首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Listeria monocytogenes is a significant food-borne human and veterinary pathogen. Contaminated silage commonly leads to disease in livestock, but the pervasive nature of the bacterium can make it difficult to identify the source of infection. An investigation of bovine listeriosis that occurred on a Pacific Northwest dairy farm ("farm A") revealed that the clinical strain was closely related to fecal strains from asymptomatic cows, and that farm environment was heavily contaminated with a diversity of L. monocytogenes strains. In addition, the farm A clinical strain was closely related to clinical and environmental strains obtained 1 year prior from a second Northwest dairy farm ("farm B"). To investigate the source(s) of contamination on farm A, environmental samples were collected from farm A at two time points. Pulsed-field gel electrophoresis characterization of 538 isolates obtained from that farm identified 57 different AscI pulsovars. Fecal isolates obtained from individual cows were the most genetically diverse, with up to 94% of fecal samples containing more than one pulsovar. The maximum numbers of pulsovars and serotypes isolated from a fecal sample of one cow were 6 and 4, respectively. Serotype 1/2a was isolated most frequently at both time points. Microarray genotyping of bovine listeriosis, fecal, and silage strains from both farms identified four probes that differentiated listeriosis strains from environmental strains; however, no probe was common to both bovine listeriosis strains.  相似文献   

2.
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools.  相似文献   

3.
A case-control study involving 24 case farms with at least one recent case of listeriosis and 28 matched control farms with no listeriosis cases was conducted to probe the transmission and ecology of Listeria monocytogenes on farms. A total of 528 fecal, 516 feed, and 1,012 environmental soil and water samples were cultured for L. monocytogenes. While the overall prevalence of L. monocytogenes in cattle case farms (24.4%) was similar to that in control farms (20.2%), small-ruminant (goat and sheep) farms showed a significantly (P < 0.0001) higher prevalence in case farms (32.9%) than in control farms (5.9%). EcoRI ribotyping of clinical (n = 17) and farm (n = 414) isolates differentiated 51 ribotypes. L. monocytogenes ribotypes isolated from clinical cases and fecal samples were more frequent in environmental than in feed samples, indicating that infected animals may contribute to L. monocytogenes dispersal into the farm environment. Ribotype DUP-1038B was significantly (P < 0.05) associated with fecal samples compared with farm environment and animal feedstuff samples. Ribotype DUP-1045A was significantly (P < 0.05) associated with soil compared to feces and with control farms compared to case farms. Our data indicate that (i) the epidemiology and transmission of L. monocytogenes differ between small-ruminant and cattle farms; (ii) cattle contribute to amplification and dispersal of L. monocytogenes into the farm environment, (iii) the bovine farm ecosystem maintains a high prevalence of L. monocytogenes, including subtypes linked to human listeriosis cases and outbreaks, and (iv) L. monocytogenes subtypes may differ in their abilities to infect animals and to survive in farm environments.  相似文献   

4.
The prevalence of Listeria monocytogenes in the environment of dairy farms was surveyed from December 1993 to June 1994 in one city of Hokkaido. L. monocytogenes was isolated from 3 out of 5 farms investigated. Serovar 4b organism was isolated from the brain stem of a cow from one farm which was clinically diagnosed as having listeriosis. The same serovar of L. monocytogenes was also isolated from the rectal contents of a healthy cow, straw on the floor, straw in the barn, and silage scattered around the silo from the same farm. At another farm, with no reported cases of bovine listeriosis, serovar 1/2 organism was isolated from the same types of samples as the above mentioned farm except from straw on the floor. The difference in the isolation rates of the organism from straw on the floor between the two farms (22%: 5/23 vs 0%: 0/24) is considered to be caused by the different feeding methods of silage between the two farms.  相似文献   

5.
A total of 153 strains of Listeria monocytogenes isolated from different sources (72 from sheep, 12 from cattle, 18 from feedstuffs, and 51 from humans) in Spain from 1989 to 2000 were characterized by pulsed-field gel electrophoresis. The strains of L. monocytogenes displayed 55 pulsotypes. The 84 animal, 51 human, and 18 feedstuff strains displayed 31, 29, and 7 different pulsotypes, respectively, indicating a great genetic diversity among the Spanish L. monocytogenes isolates studied. L. monocytogenes isolates from clinical samples and feedstuffs consumed by the diseased animals were analyzed in 21 flocks. In most cases, clinical strains from different animals of the same flock had identical pulsotypes, confirming the existence of a listeriosis outbreak. L. monocytogenes strains with pulsotypes identical to those of clinical strains were isolated from silage, potatoes, and maize stalks. This is the first study wherein potatoes and maize stalks are epidemiologically linked with clinical listeriosis.  相似文献   

6.
A study was designed to recover Listeria monocytogenes from pasteurized milk and Minas frescal cheese (MFC) sampled at retail establishments (REs) and to identify the contamination source(s) of these products in the corresponding dairy processing plant. Fifty milk samples (9 brands) and 55 MFC samples (10 brands) were tested from REs located in Juiz de Fora, Minas Gerais, Brazil. All milk samples and 45 samples from 9 of 10 MFC brands tested negative for L. monocytogenes; however, “brand F” of MFC obtained from REs 119 and 159 tested positive. Thus, the farm/plant that produced brand F MFC was sampled; all samples from the milking parlor tested negative for L. monocytogenes, whereas several sites within the processing plant and the MFC samples tested positive. All 344 isolates recovered from retail MFC, plant F MFC, and plant F environmental samples were serotype 1/2a and displayed the same AscI or ApaI fingerprints. Since these results established that the storage coolers served as the contamination source of the MFC, plant F was closed so that corrective renovations could be made. Following renovation, samples from sites that previously tested positive for the pathogen were collected from the processing environment and from MFC on multiple visits; all tested negative for L. monocytogenes. In addition, on subsequent visits to REs 159 and 119, all MFC samples tested negative for the pathogen. Studies are ongoing to quantify the prevalence, levels, and types of L. monocytogenes in MFC and associated processing plants to lessen the likelihood of listeriosis in Brazil.  相似文献   

7.
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples. O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P < 0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover, simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.  相似文献   

8.
Listeria monocytogenes is a food-borne pathogen that is the causative agent of human listeriosis, an opportunistic infection that primarily infects pregnant women and immunologically compromised individuals. Rapid, accurate discrimination between Listeria strains is essential for appropriate therapeutic management and timely intervention for infection control. A rapid method involving matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) that shows promise for identification of Listeria species and typing and even allows for differentiation at the level of clonal lineages among pathogenic strains of L. monocytogenes is presented. A total of 146 strains of different Listeria species and serotypes as well as clinical isolates were analyzed. The method was compared with the pulsed-field gel electrophoresis analysis of 48 Listeria strains comprising L. monocytogenes strains isolated from food-borne epidemics and sporadic cases, isolates representing different serotypes, and a number of Listeria strains whose genomes have been completely sequenced. Following a short inactivation/extraction procedure, cell material from a bacterial colony was deposited on a sample target, dried, overlaid with a matrix necessary for the MALDI process, and analyzed by MALDI-TOF MS. This technique examines the chemistry of major proteins, yielding profile spectra consisting of a series of peaks, a characteristic “fingerprint” mainly derived from ribosomal proteins. Specimens can be prepared in a few minutes from plate or liquid cultures, and a spectrum can be obtained within 1 minute. Mass spectra derived from Listeria isolates showed characteristic peaks, conserved at both the species and lineage levels. MALDI-TOF MS fingerprinting may have potential for Listeria identification and subtyping and may improve infection control measures.  相似文献   

9.
Listeriosis is caused by the food-borne pathogen Listeria monocytogenes, which can be found in seafood and processing plants. To evaluate the risk to human health associated with seafood production in New Zealand, multi-virulence-locus sequence typing (MVLST) was used to define the sequence types (STs) of 31 L. monocytogenes isolates collected from seafood-processing plants, 15 from processed foods, and 6 from human listeriosis cases. The STs of these isolates were then compared with those from a collection of seafood isolates and epidemic strains from overseas. A total of 17 STs from New Zealand clustered into two lineages: seafood-related isolates in lineages I and II and all human isolates in lineage II. None of the New Zealand STs matched previously described STs from other countries. Isolates (belonging to ST01-N and ST03-N) from mussels and their processing environments, however, were identical to those of sporadic listeriosis cases in New Zealand. ST03-N isolates (16 from mussel-processing environments, 2 from humans, and 1 from a mussel) contained an inlA premature stop codon (PMSC) mutation. Therefore, the levels of invasiveness of 22 isolates from ST03-N and the three other common STs were compared using human intestinal epithelial Caco-2 cell lines. STs carrying inlA PMSCs, including ST03-N isolates associated with clinical cases, had a low invasion phenotype. The close relatedness of some clinical and environmental strains, as revealed by identical MVLST profiles, suggests that local and persistent environmental strains in seafood-processing environments pose a potential health risk. Furthermore, a PMSC in inlA does not appear to give L. monocytogenes a noninvasive profile.  相似文献   

10.
The prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from bovine feces were compared between organic and conventional dairy herds. Thirty organic dairy herds, where antimicrobials are rarely used for calves and never used for cows, were compared with 30 neighboring conventional dairy farms, where antimicrobials were routinely used for animals for all ages. Fecal specimens from 10 cows and 10 calves on 120 farm visits yielded 332 Campylobacter isolates. The prevalence of Campylobacter spp. in organic and conventional farms was 26.7 and 29.1%, and the prevalence was not statistically different between the two types of farms. Campylobacter prevalence was significantly higher in March than in September, higher in calves than in cows, and higher in smaller farms than in large farms. The rates of retained placenta, pneumonia, mastitis, and abortion were associated with the proportion of Campylobacter isolation from fecal samples. The gradient disk diffusion MIC method (Etest) was used for testing susceptibility to four antimicrobial agents: ciprofloxacin, gentamicin, erythromycin, and tetracycline. Two isolates were resistant to ciprofloxacin, and none of isolates was resistant to gentamicin or erythromycin. Resistance to tetracycline was 45% (148 of 332 isolates). Tetracycline resistance was found more frequently in calves than in cows (P = 0.042), but no difference was observed between organic and conventional farms. When we used Campylobacter spp. as indicator bacteria, we saw no evidence that restriction of antimicrobial use on dairy farms was associated with prevalence of resistance to ciprofloxacin, gentamicin, erythromycin, and tetracycline.  相似文献   

11.
To evaluate the role of seafoods in the epidemiology of human listeriosis and the role of the processing environment as a source of Listeria monocytogenes in seafood products, 305 L. monocytogenes isolates were characterized by multilocus enzyme electrophoresis using 21 genetic loci and restriction enzyme analysis of total DNA. Forty-four isolates were recovered from patients in Norway; 93 were isolated from seafoods, seafood-processing environments, and seawater from 55 different producers; and the remaining 168 isolates originated from six seafood-processing plants and one transport terminal examined in detail for L. monocytogenes. The patient isolates fell into 11 electrophoretic types, with four of them being responsible for 77% of the listeriosis cases in 1992 to 1996. Isolates from Norwegian seafoods and processing environments showed great genetic diversity, indicating that seafoods and seafood-processing environments do not offer a niche for specific L. monocytogenes strains. On the other hand, isolates from individual processing plants were genetically more homogenous, showing that plants are likely to be colonized with specific subclones of L. monocytogenes. The isolation of identical subclones of L. monocytogenes from both human patients and seafoods, including ready-to-eat products, suggests that such products may have been possible sources for listeriosis cases in Norway.  相似文献   

12.
A longitudinal study aimed to detect Listeria monocytogenes on a New York State dairy farm was conducted between February 2004 and July 2007. Fecal samples were collected every 6 months from all lactating cows. Approximately 20 environmental samples were obtained every 3 months. Bulk tank milk samples and in-line milk filter samples were obtained weekly. Samples from milking equipment and the milking parlor environment were obtained in May 2007. Fifty-one of 715 fecal samples (7.1%) and 22 of 303 environmental samples (7.3%) were positive for L. monocytogenes. A total of 73 of 108 in-line milk filter samples (67.6%) and 34 of 172 bulk tank milk samples (19.7%) were positive for L. monocytogenes. Listeria monocytogenes was isolated from 6 of 40 (15%) sampling sites in the milking parlor and milking equipment. In-line milk filter samples had a greater proportion of L. monocytogenes than did bulk tank milk samples (P < 0.05) and samples from other sources (P < 0.05). The proportion of L. monocytogenes-positive samples was greater among bulk tank milk samples than among fecal or environmental samples (P < 0.05). Analysis of 60 isolates by pulsed-field gel electrophoresis (PFGE) yielded 23 PFGE types after digestion with AscI and ApaI endonucleases. Three PFGE types of L. monocytogenes were repeatedly found in longitudinally collected samples from bulk tank milk and in-line milk filters.Listeria monocytogenes can cause listeriosis in humans. This illness, despite being underreported, is an important public health concern in the United States (23) and worldwide. According to provisional incidence data provided by the Centers for Disease Control and Prevention (CDC), 762 cases of listeriosis were reported in the United States in 2007. In previous years (2003 to 2006), the number of reported annual listeriosis cases in the United States ranged between 696 and 896 cases per year (5).Exposure to food-borne L. monocytogenes may cause fever, muscle aches, and gastroenteritis (30), but does not usually cause septicemic illness in healthy nonpregnant individuals (7, 30). Elderly and immunocompromised people, however, are susceptible to listeriosis (22, 10), and they may develop more-severe symptoms (10). Listeriosis in pregnant women may cause abortion (22, 30) or neonatal death (22).Dairy products have been identified as the source of several human listeriosis outbreaks (4, 7, 10, 22). Listeria is ubiquitous on dairy farms (26), and it has been isolated from cows'' feces, feed (3, 26), and milk (21, 35). In ruminants, L. monocytogenes infections may be asymptomatic or clinical. Clinical cases typically present with encephalitis and uterine infections, often resulting in abortion (26, 39). Both clinically infected and healthy animals have been reported to excrete L. monocytogenes in their feces (20), which could eventually cause contamination of the bulk tank milk or milk-processing premises (39).On-farm epidemiologic research provides science-based information to improve farming and management practices. The Regional Dairy Quality Management Alliance (RDQMA) launched a combined United States Department of Agriculture (USDA)-RDQMA pilot project in January 2004 to scientifically validate intervention strategies in support of recommended best management practices among northeast dairy farms. The primary goal of the project was to track dynamics of infectious microorganisms on well-characterized dairy farms. Target species included Salmonella spp. (6, 36, 37), Mycobacterium avium subsp. paratuberculosis (13, 24), and L. monocytogenes.The objectives of this study were to describe the presence of L. monocytogenes on a dairy farm over time and to perform molecular subtyping by pulsed-field gel electrophoresis (PFGE) on L. monocytogenes isolates obtained from bulk tank milk, milk filters, milking equipment, feces, and the environmental samples to identify diversity among L. monocytogenes strains, persistence, and potential sources of bulk tank milk contamination.  相似文献   

13.
The incidence of Listeria species in raw whole milk from farm bulk tanks and from raw milk in storage at a Swedish dairy plant was studied. Listeria monocytogenes was found in 1.0% and Listeria innocua was found in 2.3% of the 294 farm bulk tank (farm tank) milk specimens. One farm tank specimen contained 60 CFU of L. monocytogenes ml−1. L. monocytogenes was detected in 19.6% and L. innocua was detected in 8.5% of the milk specimens from the silo receiving tanks at the dairy (dairy silos). More dairy silo specimens were positive for both Listeria species during winter than during summer. Restriction enzyme analysis and pulsed-field gel electrophoresis were applied to 65 isolates of L. monocytogenes, resulting in 16 different clonal types. Two clonal types were shared by the farm tank milk and the dairy silo milk. All except one clonal type belonged to serovar 1/2a. In the dairy silo milk five clonal types were found more frequently and for a longer period than the others. No Listeria species were found in any other samples from the plant.  相似文献   

14.
A case-control study involving 24 case farms with at least one recent case of listeriosis and 28 matched control farms with no listeriosis cases was conducted to probe the transmission and ecology of Listeria monocytogenes on farms. A total of 528 fecal, 516 feed, and 1,012 environmental soil and water samples were cultured for L. monocytogenes. While the overall prevalence of L. monocytogenes in cattle case farms (24.4%) was similar to that in control farms (20.2%), small-ruminant (goat and sheep) farms showed a significantly (P < 0.0001) higher prevalence in case farms (32.9%) than in control farms (5.9%). EcoRI ribotyping of clinical (n = 17) and farm (n = 414) isolates differentiated 51 ribotypes. L. monocytogenes ribotypes isolated from clinical cases and fecal samples were more frequent in environmental than in feed samples, indicating that infected animals may contribute to L. monocytogenes dispersal into the farm environment. Ribotype DUP-1038B was significantly (P < 0.05) associated with fecal samples compared with farm environment and animal feedstuff samples. Ribotype DUP-1045A was significantly (P < 0.05) associated with soil compared to feces and with control farms compared to case farms. Our data indicate that (i) the epidemiology and transmission of L. monocytogenes differ between small-ruminant and cattle farms; (ii) cattle contribute to amplification and dispersal of L. monocytogenes into the farm environment, (iii) the bovine farm ecosystem maintains a high prevalence of L. monocytogenes, including subtypes linked to human listeriosis cases and outbreaks, and (iv) L. monocytogenes subtypes may differ in their abilities to infect animals and to survive in farm environments.  相似文献   

15.
A total of 32 Listeria monocytogenes strains (16 from a recent outbreak of invasive listeriosis and 16 from two outbreaks of noninvasive listeriosis, all three occurring in Italy) were characterized by PCR-ribotyping, arbitrarily primed PCR (AP-PCR), and the recently developed infrequent-restriction-site PCR (IRS-PCR). The discriminatory ability of the techniques, first evaluated on 29 unrelated L. monocytogenes food isolates using Simpson's index of diversity, was 0.714 for PCR-ribotyping, 0.690 for AP-PCR, and 0.919 for IRS-PCR. IRS-PCR was also more capable of distinguishing among strains from the invasive listeriosis outbreak: three different clusters were identified by IRS-PCR compared to two clusters identified by both PCR-ribotyping and AP-PCR. Within each of the two outbreaks of noninvasive listeriosis, the patterns were practically identical, as demonstrated by all three techniques. Only IRS-PCR succeeded in clearly discriminating the strains related to noninvasive listeriosis from all of the other strains included in this study, including those from the outbreak of invasive listeriosis. This finding may suggest the presence of unique differences in their DNA sequences.  相似文献   

16.
Vibrio vulnificus causes rare but frequently fatal septicemia associated with raw oyster consumption by persons with underlying hepatic or immune system dysfunction. The virulence potential of environmental reservoirs appears widely distributed, because most strains are virulent in animal models; however, several investigations recently demonstrated genetic divergence among strains from clinical versus environmental origin at independent genetic loci. The present study used PCR to screen DNA polymorphisms in strains from environmental (n = 35) or clinical (n = 33) sources, and genomic relationships were determined by repetitive extragenic palindromic DNA PCR (rep-PCR) typing. Significant (P < 0.01) association was observed for typical “clinical” or “environmental” polymorphism profiles based on strain origin. Most oyster isolates (88%), including all of those with the “environmental” profile, also formed a single rep-PCR genogroup. Clinical isolates within this group did not have the typical “clinical” profile. On the other hand, clinical isolates with the typical polymorphism profile were distributed among multiple rep-PCR genogroups, demonstrating greater genetic diversity than was evident by profiling genetic polymorphisms. Wound isolates were genetically distinct from typical blood isolates by all assays. Strains from an outbreak of wound infections in Israel (biotype 3) were closely related to several U.S. strains by rep-PCR, indicating potential reservoirs of emerging disease. Strains genetically related to blood isolates appeared to be relatively rare in oysters, as only one had the “clinical” polymorphism profile or clustered by rep-PCR. However, this study was not an extensive survey, and more sampling using rep-PCR for sensitive genetic discrimination is needed to determine the virulence potential of environmental reservoirs.  相似文献   

17.
The information about disease burden and epidemiology of invasive listeriosis in Asia is scarce. From 2000 to 2013, a total of 338 patients with invasive listeriosis (bacteremia, meningitis, and peritonitis) were treated at four medical centers in Taiwan. The incidence (per 10,000 admissions) of invasive listeriosis increased significantly during the 14-year period among the four centers (0.15 in 2000 and >1.25 during 2010–2012) and at each of the four medical centers. Among these patients, 45.9% were elderly (>65 years old) and 3.3% were less than one year of age. More than one-third (36.7%) of the patients acquired invasive listeriosis in the spring (April to June). Among the 132 preserved Listeria monocytogenes isolates analyzed, the most frequently isolated PCR serogroup-sequence type (ST) was IIb-ST87 (23.5%), followed by IIa-ST378 (19.7%) and IIa-ST155 (12.1%). Isolation of PCR serogroups IIb and IVb increased significantly with year, with a predominance of IIb-ST87 isolates (23.5%) and IIb-ST 228 isolates emerging in 2013. A total of 12 different randomly amplified polymorphic DNA (RAPD) patterns (Patterns I to XII) were identified among the 112 L. monocytogenes isolates belonging to eight main PCR serogroup-STs. Identical RAPD patterns were found among the isolates exhibiting the same PCR serogroup-ST. In conclusion, our study revealed that during 2000–2013, listeriosis at four medical centers in Taiwan was caused by heterogeneous strains and that the upsurge in incidence beginning in 2005 was caused by at least two predominant clones.  相似文献   

18.
The surface protein internalin A (InlA) contributes to the invasion of human intestinal epithelial cells by Listeria monocytogenes. Screening of L. monocytogenes strains isolated from human clinical cases (n = 46), foods (n = 118), and healthy animals (n = 58) in the United States revealed mutations in inlA leading to premature stop codons (PMSCs) in L. monocytogenes ribotypes DUP-1052A and DUP-16635A (PMSC mutation type 1), DUP-1025A and DUP-1031A (PMSC mutation type 2), and DUP-1046B and DUP-1062A (PMSC mutation type 3). While all DUP-1046B, DUP-1062A, DUP-16635A, and DUP-1031A isolates (n = 76) contained inlA PMSCs, ribotypes DUP-1052A and DUP-1025A (n = 72) contained isolates with and without inlA PMSCs. Western immunoblotting showed that all three inlA PMSCs result in the production of truncated and secreted InlA. Searches of the Pathogen Tracker database, which contains subtype and source information for more than 5,000 L. monocytogenes isolates, revealed that the six ribotypes shown to contain isolates with inlA PMSCs were overall more commonly isolated from foods than from human listeriosis cases. L. monocytogenes strains carrying inlA PMSCs also showed significantly (P = 0.0004) reduced invasion of Caco-2 cells compared to isolates with homologous 3′ inlA sequences without PMSCs. Invasion assays with an isogenic PMSC mutant further supported the observation that inlA PMSCs lead to reduced invasion of Caco-2 cells. Our data show that specific L. monocytogenes subtypes which are common among U.S. food isolates but rare among human listeriosis isolates carry inlA mutations that are associated with, and possibly at least partially responsible for, an attenuated invasion phenotype.  相似文献   

19.
Listeria monocytogenes is responsible for serious invasive illness associated with consumption of contaminated food and places a significant burden on public health and the agricultural economy. We recently developed a multilocus genotyping (MLGT) assay for high-throughput subtype determination of L. monocytogenes lineage I isolates based on interrogation of single nucleotide polymorphisms (SNPs) via multiplexed primer extension reactions. Here we report the development and validation of two additional MLGT assays that address the need for comprehensive DNA sequence-based subtyping of L. monocytogenes. The first of these novel MLGT assays targeted variation segregating within lineage II, while the second assay combined probes for lineage III strains with probes for strains representing a recently characterized fourth evolutionary lineage (IV) of L. monocytogenes. These assays were based on nucleotide variation identified in >3.8 Mb of comparative DNA sequence and consisted of 115 total probes that differentiated 93% of the 100 haplotypes defined by the multilocus sequence data. MLGT reproducibly typed the 173 isolates used in SNP discovery, and the 10,448 genotypes derived from MLGT analysis of these isolates were consistent with DNA sequence data. Application of the MLGT assays to assess subtype prevalence among isolates from ready-to-eat foods and food-processing facilities indicated a low frequency (6.3%) of epidemic clone subtypes and a substantial population of isolates (>30%) harboring mutations in inlA associated with attenuated virulence in cell culture and animal models. These mutations were restricted to serogroup 1/2 isolates, which may explain the overrepresentation of serotype 4b isolates in human listeriosis cases.  相似文献   

20.
A dairy farm system trial was conducted between September 2003 and August 2005 to evaluate the effect of integration of maize silage forage on nitrous oxide (N2O) emissions. Potentially, the integration of low-protein forage (e.g. feeding cows with maize silage) to reduce dietary-nitrogen (N) concentration can mitigate environmental N emissions and increase N use efficiency. The dairy farm systems consisted of a maize supplementation system with a stocking rate of 3.8 cows ha?1 of grazed pasture with maize silage brought in and a control system with a stocking rate of 3.0 cows ha?1 of grazed pasture. Direct and indirect N2O emissions from all components of the farm systems were either measured using a closed chamber technique or calculated using the New Zealand IPCC inventory methodology. Annual average N2O emissions were slightly lower on the maize supplementation pasture than on the control pasture. Annual total N2O emissions from the “whole” farm systems (including direct and indict emissions from the grazed pastures, maize growing land, N fertilizer use and associated land application of farm effluent) were 7.71 and 8.00 kg N2O–N ha?1 of dairy farm on the control and maize supplement farm systems, respectively. The corresponding annual milk production was 13,437 and 17,925 kg ha?1. Therefore, the N2O emission per kg of milk production from the maize supplementation was 22% lower than that from the control system. This was due to the much greater efficiency of N use from low-protein maize silage than from pasture. The results suggest that the integration of low-protein forage can be an effective management practice to mitigate adverse environmental effects of increasing stocking rates in the New Zealand dairy farm systems, in terms of N2O emissions per unit of milk production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号