首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The esterase and peroxidase patterns in five varieties ofAegilops caudata (genome type C) andAe. comosa (genome type M) were studied in order to elucidate the phylogenetic relationships within and between the two groups. The electrostarch gel electrophoresis technique was applied to extracts of shoot and root of 4-day-old seedlings, and the electropherograms were evaluated by gel densitometer traces. Inspite of considerable isozyme polymorphism, closer relationships in the banding patterns were found between different varieties of a single species than between varieties of the two different species. Esterase and peroxidase patterns of the twoAe. caudata varieties (caudata andpolyathera) are very similar and prove their close phylogenetic relationship. The isozyme affinities withinAe. comosa varieties are illustrated by the seriessubventricosa—biaristata—thessalica. The latter endemic variety has quite a number of characteristic bands and is relatively isolated. Altogether, the electrophoretic data agree well with morphological and cytological similarities (Zhukovsky 1928,Eig 1929,Karataglis 1973, 1975b).  相似文献   

2.
A native population ofAegilops cylindrica was encountered for the first time in Greece in 1980 (near Kastoria, NW. Greece), completely isolated and at a great distance from its main distribution area. There are morphological and chromosomal, but no protein and esterase pattern differences from otherAe. cylindrica populations. This justifies the recognition of a new variety: var.kastorianum. Our comparative and karyotypic observations support the view thatAe. caudata var.polyathera and not var.caudata (typica) is the possible donor of genome C of the new variety.  相似文献   

3.
Summary Banding patterns of esterase isozymes in Aegilops triuncialis (2n = 28, genome formula CuCuCC) and its putative parental species, Ae. umbellulata (2n = 14, CuCu) and Ae. caudata (2n = 14, CC), were studied by the gel isoelectric focusing method using pH 6–8 carrier ampholite. Zymogram phenotypes of both parents were quite uniform. Seven zymogram phenotypes (designated as phenotypes 1 to 7) were found among the 260 strains of Ae. triuncialis examined. Of these phenotypes, phenotype 1 was identical to the zymogram phenotype produced by the ancestral species, Ae. umbellulata, and bands considered to have been derived from Ae. caudata were absent in this phenotype. Phenotype 3 had all bands of both parents. The other phenotypes differed greatly from phenotype 3. Therefore, phenotype 3 was considered to be most primitive of the 7 types, and the Ae. triuncialis strains which showed phenotype 3 to be the most primitive of the strains examined. If Ae. triuncialis originated as a hybrid between Ae. umbellulata and Ae. caudata, the zymogram phenotype must have been phenotype 3, in which the isozymes of both parental species are present. Whether the phenotypes other than type 3 were due to introgressive hybridization could not be verified, but they were considered in this article to be a consequence of a rearrangement of chromosomes.Contribution from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University No. 432  相似文献   

4.
The D genome cluster includes six allopolyploidAegilops species having as pivotal genome that ofAegilops squarrosa. Alpha-gliadins, endosperm proteins coded by multigenic families, have been analyzed in the D genome species cluster and in their putative progenitors. They can be present or weakly expressed when analyzed in acid polyacrylamide gel electrophoresis. Molecular analysis has shown the possibility to distinguish subsp.strangulata from subsp.eusquarrosa and to confirm the presence ofAe. caudata and ofAe. umbellulata in the polyploidsAe. cylindrica andAe. juvenalis, respectively. Finally, introgression fromAe. longissima orAe. searsii in tetraploid and hexaploidAe. crassa, Ae. juvenalis, andAe. vavilovii is supposed.  相似文献   

5.
We assessed the molecular genetic diversity and relationships among some Aegilops and Triticum species using 15 start codon-targeted (SCoT) polymorphism markers. A total of 166 bands amplified, of which 164 (98.79%) were polymorphic. Analysis of molecular variance and inter-population differentiation (Gst) indicated high genetic variation within the studied populations. Our analyses revealed high genetic diversity in T. boeoticum, Ae. cylindrica, T. durum and Ae. umbellulata, low diversity in Ae. crassa, Ae. caudata and Ae. speltoides, and a close relationship among Ae. tauschii, T. aestivum, T. durum, T. urartu, and T. boeoticum. Cluster analysis indicated 180 individuals divided into 8 genome homogeneous clades and 11 sub-groups. T. aestivum and T. durum accessions were grouped together, and accessions with the C and U genomes were grouped into the same clade. Our results support the hypothesis that T. urartu and Ae. tauschii are two diploid ancestors of T. aestivum, and also that Ae. caudata and Ae. umbellulata are putative donors of C and U genomes for other Aegilops species that possess these genomes. Our results also revealed that the SCoT technique is informative and can be used to assess genetic relationships among wheat germplasm.  相似文献   

6.
Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.  相似文献   

7.
Summary Restriction fragment patterns of DNA fragments obtained after EcoRI cleavage of chloroplastic (cp) and mitochondrial (mt) DNAs isolated from different wheat species were compared. T. aestivum, T. timopheevi, Ae. speltoides, Ae. sharonensis and T. urartu gave species specific mt DNA patterns. Consequently, the cytoplasmic genomes of wheat cannot have originated from contemporary Ae. speltoides, Ae. sharonensis and T. urartu species. It is shown that cp and mt DNAs of Ae. ventricosa, a tetraploid used to transfer eyespot resistance into T. aestivum, contains cp and mt DNAs differing from DNAs isolated from T. aestivum and other wheats. In contrast, the cytoplasmic DNAs of Ae. ventricosa and Ae. squarrosa reveal an important homology, suggesting that Ae. squarrosa was the female parent of Ae. ventricosa. Disomic addition lines (T. aestivum — Ae. ventricosa) in both Ae. ventricosa cytoplasm and T. aestivum cytoplasm contained cytoplasmic DNAs identical to those of the maternal parent. Restriction patterns of the cp and mt DNAs isolated from eight lines of Triticale differing in their cytoplasm have been compared to those of the maternal parent. A strict maternal inheritance has been observed in each case.  相似文献   

8.
Summary Nitrate reductase activity (NR activity), protein content (NR protein) and polypeptides were compared in shoots of Triticum aestivum ssp. vulgare (L.) cv Fidel (bread wheat, AABBDD genome), Triticum dicoccum cv Vernal (AABB genome), Aegilops squarrosa var. strangulata (DD genome) and the amphiploid 365 (AABBDD genome), produced by crossing T. dicoccum cv Vernal and Ae. squarrosa var. strangulata. Constitutive NR protein and activity were found in shoots of all seedlings grown without nitrate, with the highest activity in the bread wheat. The inducible NR protein and activity developed upon the addition of nitrate. A 116-K polypeptide was identified as the main component of the NR from the bread wheat, while a faint, sometimes discernable 94-K band appeared on Western blots. Only one NR polypeptide could be identified in Ae. squarrosa —the 94 K. An intermediary situation was observed with the tetraploid T. dicoccum and the amphiploid: The 94-K polypeptide was the only one separated from NR of seedlings grown in the absence of nitrate. The 116-K polypeptide appeared after the addition of nitrate. The intensity of its band on the gel increased with the duration of the nitrate treatment. When comparing Ae. squarrosa and T. dicoccum, the constitutive isozyme (94-K polypeptide) was found in the D as well as in the AB genomes, while the inducible NR (116-K polypeptide) was absent from the D genome. Addition of the D genome into the AB genome slightly reinforced the expression of the inducible form (AB genome expression) in the amphiploid wheat. We postulate that the inducible form of NR in the bread wheat resulted from an evolutionary selection pressure favoured by cultivation.  相似文献   

9.
Twenty enzyme loci were examined in the diploid species ofTriticum andAegilops for allelic variation by starch gel electrophoresis. SectionSitopsis, including the five species,Ae. speltoides, Ae. lingissima, Ae. sharonensis, Ae. bicornis andAe. searsii form a close subgroup withAe. speltoides slightly removed from the others.T. monococcum s. lat., was found to be closest to the species of theSitopsis group.Ae. comosa, Ae. umbellulata andAe. uniaristata form a second subgroup withAe. caudata most closely related to these species.Ae. squarrosa appears almost equally related to all of the species, showing no special affinity for any one species group. Nineteen out of twenty loci examined were polymorphic with a mean of 6.7 alleles per locus. Species could be, for most loci, characterized by the presence of predominant alleles. A conspicious genetic characteristic ofTriticum-Aegilops is the sharing of these predominant alleles between species. Within species variation is characterized by a diffuse distribution of secondary alleles.  相似文献   

10.
Summary The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B3 isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B2 controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B4, not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B1 and B2, considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B2 was characteristic of T. timopheevii s.l. and only B1 was found in the remaining taxa of polyploid wheats. The isoenzyme B1, not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B2 characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is discussed.  相似文献   

11.
Polyacrylamide gel electrophoresis of aspartate aminotransferase (AAT, EC 2.6.1.1) and alcohol dehydrogenase (ADH, EC 1.1.1.1) isoenzymes reveals intraspecific differentiation ofAegilops tauschii Coss. (=Ae. squarrosa auct., non L.) into two groups of biotypes which essentially correspond to its two morphological subspecies, subsp.tauschii and subsp.strangulata (Eig)Tzvel. Subsp.tauschii which is characterized by a slower electromorph of AAT-B and a faster electromorph of ADH-A is identified as the contributor of its D genome to the tetraploidAe. cylindrica Host and the hexaploidAe. crassa Boiss. subsp.crassa. Subsp.strangulata, being distinguished by a faster electromorph of AAT-B and a slower electromorph of ADH-A, has contributed the D genome to the hexaploid bread wheats (Triticum aestivum L. emend.Thell.), the tetraploidsAe. crassa subsp.macrathera (Boiss.)Zhuk. andAe. ventricosa Tausch, and the hexaploidAe. juvenalis (Thell.)Eig.Aegilops comosa Sibth. etSm. s. lat. is questioned as the contributor of the M genome toAe. crassa. Furthermore, the S genome diploidsAe. bicornis (Forsk.)Jaub. & Spach,Ae. longissima Schweinf. & Muschl. s. lat. andAe. searsii Feldman & Kislev are all considered unsuitable as the wheat B genome donors on the basis of the AAT isoenzyme data.  相似文献   

12.
Summary The transfer of cytoplasms of various Triticum and Aegilops species to a hexaploid triticale (Rosner) has been attempted using 30 alloplasmic lines and a euplasmic line of common wheat as cytoplasmic donors. The average rate of F1 hybrid production (seed setting rateXgermination rate) following an ordinary method of crossing is only 0.09%, whereas this rate is increased to 3.1% by use of embryo culture. The first backcross of the F1 plants with triticale pollen is again difficult, the hybrid production being 0.9%. Further backcrosses proceed smoothly in most cases. As a consequence, the following seven cytoplasms have been transferred to triticale: T. dicoccum, T. aestivum, Ae. squarrosa, Ae. cylindrica, Ae. juvenalis, Ae. ovata and Ae. speltoides. None of these alien cytoplasms causes more meiotic instability than does the triticale's own cytoplasm. Two cytoplasms of T. dicoccum and T. aestivum, both belonging to the B plasma type, have no effect upon any of triticale's characters. Two D type cytoplasms of Ae. squarrosa and Ae. cylindrica cause about 50% reduction of male fertility but exert no other remarkable effects. This fact suggests a partial functional compensation of the effect of a 1D chromosome upon interacting with D cytoplasm by a rye chromosome substituting for it in triticale. A D2 cytoplasm of Ae. juvenalis causes earlier heading and complete male sterility, accompanied by some reduction of growth vigor. An M0 type cytoplasm of Ae. ovata and an S type cytoplasm of Ae. speltoides cause a great heading delay, complete male sterility, and severe reduction of vigor. From the viewpoint of triticale breeding, none of these cytoplasms appears superior to the triticale's own cytoplasm. However, from the viewpoint of genetics, the hexaploid triticale is an effective tester for differentiating the B, S, and D plasma types.Contribution No. 466 from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan  相似文献   

13.
RFLP variation revealed by protein disulfide isomerase (PDI) coding gene sequences was assessed in 170 accessions belonging to 23 species of Triticum and Aegilops. PDI restriction fragments were highly conserved within each species and confirmed that plant PDI is encoded either by single-copy sequences or by small gene families. The wheat PDI probe hybridized to single EcoRI or HindIII fragments in different diploid species and to one or two fragments per genome in polyploids. Four Aegilops species in the Sitopsis section showed complex patterns and high levels of intraspecific variation, whereas Ae. searsii possessed single monomorphic fragments. T. urartu and Ae. squarrosa showed fragments with the same mobility as those in the A and D genomes of Triticum polyploid species, respectively, whereas differences were observed between the hybridization patterns of T. monococcum and T. boeoticum and that of the A genome. The single fragment detected in Ae. squarrosa was also conserved in most accessions of polyploid Aegilops species carrying the D genome. The five species of the Sitopsis section showed variation for the PDI hybridization fragments and differed from those of the B and G genomes of emmer and timopheevi groups of wheat, although one of the Ae. speltoides EcoRI fragments was similar to those located on the 4B and 4G chromosomes. The similarity between the EcoRI fragment located on the 1B chromosome of common and emmer wheats and one with a lower hybridization intensity in Ae. longissima, Ae. bicornis and Ae. sharonensis support the hypothesis of a polyphyletic origin of the B genome. Received: 25 June 1999 / Accepted: 14 September 1999  相似文献   

14.
The meiotic behaviour of Triticum aestivum × Aegilops speltoides, T. aestivum × Ae. sharonensis and T. aestivum × Ae. longissima tetraploid hybrids (genome constitution ABDS, ABDS l , and ABDS l , respectively) has been analysed by the C-banding technique. Of the six types of pairing normally occurring, at metaphase I three were recognized: A-D, AD-BS/AD-BS l and B-S/B-S l . The relative order observed in the low pairing hybrid, A-D> B-S l >AD-BS l , as well as that found in high-pairing Chinese Spring × Ae. speltoides hybrids, A-D>AD-BS>ß-S, revealed the existence of preferential pairing patterns among the different genomes that are in competition. In all of the hybrids analysed the mean number of bound arms per cell for the A-D type was significantly higher than the mean number of associations between the B and S/S l genomes. Usually the relative contribution of each type of pairing is maintained among hybrids with different Aegilops species. These results indicate that the genomes of Ae. speltoides, Ae. sharonensis and Ae. longissima show a similar affinity with the genomes of hexaploid wheat; therefore none of these species can be considered to be a distinct donor of the B genome of wheats.  相似文献   

15.
Summary Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E0.58/E0.64. The slowest isoenzyme, E0.58, is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. Chinese Spring and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E0.64, is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E0.56/E0.71, whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E0.58/E0.64 (the commonest), E0.58/E0.71, E0.45/E0.58, E0.48/E0.58 and E0.56/E0.58 recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E0.58/E0.64. Ae. cylindrica and polyploid goatgrasses of the Cu-genome group, excepting Ae. kotschyi, are homozygous for E0.64. Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E0.56/E0.64 and A0.49/A0.56.  相似文献   

16.
RAPD analysis was carried out to study the genetic variation and phylogenetic relationships of polyploid Aegilops species, which contain the D genome as a component of the alloploid genome, and diploid Aegilops tauschii, which is a putative donor of the D genome for common wheat. In total, 74 accessions of six D-genome Aegilops species were examined. The highest intraspecific variation (0.03–0.21) was observed for Ae. tauschii. Intraspecific distances between accessions ranged 0.007–0.067 in Ae. cylindrica, 0.017–0.047 in Ae. vavilovii, and 0–0.053 inAe. juvenalis.Likewise, Ae. ventricosaand Ae. crassa showed low intraspecific polymorphism. The among-accession difference in alloploidAe. ventricosa (genome DvNv) was similar to that of one parental species, Ae. uniaristata (N), and substantially lower than in the other parent, Ae. tauschii (D). The among-accession difference in Ae. cylindrica(CcDc) was considerably lower than in either parent, Ae. tauschii (D) orAe. caudata (C). With the exception of Ae. cylindrica, all D-genome species—Ae. tauschii (D),Ae. ventricosa (DvNv), Ae. crassa (XcrDcr1 and XcrDcr1Dcr2), Ae. juvenalis (XjDjUj), andAe. vavilovii (XvaDvaSva)—formed a single polymorphic cluster, which was distinct from clusters of other species. The only exception, Ae. cylindrica(CcDc), did not group with the other D-genome species, but clustered withAe. caudata (C), a donor of the C genome. The cluster of these two species was clearly distinct from the cluster of the other D-genome species and close to a cluster of Ae. umbellulata (genome U) and Ae. ovata (genome UgMg). Thus, RAPD analysis for the first time was used to estimate and to compare the interpopulation polymorphism and to establish the phylogenetic relationships of all diploid and alloploid D-genome Aegilops species.  相似文献   

17.
Summary C-banding patterns were analysed in 19 different accessions of Aegilops caudata (= Ae. markgrafii, = Triticum dichasians) (2n = 14, genomically CC) from Turkey, Greece and the USSR, and a generalized C-banded karyotype was established. Chromosome specific C-bands are present in all C-genome chromosomes, allowing the identification of each of the seven chromosome pairs. While only minor variations in the C-banding pattern was observed within the accessions, a large amount of polymorphic variation was found between different accessions. C-banding analysis was carried out to identify Ae. caudata chromosomes in the amphiploid Triticum aestivum cv Alcedo — Ae. caudata and in six derived chromosome addition lines. The results show that the amphiploid carries the complete Ae. Caudate chromosome complement and that the addition lines I, II, III, IV, V and VIII carry the Ae. caudata chromosome pairs B, C, D, F, E and G, respectively. One of the two SAT chromosome pairs (A) is missing from the set. C-banding patterns of the added Ae. caudata chromosomes are identical to those present in the ancestor species, indicating that these chromosomes are not structurally rearranged. The results are discussed with respect to the homoeologous relationships of the Ae. caudata chromosomes.  相似文献   

18.
Summary The chromosome of three tetraploid Aegilops L. species containing the D-genome were analyzed by in situ hybridization with a repeated DNA sequence clone pAS1 isolated from Aegilops squarrosa and observed to be D-genome specific. This sequence is found on all seven D-genome chromosome pairs of A. squarrosa and hexaploid wheat. Two distinct D-genome patterns were observed in the tetraploid species. The D-genome of A. cylindrica was similar to hexaploid wheat. Seven pairs of chromosomes having large amounts and numerous sites of the sequence were observed. Five chromosome pairs with fewer and smaller sites of the repetitive sequence were observed in the D-genomes of A. crassa and A. ventricosa. In addition to these major repeated sequence differences, chromosomal modifications appear to have occurred between T. aestivum and A. cylindrica and between A. crassa and A. ventricosa resulting in changes with respect to location of the sequence between the respective species. D-genome divergence with respect to pAS1 sequence appears to have occurred at least in two forms, one characterized by the changes in amount of repetitive sequence and the second by changes in location of the sequence.  相似文献   

19.
Salt Tolerance in the Triticeae: K/Na Discrimination in Aegilops Species   总被引:1,自引:0,他引:1  
Inorganic ion concentrations were measured in the leaves ofAegilops species growing in 50 or 75 mol m–3 NaCl (+2.5or 3.75 mol m–3 CaCl2). The low leaf Na and high leafK concentrations characteristic of the enhanced K/Na discriminationcharacter, originally found in Aegilops squarrosa and in hexaploidwheat, were also found in other Aegilops species containingthe D genome, but not in Ae. ventricosa. The S genome diploidAegilops species (section Sitopsis) all lacked the enhancedK/Na discrimination trait, as did the C genome species Ae. caudataand the N genome species Ae. uniaristata. Most of the U genomespecies (section Polyeides), except Ae. biuncialis, Ae. kotschyiand Ae. variabilis, also exhibited the trait. Examination ofamphiploid hybrids suggested that the trait was dominant incrosses involving Ae. squarrosa or Ae. umbellulata with otherspecies in which the trait was absent. Key words: Salt, ion transport, D genome, Aegilops spp  相似文献   

20.
Inorganic cation concentrations were measured in shoots of hexaploidbread wheat (Triticum aestivum L.) and its presumed ancestorsgrown at 100 mol m–3 external NaCl. Aegilops squarrosaand T. aestivum had high K/Na ratios while T. dicoccoides andAe. speltoides had low K/Na ratios. T. monococcum although havinga high K/Na ratio, had the highest total salt load of the fivespecies tested. The effect of the D genome (from Ae. squarrosa)was further investigated in seedlings of synthetic hexaploidwheats, and was again found to improve cation selectivity. Differentresponses were obtained from root and shoot tissue in this experiment.One synthetic hexaploid and its constituent parents were grownto maturity at 100 mol m-3 NaCl and the yields recorded. Despitecomplications due to increased tillering in the stressed hexaploid,it was possible to show that the addition of the D genome enhancedyield characteristics in the hexaploid wheat. An experimentwith synthetic hexaploids derived from the tetraploid wheatvariety "Langdon" and several Ae. squarrosa accessions revealeddifferences in vegetative growth rates between the differentsynthetic hexaploids in the presence or absence of 150 or 200mol m–3 external NaCl. The possibility of transferringsalt tolerance genes from Ae. squarrosa to hexaploid wheat usingsynthetic hexaploids as bridging species is discussed. Key words: Salt stress, wheat, D genome, Aegiops squarrosa, synthetic hexaploids  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号