首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A psychrotolerant Bacillus sp. from Antarctica produced an alkaline phosphatase in the culture supernatant. The strain showed 98.4% 16s rDNA sequence identity with Bacillus sphaericus. The 76 kDa protein was purified 11.1-fold showing alkaline phosphomonoesterase activity. Enzyme was optimally produced at 25 °C and pH 7.0. This cold active alkaline phosphatase is heat labile and gets completely inactivated at 60 °C in 50 min and is active in broad pH range.  相似文献   

2.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

3.
The genes encoding the lipase (LipA) and lipase chaperone (LipB) from Acinetobacter calcoaceticus RAG-1 were cloned and sequenced. The genes were isolated from a genomic DNA library by complementation of a lipase-deficient transposon mutant of the same strain. Transposon insertion in this mutant and three others was mapped to a single site in the chaperone gene. The deduced amino acid (aa) sequences for the lipase and its chaperone were found to encode mature proteins of 313 aa (32.5 kDa) and 347 aa (38.6 kDa), respectively. The lipase contained a putative leader sequence, as well as the conserved Ser, His, and Asp residues which are known to function as the catalytic triad in other lipases. A possible trans-membrane hydrophobic helix was identified in the N-terminal region of the chaperone. Phylogenetic comparisons showed that LipA, together with the lipases of A. calcoaceticus BD413, Vibrio cholerae El Tor, and Proteus vulgaris K80, were members of a previously described family of Pseudomonas and Burkholderia lipases. This new family, which we redefine as the Group I Proteobacterial lipases, was subdivided into four subfamilies on the basis of overall sequence homology and conservation of residues which are unique to the subfamilies. LipB, moreover, was found to be a member of an analogous family of lipase chaperones. We propose that the lipases produced by P. fluorescens and Serratia marcescens, which comprise a second sequence family, be referred to as the Group II Proteobacterial lipases. Evidence is provided to support the hypothesis that both the Group I and Group II families have evolved from a combination of common descent and lateral gene transfer.  相似文献   

4.
A potent bacterial strain, Pseudomonas aeruginosa, has been isolated from the soil which produces extracellular lipase that can carry out the excellent stereospecific hydrolysis of trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM)] to give [(−)-MPGM], an intermediate required in the synthesis of cardiovascular drug, diltiazem. As a preliminary experiment for enzymatic resolution, we characterized the fractionated enzyme. The enzyme had a pH and temperature optima of 8.0 and 60 °C, respectively. The enzyme showed high degree of thermostability. Also, the enzyme was found to be stable in alkaline condition and in organic solvents. The activity of the enzyme increased by the addition of magnesium ions. The small-scale hydrolysis of (±)-MPGM (250 mg) with partially purified enzyme (21,000 U) gave (−)-MPGM with good isolated yield (44%) and excellent enantiomeric excess (99.9%) in a very short time (12 h).  相似文献   

5.
Enzymatic synthesis of sn-1,3-diacylglycerols (sn-1,3-DAG) in two steps without isolation of the intermediates was investigated. Firstly ethanolysis of extra virgin olive oil (EVO) using immobilized non-regiospecific lipase from Candida antarctica (Novozym 435) was carried out to obtain glycerol (Gly) and fatty acid ethyl esters (FAEE). In the second step the ethanolysis products have been re-esterificated testing different sn-1,3-regiospecific lipases, both immobilized and non-immobilized, in different reaction media, that is in the presence of solvents or in a solvent-free system, for different times, at different temperatures (12, 25 and 40 °C). The lipase from Rhizomucor miehei (Lipozyme IM) has been the most effective among the sn-1,3-specific lipases screened.  相似文献   

6.
The enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid was investigated in 53 Rhodococcus and Pseudomonas related strains. Rhodococcus erythropolis ATCC 25544 was selected as it showed the highest enantioselectivity. The enantioselectivity was due to the amidase activity in a two-step reaction involving nitrile hydratase. The enantiomeric excess of the amidase was highest at pH 7.0 and decreased significantly above 20 °C. For the enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid, the optimum reaction conditions of the cells were determined to be pH 7.0, 20 °C, and 10% (v/v) methanol and were the same as the optimum pH and temperature for the enantioselective conversion by the amidase. Under these conditions, the R. erythropolis ATCC 25544 cells, which harbored nitrile hydratase and amidase enzymes, produced 45 mM (S)-2,2-dimethylcyclopropane carboxylic acid from racemic 100 mM 2,2-dimethylcyclopropane carbonitrile with an 81.8% enantiomeric excess after 64 h.  相似文献   

7.
Thermophilic bacteria capable of degrading phenol as the sole carbon source were isolated from sewage effluent. The isolates were aerobic, sporulating, motile rod-shaped bacteria characterized as Bacillus species with growth temperature optima of 50–60°C. The enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol-2,3-dioxygenase, was detected in all isolates grown in the presence of phenol. One strain, designated Bacillus strain Cro3.2, was capable of degrading phenol, o-, m-, and p-cresol via the meta-pathway and tolerated phenol at concentrations up to 0.1% (w/v) without apparent inhibition of growth. Phenol degradation activities in strain Cro3.2 were induced 3–5 h after supplementation by phenol, orcinol, and the cresols but not by halo- or nitro-substituted phenols. Maximal rates of phenol degradation in stirred bioreactors (10 μmol/min−1/g−1 cells) were achieved at an O2 delivery rate of 1.0 vvm and temperatures of 45–60°C; however, catechol-2,3-dioxygenase (but not 2-hydroxymuconic semialdehyde dehydrogenase) was rapidly inactivated at high oxygen concentrations. Whole cells of Bacillus strain Cro3.2 entrapped in calcium alginate, polyacrylamide, and agarose gels showed widely different rates of phenol degradation. In calcium alginate gels, rapid loss of phenol-degrading activity was attributed to calcium-induced inactivation of catechol-2,3-dioxygenase. No stabilization with respect to oxygen-induced inactivation was observed under any of the immobilization conditions. It is concluded that the counteractive effects of oxygen limitation at low dO2 and inactivation of catechol-2,3-dioxygenase at high dO2 levels pose a significant impediment to the use of resting thermophile cells in the treatment of phenolic waste streams.  相似文献   

8.
The objective of this work was to apply low cost materials, agricultural residues, to the purification of xylanase. The results showed that crude extracellular, cellulase-free xylanase of an alkaliphilic Bacillus sp. strain K-8 could be purified in a single step by affinity adsorption–desorption on a corn husk column using a high flow rate, under the conditions 25 mM acetate buffer, pH 4.0, 4 °C, which prevented the hydrolysis of xylan by xylanase. After adsorption, the xylanase was eluted from the enzyme–corn husk complex with 500 mM Urea. The enzyme was purified 5.3-fold to homogeneity from culture supernatant. The molecular weight of the purified enzyme was 24 kDa as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity and recovery yield after purification were 25.4 U/mg protein and 42.3%, respectively.  相似文献   

9.
An unusual halotolerant-alkaline laccase from Streptomyces psammoticus has been purified to homogeneity through anion exchange and gel filtration chromatography steps with an overall purification fold of 12.1. The final recovery of the enzyme was 22.1%. The molecular mass of the purified laccase was about 43 kDa. The enzyme was active in the alkaline pH range with pH optima at 8.5 and 97% activity retention at pH 9.0. The optimum temperature was 45 °C. The enzyme was stable in the pH range 6.5–9.5 and up to 50 °C for 90 min. The enzyme was tolerant to NaCl concentrations up to 1.2 M. It was inhibited by all the putative laccase inhibitors while the enzyme was activated by metal ions like Fe, Zn, Cu, Na and Mg. Fe enhanced the enzyme activity by twofold (204%). The enzyme showed lowest Km value with pyrogallol (0.25 mM) followed by ABTS (0.39 mM). The purified enzyme was a typical blue laccase with an absorption peak at 600 nm.  相似文献   

10.
Thirty five bacterial isolates from diverse environmental sources such as contaminated food, nitrogen rich soil, activated sludges from pesticide and oil refineries effluent treatment plants were found to belong to Bacillus, Bordetella, Enterobacter, Proteus, and Pseudomonas sp. on the basis of 16S rRNA gene sequence analysis. Under dark fermentative conditions, maximum hydrogen (H2) yields (mol/mol of glucose added) were recorded to be 0.68 with Enterobacter aerogenes EGU16 followed by 0.63 with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45. H2 constituted 63–69% of the total biogas evolved. Out of these 35 microbes, 18 isolates had the ability to produce polyhydroxybutyrate (PHB), which varied up to 500 mg/l of medium, equivalent to a yield of 66.6%. The highest PHB yield was recorded with B. cereus strain EGU3. Nine strains had high hydrolytic activities (zone of hydrolysis): lipase (34–38 mm) – Bacillus sphaericus strains EGU385, EGU399 and EGU542; protease (56–62 mm) – Bacillus sp. strains EGU444, EGU447 and EGU445; amylase (23 mm) – B. thuringiensis EGU378, marine bacterium strain EGU409 and Pseudomonas sp. strain EGU448. These strains with high hydrolytic activities had relatively low H2 producing abilities in the range of 0.26–0.42 mol/mol of glucose added and only B. thuringiensis strain EGU378 had the ability to produce PHB. This is the first report among the non-photosynthetic microbes, where the same organism(s) – B. cereus strain EGU43 and B. thuringiensis strain EGU45, have been shown to produce H2 – 0.63 mol/mol of glucose added and PHB – 420–435 mg/l medium.  相似文献   

11.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

12.
An extracellular lipase was purified to homogeneity with a purification factor of 5.5-fold from a bacterial strain Serratia marcescens ECU1010. The purified lipase is a dimer with two homologous subunits, of which the molecular mass is 65 kDa, and the pI is 4.2. The pH and temperature optima were shown to be pH 8.0 and 45 °C, respectively. Among p-nitrophenyl esters of fatty acids with varied chain length, the lipase showed the maximum activity on p-nitrophenyl myristate (C14). The lipase was activated by some surfactants such as Gum Arabic, polyvinyl alcohol (PVA) and Pg350me, but not by Ca2+. The enzyme displayed pretty high stability in many water miscible and immiscible solvents. This is a unique property of the enzyme which makes it extremely suitable for chemo-enzymatic applications in non-aqueous phase organic synthesis including enantiomeric resolution. Several typical chiral compounds were tested for kinetic resolution with this lipase, consequently giving excellent enantioselectivities (E = 83 >100) for glycidyl butyrate (GB), 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one acetate (HMPCA), naproxen methyl ester (NME) and trans-3-(4′-methoxyphenyl) glycidic acid methyl ester (MPGM).  相似文献   

13.
Esterase PF1-K from Pseudomonas sp. KTCC 10122BP was overproduced by the fed-batch culture of Escherichia coli. The soluble expression of esterase PF1-K was achieved by shifting the culture temperature from 37 to 25 °C at the time of IPTG induction. The enzyme was partially purified to about 75% purity by a single-step hydrophobic interaction column chromatography. The purified enzyme exhibited a fairly high enantioselectivity towards the hydrolysis of rac-flurbiprofen ethyl ester. The enzymatic chiral resolution was further improved by optimizing the reaction conditions in terms of reaction rate and enantioselectivity. The optimal reaction conditions were found to be 40 °C, pH 10.5 and 600 mM of initial rac-flurbiprofen ethyl ester. After 90 min of batch reaction under the optimal conditions, 50% of the initial rac-flurbiprofen was hydrolyzed with an enantiomeric excess of 99%.  相似文献   

14.
Acinetobacter junii SY-01 producing a lipase enantioselectively hydrolyzing 1,3-dioxolane derivatives was isolated from water sludge sample and the effect of solvent, acyl donor, vinyl acetate concentration, substrate concentration, operating temperature and immobilization on activity and enantioselectivity was studied for the resolution of 1,3-dioxolane derivatives through transesterification reaction using a lipase from the isolated strain. Best selectivity was obtained at lower substrate concentration (3–5 mM), higher vinyl acetate concentration (500–1000 mM) and lower temperature (30–40 °C) in the reaction mixture. Lipase immobilized onto Accurel MP-1000 (micro-porous polypropylene) gave the best results and the reactivity was about 29-fold higher than the free enzyme without the decrease of enantioselectivity. Resolution of 1,3-dioxolane derivatives was carried out in flask scale containing 100 ml solvents using the lipase immobilized onto Accurel MP-1000. In this reaction, the yield and enantiomeric excess of the remaining (2R, 4S)-alcohol were 31.2% and 98.2%, respectively. This result suggests that it can be used as an alternative method, compared to the present synthetic method, for the production of optically pure (2R, 4S)-itraconazole.  相似文献   

15.
Three thermoalkaliphilic bacteria, which were grown at pH 9.3–10 and 60–65 °C were isolated out of a textile wastewater drain. The unknown micro-organisms were identified as thermoalkaliphilic Bacillus sp. Growth conditions were studied and catalase activities and stabilities compared. Catalases from Bacillus SF showed high stabilities at 60 °C and pH 9 (t1/2=38 h) and thus this strain was chosen for further investigations, such as electron microscopy, immobilization of catalase and hydrogen peroxide degradation studies. Degradation of hydrogen peroxide with an immobilized catalase from Bacillus SF enabled the reuse of the water for the dyeing process. In contrast, application of the free enzyme for treatment of bleaching effluents, caused interaction between the denaturated protein and the dye, resulting in reduced dye uptake, and a higher color difference of 1.3 ΔE* of dyed fabrics compared to 0.9 ΔE* when using the immobilized enzyme.  相似文献   

16.
Sinorhizobium meliloti produced 50% polyhydroxyalkanoate (PHA) in the biomass in the presence of sucrose as carbon substrate. Isolation of the intracellular PHA was achieved through a secondary fermentation involving a cell lytic actinomycetes species namely Microbispora sp. without further supplementation of nutrients to the S. meliloti fermented broth, at 30 °C, 150 rpm up to 72 h. Microbispora sp. cells that showed pelleted growth was removed by filtration and the released polymer contained in the filtrate was extracted by chloroform or an admixture of Triton X 100 (0.6%) a surfactant and ethylene diamine tetra acetic acid (EDTA) a chelating agent. Yield of PHA obtained was 49, 41 and 7% of biomass weight after 24, 48 and 72 h of lytic culture fermentation, respectively. Corresponding recovery of the polymer was 94, 82 and 15% of 90% purity. Alternatively Microbispora sp. lytic enzyme was obtained by its cultivation in nutrient broth with S. meliloti cells as substrate and the supernatant was used for the hydrolysis of the PHA containing biomass to release PHA. A620 lytic activity value for the broth was 200 at 72 h. The enzyme showed optimized activity at 50 °C, pH 7 and this was used to hydrolyze 5 g/l of thermally inactivated biomass of S. meliloti to recover 94% of total PHA present in the cells and the polymer produced was 92% pure. Decreased cell lytic activity in the presence of soluble protein added in the form of bovine serum albumin indicated that the hydrolytic activity may be due to proteases. The polymer was characterized by GC, NMR and DSC and was found to be polyhydroxybutyrate-co-hydroxyvalerate (97:3 mol%) with a melt temperature of 169 °C.  相似文献   

17.
A Bacillus strain was screened for asymmetric resolution of (R)-Naproxen. The optical purity (ee (%)) of (R)-Naproxen was found to be 86.47% and conversion rate was 40–50% in bacterial cells PBS reaction system. The dissolved lipase was clarified from the Bacillus bacterial cells by centrifugation and loaded on a phenyl-Sepharose CL-4B column. After purification by a single hydrophobic chromatography, the activity of lipase was approximately 43 times higher than the crude one. The hydrolytic activity of lipase using Naproxen ethyl ester and p-nitrophenyl acetate (p-NPA) as substrate remained essentially constant during the purification procedure. A Bacillus strain with stereochemical selectivity was obtained.  相似文献   

18.
Radial basis function (RBF) artificial neural network (ANN) and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (pH, temperature, inoculum volume) for extracellular protease production from a newly isolated Pseudomonas sp. The optimum operating conditions obtained from the quadratic form of the RSM and ANN models were pH 7.6, temperature 38 °C, and inoculum volume of 1.5 with 58.5 U/ml of predicted protease activity within 24 h of incubation. The normalized percentage mean squared error obtained from ANN and RSM models were 0.05 and 0.1%, respectively. The results demonstrated an higher prediction accuracy of ANN compared to RSM. This superiority of ANN over other multi factorial approaches could make this estimation technique a very helpful tool for fermentation monitoring and control.  相似文献   

19.
A highly enantioselective (R)-ester hydrolase was partially purified from a newly isolated bacterium, Acinetobacter sp. CGMCC 0789, whose resting cells exhibited a highly enantioselective activity toward the acetate of (4R)-hydroxy-3-methyl-2-(2-propynyl)- cyclopent-2-enone (R-HMPC). The optimum pH and temperature of the partially purified enzyme were 8.0 and 60 °C, respectively. The enantioselectivity of the crude enzyme was increased by 1.2-fold from 16 to 20 when the reaction temperature was raised from 30 to 60 °C. The activity of the crude enzyme was enhanced by 4.1-fold and the enantioselectivity (E-value) was markedly enhanced by 4.3-fold from 16 to 68 upon addition of a cationic detergent, benzethonium chloride [(diisobutyl phenoxyethoxyethyl) dimethyl benzylammoniom chloride]. The hydrolysis of 52 mM (R,S)-HMPC acetate to (R)-HMPC was completed within 8 h, with optical purity of 91.4% eep and conversion of 49%.  相似文献   

20.
The yeast Candida antarctica produces two different lipases, lipases A and B. While lipase B (CAL-B) is probably the mostly employed hydrolase in the biocatalysis field, the use of the lipase A (CAL-A) has been rather scarce and consequently its tridimensional structure has not been elucidated yet. However, CAL-A is a useful biocatalyst with many different applications that have been described especially in the last few years. Its attractiveness results from its unique features among hydrolases: the high thermostability, allowing operation at T > 90 °C; the ability to accept tertiary and sterically hindered alcohols, which has recently been attributed to the existence of a specific aminoacidic sequence in the active site; the sn-2 recognition in hydrolysis of triglycerides; the selectivity towards trans-fatty acids; the stability in the acidic pH range. Furthermore, it is considered to be an excellent biocatalyst for the asymmetric synthesis of amino acids/amino esters, due to its chemoselectivity towards amine groups. Considering all these aspects, in the present review, the origin, the properties and the applications of the CAL-A are briefly described and discussed, pointing out the unique characteristics of this biocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号