection. A blood-meal is required to initiate sporulation of the binucleate spore. The binucleate spore contains the sporoplasm involved in transovarial transmission. A 2nd sporulation sequence, primarily in adipose tissue, may involve both males and females. In this sequence, repeated merogonic division greatly increased the density of diplokaryotic meronts and generally involved most of the body of the host. Production of meiospores, unlike that for the binucleate spore, appeared to be spontaneous (i.e. no obligatory blood meal). Survivorship of male and female larval mosquitoes was nearly equal. Adult females spread the parasite in three ways: transovarial, transovum, and by meiospore deposition.  相似文献   

16.
A blastoconidial preparation of the New Zealand isolate of T. cylindrosporum was tested in two field trials against larvae of the freshwater mosquito Aedes subalbirostris and the brackish water species Ae. australis. There was some reduction in the population of the Ae. subalbirostris larvae and larvae collected from the test pools exhibited signs of fungal infection when reared in the laboratory. In the brackish pools there was no observable decrease in the larval populations even though Ae. australis is the natural host of T. cylindrosporum [NZ]. Water volume fluctuations in the test pools were a major difficulty experienced when monitoring the results.Tests against field-collected non-target fauna indicated that T. cylindrosporum is non-specific in action. Species of daphnid, dixid larvae and copepods were all susceptible to infection at varying degrees.  相似文献   

17.
The cyclopoid copepod Macrocyclops albidus (Jurine) was tested as a potential biological control agent of mosquitoes in laboratory microcosms, in controlled field conditions, and in a 22-mo field experiment using discarded tires. The predator was highly efficient in controlling mosquitoes in all three settings, reaching close to 90% reduction in larval survival under field conditions and exceeding the recommended predation rates for effective mosquito control in laboratory experiments. The predator was most effective on 1-4-d-old larvae. Alternate food and habitat structure significantly influenced the predation rates on mosquito larvae. Once established, the copepod was able to maintain reproducing populations in the field for the duration of the experiments. However, the predator failed to establish populations at four of the experimental field sites. Two of the failures can be attributed to characteristics of the individual tires, such as leaching chemicals, whereas the other two were probably due to site-specific factors. This copepod species is a promising candidate for control of mosquito larvae because it is a widespread and highly effective predator that is capable of establishing and maintaining populations under a wide variety of field conditions. Additionally, M. albidus is relatively easy to culture, maintain, and deliver to the target areas.  相似文献   

18.
Dengue fever is a mosquito-borne viral disease, whose main biological vector is Aedes aegypti. This mosquito colonizes tropical areas where the disease is endemic. The most obvious action against dengue is attacking its vector. Biological control appears to be an alternative approach, using natural enemies of the mosquitoes, such as predatory copepods. Thus, the morphological study of the damage caused by copepods is important to understand its predatory capacity. Twenty-five A. aegypti larvae were exposed to the copepod Mesocyclops thermocyclopoides and the damage caused by the copepods was evaluated using scanning electron microscopy. The larvae showed damage mainly at the anal segment, the siphon and the abdomen; only three attacks to the head were observed. The size of the siphon might be of importance in determining whether or not a copepod will attack a mosquito larva.  相似文献   

19.
Aedes albifasciatus is a floodwater mosquito that breeds in temporary waters. This semi-domestic species, widely distributed in Argentina, is a competent vector of the western equine encephalitis. The present study was carried out in two rain pools of the city of Buenos Aires, from April 1998 through March 1999. Samples were taken twice a week during the cold season and daily during the warmer months, starting from October. Immature mosquitoes were collected with a dipper, being the number of dippers proportional to the flooded area. The estimated rainfall thresholds to initiate cohorts of Ae. albifasciatus were: 16-17 mm in the fall-winter period, 25 mm in the spring, and 30 mm in the summer. The development time of the different cohorts and the mean air temperature of their respective periods were estimated in all seasons, ranging from six days (at 24 degress C) to 32 days (at 13 degrees C). The equation that best expresses the relationship between development time and mean air temperature is dt =166,27.e(-0,1435.T) (R(2)=0,92). Significantly shorter development times were recorded for larvae of the first three stages as compared to the fourth larval stage and pupae.  相似文献   

20.
The complete life cycle of Amblyospora campbelli (Kellen and Wills, 1962) (Microsporida: Amblyosporidae) requires a two-host system involving the mosquito host, Culiseta incidens (Thomson), and an obligatory intermediate copepod host. The parasite has dimorphic spore development producing meiospores (haploid condition) and binucleated spores (diploid condition), either as an exclusive infection or simultaneously (within females only). This is the 1st known report of concurrent spore development within an adult mosquito host, and, therefore, shows the Amblyospora campbelli system to be uniquely different from other Amblyospora spp. cycles previously described. The significance of dimorphic spore development is discussed. In females, diplokaryotic meronts may invade oenocytes, causing a benign-type of infection. A blood-meal is required to initiate sporulation of the binucleate spore. The binucleate spore contains the sporoplasm involved in transovarial transmission. A 2nd sporulation sequence, primarily in adipose tissue, may involve both males and females. In this sequence, repeated merogonic division greatly increased the density of diplokaryotic meronts and generally involved most of the body of the host. Production of meiospores, unlike that for the binucleate spore, appeared to be spontaneous (i.e. no obligatory blood meal). Survivorship of male and female larval mosquitoes was nearly equal. Adult females spread the parasite in three ways: transovarial, transovum, and by meiospore deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号