首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two female identical twins who were clinically normal were obligatory heterozygotes for X-linked deuteranomaly associated with a green-red fusion gene derived from their deuteranomalous father. On anomaloscopy, one of the twins was phenotypically deuteranomalous while the other had normal color vision. The color vision-defective twin had two sons with normal color vision and one deuteranomalous son. X-inactivation analysis was done with the highly informative probe M27 beta. This probe detects a locus (DXS255) which contains a VNTR and which is somewhat differentially methylated on the active and inactive X chromosomes. In skin cells of the color vision-defective twin, almost all paternal X chromosomes with the abnormal color-vision genes were active, thereby explaining her color-vision defect. In contrast, a different pattern was observed in skin cells from the woman with normal color vision; her maternal X chromosome was mostly active. However, in blood lymphocytes, both twins showed identical patterns with mixtures of inactivated maternal and paternal X chromosomes. Deuteranomaly in one of the twins is explained by extremely skewed X inactivation, as shown in skin cells. Failure to find this skewed pattern in blood cells is explained by the sharing of fetal circulation and exchange of hematopoietic precursor cells between twins. These data give evidence for X inactivation of the color-vision locus and add another MZ twin pair with markedly different X-inactivation patterns for X-linked traits.  相似文献   

2.
Most females have random X-chromosome inactivation (XCI), defined as an equal likelihood for inactivation of the maternally- or paternally-derived X chromosome in each cell. Several X-linked disorders have been associated with a higher prevalence of non-random XCI patterns, but previous studies on XCI patterns in Aicardi syndrome were limited by small numbers and older methodologies, and have yielded conflicting results. We studied XCI patterns in DNA extracted from peripheral blood leukocytes of 35 girls with typical Aicardi syndrome (AIC) from 0.25 to 16.42 years of age, using the human androgen receptor assay. Data on 33 informative samples showed non-random XCI in 11 (33%), defined as a >80:20% skewed ratio of one versus the other X chromosome being active. In six (18%) of these, there was a >95:5% extremely skewed ratio of one versus the other X chromosome being active. XCI patterns on maternal samples were not excessively skewed. The prevalence of non-random XCI in Aicardi syndrome is significantly different from that in the general population (p < 0.0001) and provides additional support for the hypothesis that Aicardi syndrome is an X-linked disorder. We also investigated the correlation between X-inactivation patterns and clinical severity and found that non-random XCI is associated with a high neurological composite severity score. Conversely, a statistically significant association was found between random XCI and the skeletal composite score. Correlations between X-inactivation patterns and individual features were made and we found a significant association between vertebral anomalies and random XCI.  相似文献   

3.
Regulation of imprinted X-chromosome inactivation in mice by Tsix   总被引:11,自引:0,他引:11  
  相似文献   

4.
We report on a female with mental and motor retardation, facial dysmorphism, abnormal pigmentation reminiscent to hypomelanosis of Ito (HI), and karyotypic mosaicism involving a small supernumerary marker chromosome. The marker chromosome was defined by fluorescence in situ hybridisation (FISH) as a ring X chromosome with breakpoints in the juxtacentromeric region. FISH analysis showed that the ring does not include the XIST locus at the X-inactivation centre and, therefore, may not be subject to X inactivation. X-inactivation studies with the HUMARA (human androgen receptor) and FMR1 assay showed a skewed X-inactivation pattern (85:15) with preferential inactivation of the paternal X chromosome. These results are discussed with respect to the role of functional disomy of Xp in the pathogenesis of HI. Received: 16 February 1998 / Accepted: 17 July 1998  相似文献   

5.
The human androgen-receptor gene (HUMARA; GenBank) contains a highly polymorphic trinucleotide repeat in the first exon. We have found that the methylation of HpaII and HhaI sites less than 100 bp away from this polymorphic short tandem repeat (STR) correlates with X inactivation. The close proximity of the restriction-enzyme sites to the STR allows the development of a PCR assay that distinguishes between the maternal and paternal alleles and identifies their methylation status. The accuracy of this assay was tested on (a) DNA from hamster/human hybrid cell lines containing either an active or inactive human X chromosome; (b) DNA from normal males and females; and (c) DNA from females showing nonrandom patterns of X inactivation. Data obtained using this assay correlated substantially with those obtained using the PGK, HPRT, and M27 beta probes, which detect X inactivation patterns by Southern blot analysis. In order to demonstrate one application of this assay, we examined X inactivation patterns in the B lymphocytes of potential and obligate carriers of X-linked agammaglobulinemia.  相似文献   

6.
We report a family ascertained for molecular diagnosis of muscular dystrophy in a young girl, in which preferential activation (> or = 95% of cells) of the paternal X chromosome was seen in both the proband and her mother. To determine the molecular basis for skewed X inactivation, we studied X-inactivation patterns in peripheral blood and/or oral mucosal cells from 50 members of this family and from a cohort of normal females. We found excellent concordance between X-inactivation patterns in blood and oral mucosal cell nuclei in all females. Of the 50 female pedigree members studied, 16 showed preferential use (> or = 95% cells) of the paternal X chromosome; none of 62 randomly selected females showed similarly skewed X inactivation was maternally inherited in this family. A linkage study using the molecular trait of skewed X inactivation as the scored phenotype localized this trait to Xq28 (DXS1108; maximum LOD score [Zmax] = 4.34, recombination fraction [theta] = 0). Both genotyping of additional markers and FISH of a YAC probe in Xq28 showed a deletion spanning from intron 22 of the factor VIII gene to DXS115-3. This deletion completely cosegregated with the trait (Zmax = 6.92, theta = 0). Comparison of clinical findings between affected and unaffected females in the 50-member pedigree showed a statistically significant increase in spontaneous-abortion rate in the females carrying the trait (P < .02). To our knowledge, this is the first gene-mapping study of abnormalities of X-inactivation patterns and is the first association of a specific locus for recurrent spontaneous abortion in a cytogenetically normal family. The involvement of this locus in cell lethality, cell-growth disadvantage, developmental abnormalities, or the X-inactivation process is discussed.  相似文献   

7.
8.
Using BrdU-labeling and acridine orange staining, the behavior of X-chromosome replication was studied in 28 XXX and 19 XXY digynous mouse triploids. In some of these the paternal and maternal X chromosome could by cytologically distinguished. Such embryos were obtained by mating chromosomally normal females with males carrying Cattanach's X chromosome which contains an autosomal insertion that substantially increases the length of this chromosome. In the XXX triploids there were two distinct cell lines, one with two late-replicating X chromosomes, and the other with only one late-replicating X. The XXY triploids were also composed of two cell populations, one with a single late-replicating X and the other with no late replicating X chromosome. Assuming that the late-replicating X is genetically inactive, in both XXX and XXY triploids, cells from the embryonic region tended to have only one active X chromosome, whereas those from the extra-embryonic membranes tended to have two active X chromosomes. The single active X chromosome was either paternal or maternal in origin, but two active X chromosomes were overwhelmingly maternal in origin, suggesting paternal X-inactivation in extra-embryonic tissues.  相似文献   

9.
We have begun a search for heritable variation in X-chromosome inactivation pattern in normal females to determine whether there is a genetic effect on the imprinting of X-chromosome inactivation in humans. We have performed a quantitative analysis of X-chromosome inactivation in lymphocytes from mothers in normal, three-generation families. Eight mothers and 12 grandmothers exhibited evidence of highly skewed patterns of X-chromosome inactivation. We observed that the male offspring of females with skewed X-inactivation patterns were three times more likely to inherit alleles at loci that were located on the inactive X chromosome (Xi) than the active X chromosome (Xa). The region of the X chromosome for which this phenomenon was observed extends from XP11 to -Xq22. We have also examined X-chromosome inactivation patterns in 21 unaffected mothers of male bilateral sporadic retinoblastoma patients. Six of these mothers had skewed patterns of X-chromosome inactivation. In contrast to the tendency for male offspring of skewed mothers from nondisease families to inherit alleles from the inactive X chromosome, five of the six affected males inherited the androgen receptor alleles from the active X chromosome of their mother. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
R M Brown  N J Fraser  G K Brown 《Genomics》1990,7(2):215-221
Consistent differences in methylation of particular cytosine residues in the DNA of active and inactive X chromosomes can be used for rapid, direct analysis of X-inactivation patterns in different female tissues. We have studied methylation of the highly polymorphic DXS255 locus in tissues from patients with deficiency of the E1 alpha subunit of the pyruvate dehydrogenase complex in whom the results can be correlated directly with total enzyme activity, levels of immunoreactive protein, and patterns of cell mosaicism. The results confirm that methylation of the DXS255 locus correlates with X-chromosome expression. In patients and normal controls, the pattern of X inactivation varied widely from tissue to tissue and often deviated markedly from a 50:50 proportion. These deviations are likely to reflect small numbers of tissue-specific stem cells at the time of random X inactivation and cannot be taken alone as evidence for selection or "nonrandom" inactivation.  相似文献   

12.
X-chromosome inactivation and the size of the CGG repeat number are assumed to play a role in the clinical, physical, and behavioral phenotype of female carriers of a mutated FMR1 allele. In view of the tight relationship between replication timing and the expression of a given DNA sequence, we have examined the replication timing of FMR1 alleles on active and inactive X-chromosomes in cell samples (lymphocytes or amniocytes) of 25 females: 17 heterozygous for a mutated FMR1 allele with a trinucleotide repeat number varying from 58 to a few hundred, and eight homozygous for a wild-type allele. We have applied two-color fluorescence in situ hybridization (FISH) with FMR1 and X-chromosome α-satellite probes to interphase cells of the various genotypes: the α-satellite probe was used to distinguish between early replicating (active) and late replicating (inactive) X-chromosomes, and the FMR1 probe revealed the replication pattern of this locus. All samples, except one with a large trinucleotide expansion, showed an early replicating FMR1 allele on the active X-chromosome and a late replicating allele on the inactive X-chromosome. In samples of mutation carriers, both the early and the late alleles showed delayed replication compared with normal alleles, regardless of repeat size. We conclude therefore that: (1) the FMR1 locus is subjected to X-inactivation; (2) mutated FMR1 alleles, regardless of repeat size, replicate later than wild-type alleles on both the active and inactive X-chromosomes; and (3) the delaying effect of the trinucleotide expansion, even with a low repeat size, is superimposed on the delay in replication associated with X-inactivation. Electronic Publication  相似文献   

13.
We report on a 13-month-old girl showing dysmorphic features and a delay in psychomotor development. She was diagnosed with a balancedde novo translocation 46, X, t(X;13)(p11. 2;p13) and non-random inactivation of the X chromosome. FISH analysis, employing the X chromosome centromere andXIST-region-specific probes, showed that theXIST locus was not involved in the translocation. Selective inactivation of paternal X, which was involved in translocation, was revealed by the HUMARA assay. The pattern of methylation of 5 genes located within Xp, which are normally silenced on an inactive X chromosome, corresponded to an active (unmethylated) X chromosome. These results revealed that in our proband the X chromosome involved in translocation (Xt) was preferentially inactivated. However, genes located on the translocated Xp did not includeXIST. This resulted in functional Xp disomy, which most probably accounts for the abnormal phenotype in our patient.  相似文献   

14.
Y Boyd  N J Fraser 《Genomics》1990,7(2):182-187
Methylation patterns surrounding a hypervariable X-chromosome locus, DXS255, have been analyzed with the restriction enzyme MspI and its methylation-sensitive isoschizomer HpaII. HpaII sites flanking the hypervariable region were found to be methylated on 41 active X chromosomes and unmethylated on 11 inactive X chromosomes present in a range of male, female, and hybrid cells and tissues. This differential methylation pattern coupled with the previously described high level (greater than 90%) of heterozygosity at the DXS255 locus can therefore be applied to determine the inactivation status of X chromosomes in females heterozygous for X-linked disease and in tumor clonality studies.  相似文献   

15.
Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs–miR-374-5p and miR-421-3p–mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development.  相似文献   

16.
17.
X chromosome inactivation in carriers of Barth syndrome.   总被引:2,自引:0,他引:2       下载免费PDF全文
Barth syndrome (BTHS) is a rare X-linked recessive disorder characterized by cardiac and skeletal myopathy, neutropenia, and short stature. A gene for BTHS, G4.5, was recently cloned and encodes several novel proteins, named "tafazzins." Unique mutations have been found. No correlation between the location or type of mutation and the phenotype of BTHS has been found. Female carriers of BTHS seem to be healthy. This could be due to a selection against cells that have the mutant allele on the active X chromosome. We therefore analyzed X chromosome inactivation in 16 obligate carriers of BTHS, from six families, using PCR in the androgen-receptor locus. An extremely skewed X-inactivation pattern (>=95:5), not found in 148 female controls, was found in six carriers. The skewed pattern in two carriers from one family was confirmed in DNA from cultured fibroblasts. Five carriers from two families had a skewed pattern (80:20-<95:5), a pattern that was found in only 11 of 148 female controls. Of the 11 carriers with a skewed pattern, the parental origin of the inactive X chromosome was maternal in all seven cases for which this could be determined. In two families, carriers with an extremely skewed pattern and carriers with a random pattern were found. The skewed X inactivation in 11 of 16 carriers is probably the result of a selection against cells with the mutated gene on the active X chromosome. Since BTHS also shows great clinical variation within families, additional factors are likely to influence the expression of the phenotype. Such factors may also influence the selection mechanism in carriers.  相似文献   

18.
Purified samples of large numbers of dictyate oocytes from 13 M. robustus pouch young heterozygous for glucose-6-phosphate dehydrogenase type and six homozygous controls were examined electrophoretically to determine activity states at the Gpd locus. Like somatic cortical and medullary cells, oocytes expressed only the maternal phenotype irrespective of the direction of the cross. No evidence was found of reactivation of the inactive (paternal) allele or inactivation of both maternal and paternal alleles. It was therefore concluded that unlike eutherian dictyate oocytes, only a single (maternal) allele is active in each dictyate oocyte in M. robustus. The stage of reactivation of the paternal allele remains to be determined.  相似文献   

19.
Some deleterious X-linked mutations may result in a growth disadvantage for those cells in which the mutation, when on the active X chromosome, affects cell proliferation or viability. To explore the relationship between skewed X-chromosome inactivation and X-linked mental retardation (XLMR) disorders, we used the androgen receptor X-inactivation assay to determine X-inactivation patterns in 155 female subjects from 24 families segregating 20 distinct XLMR disorders. Among XLMR carriers, ~50% demonstrate markedly skewed X inactivation (i.e., patterns 80:20), compared with only ~10% of female control subjects (P<.001). Thus, skewed X inactivation is a relatively common feature of XLMR disorders. Of the 20 distinct XLMR disorders, 4 demonstrate a strong association with skewed X inactivation, since all carriers of these mutations demonstrate X-inactivation patterns 80:20. The XLMR mutations are present on the preferentially inactive X chromosome in all 20 informative female subjects from these families, indicating that skewing is due to selection against those cells in which the XLMR mutation is on the active X chromosome.  相似文献   

20.
The mechanism of profound generalized iduronate sulfatase (IDS) deficiency in a developmentally delayed female with clinical Hunter syndrome was studied. Methylation-sensitive RFLP analysis of DNA from peripheral blood lymphocytes from the patient, using MspI/HpaII digestion and probing with M27 beta, showed that the paternal allele was resistant to HpaII digestion (i.e., was methylated) while the maternal allele was digested (i.e., was hypomethylated), indicating marked imbalance of X-chromosome inactivation in peripheral blood lymphocytes of the patient. Similar studies on DNA from maternal lymphocytes showed random X-chromosome inactivation. Among a total of 40 independent maternal fibroblast clones isolated by dilution plating and analyzed for IDS activity, no IDS- clone was found. Somatic cell hybrid clones containing at least one active human X chromosome were produced by fusion of patient fibroblasts with Hprt- hamster fibroblasts (RJK88) and grown in HAT-ouabain medium. Methylation-sensitive RFLP analysis of DNA from the hybrids showed that of the 22 clones that retained the DXS255 locus (M27 beta), all contained the paternal allele in the methylated (active) form. No clone was isolated containing only the maternal X chromosome, and in no case was the maternal allele hypermethylated. We postulate from these studies that the patient has MPS II as a result of a mutation resulting in both the disruption of the IDS locus on her paternal X chromosome and unbalanced inactivation of the nonmutant maternal X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号