首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Principles of antibody catalysis   总被引:6,自引:0,他引:6  
Antibodies have now been shown to catalyze a variety of chemical transformations, including hydrolytic, concerted, and bimolecular reactions. The inherent chirality of the antibody binding pocket has been exploited to exert precise stereochemical control over their catalyzed reactions. The mechanisms by which antibodies catalyze reactions are not expected to differ in any general way from those of natural enzymes. Antibodies use their binding energy to stabilize species of higher free energy which appear along the reaction coordinate or effect general acid/base catalysis. The advent of catalytic antibodies promises new catalysts that extend the range of catalysis by proteins to chemical transformations that were not required during the evolution of enzymes.  相似文献   

2.
D M Schmidt  B K Hubbard  J A Gerlt 《Biochemistry》2001,40(51):15707-15715
The members of the mechanistically diverse enolase superfamily catalyze different overall reactions by using a common catalytic strategy and structural scaffold. In the muconate lactonizing enzyme (MLE) subgroup of the superfamily, abstraction of a proton adjacent to a carboxylate group initiates reactions, including cycloisomerization (MLE), dehydration [o-succinylbenzoate synthase (OSBS)], and 1,1-proton transfer (catalyzed by an OSBS that also catalyzes a promiscuous N-acylamino acid racemase reaction). The realization that a member of the MLE subgroup could catalyze a 1,1-proton transfer reaction, albeit poorly, led to a search for other enzymes which might catalyze a 1,1-proton transfer as their physiological reaction. YcjG from Escherichia coli and YkfB from Bacillus subtilis, proteins of previously unknown function, were discovered to be L-Ala-D/L-Glu epimerases, although they also catalyze the epimerization of other dipeptides. The values of k(cat)/K(M) for L-Ala-D/L-Glu for both proteins are approximately 10(4) M(-1) s(-1). The genomic context and the substrate specificity of both YcjG and YkfB suggest roles in the metabolism of the murein peptide, of which L-Ala-D-Glu is a component. Homologues possessing L-Ala-D/L-Glu epimerase activity have been identified in at least two other organisms.  相似文献   

3.
The integrase family of site-specific recombinases catalyzes conservative rearrangements between defined segments of DNA. A highly conserved tetrad (RHRY) of catalytic residues is essential for this process. This tetrad is dispersed in two motifs in the linear sequence, but is configured appropriately in the catalytic pocket to execute the strand cleavage and rejoining reactions. A third conserved motif has been identified in the Xer subgroup of the integrase family. Mutational analysis of 12 conserved residues in this motif in the XerD protein from Salmonella typhimurium led to the identification of an essential fifth catalytic residue (lysine 172) which is implicated in strand cleavage or exchange. This lysine residue occupies part of the turn of an antiparallel beta-hairpin which forms one side of the catalytic cleft in XerD, and is found at similar positions among evolutionarily diverse integrase family members. Related antiparallel beta-hairpins are present in eucaryotic type IB topoisomerase enzymes which also contain a critical lysine residue in the turn of the hairpin. In both the integrase family and eucaryotic type IB topoisomerases, the catalytic lysine residues are in close contact with the substrates and may play similar roles in influencing the reactivity of the phosphotyrosine intermediates formed during reactions catalyzed by both enzymes.  相似文献   

4.
Lü Y  Yang H  Hu H  Wang Y  Rao Z  Jin C 《Glycoconjugate journal》2009,26(5):525-534
Family 18 chitinases hydrolyze chitin through a substrate-assisted catalytic mechanism and are to a variable extent able to catalyze transglycosylation reactions. Previously Aspergillus fumigatus AfChiB1 was found to be able to catalyze transglycosylation reactions. Structural analysis reveals that AfChiB1 consists of an eight-stranded β/α-barrel. Like other members of the family 18 hydrolases, AfChiB1 has conserved substrate binding site and catalytic acid, while a suitable nucleophile is missing. In this study, Trp137, Asp246, and Met243, which are close to the glycosidic cleavage site, were mutated to glutamate individually. As a result, the W137E remained its hydrolytic activity and was completely devoid of transglycosyl activity, while the D246E reduced its chitinolytic activity and increased its transglycosyl activity. And the M243E showed a remarkable reduction of chitinolytic activity and complete loss of transglycosyl activity. These results suggested that the transglycosyl reaction catalyzed by the AfChiB1 is due to lacking of nucleophile. Enzymes: exochitinases (EC 3.2.1.14)  相似文献   

5.
Cytochromes P450: a success story   总被引:7,自引:0,他引:7  
Werck-Reichhart D  Feyereisen R 《Genome biology》2000,1(6):reviews3003.1-reviews30039
Cytochrome P450 proteins, named for the absorption band at 450 nm of their carbon-monoxide-bound form, are one of the largest superfamilies of enzyme proteins. The P450 genes (also called CYP) are found in the genomes of virtually all organisms, but their number has exploded in plants. Their amino-acid sequences are extremely diverse, with levels of identity as low as 16% in some cases, but their structural fold has remained the same throughout evolution. P450s are heme-thiolate proteins; their most conserved structural features are related to heme binding and common catalytic properties, the major feature being a completely conserved cysteine serving as fifth (axial) ligand to the heme iron. Canonical P450s use electrons from NAD(P)H to catalyze activation of molecular oxygen, leading to regiospecific and stereospecific oxidative attack of a plethora of substrates. The reactions carried out by P450s, though often hydroxylation, can be extremely diverse and sometimes surprising. They contribute to vital processes such as carbon source assimilation, biosynthesis of hormones and of structural components of living organisms, and also carcinogenesis and degradation of xenobiotics. In plants, chemical defense seems to be a major reason for P450 diversification. In prokaryotes, P450s are soluble proteins. In eukaryotes, they are usually bound to the endoplasmic reticulum or inner mitochondrial membranes. The electron carrier proteins used for conveying reducing equivalents from NAD(P)H differ with subcellular localization. P450 enzymes catalyze many reactions that are important in drug metabolism or that have practical applications in industry; their economic impact is therefore considerable.  相似文献   

6.
The members of the mechanistically diverse, (beta/alpha)(8)-barrel fold-containing enolase superfamily evolved from a common progenitor but catalyze different reactions using a conserved partial reaction. The molecular pathway for natural divergent evolution of function in the superfamily is unknown. We have identified single-site mutants of the (beta/alpha)(8)-barrel domains in both the l-Ala-d/l-Glu epimerase from Escherichia coli (AEE) and the muconate lactonizing enzyme II from Pseudomonas sp. P51 (MLE II) that catalyze the o-succinylbenzoate synthase (OSBS) reaction as well as the wild-type reaction. These enzymes are members of the MLE subgroup of the superfamily, share conserved lysines on opposite sides of their active sites, but catalyze acid- and base-mediated reactions with different mechanisms. A comparison of the structures of AEE and the OSBS from E. coli was used to design the D297G mutant of AEE; the E323G mutant of MLE II was isolated from directed evolution experiments. Although neither wild-type enzyme catalyzes the OSBS reaction, both mutants complement an E. coli OSBS auxotroph and have measurable levels of OSBS activity. The analogous mutations in the D297G mutant of AEE and the E323G mutant of MLE II are each located at the end of the eighth beta-strand of the (beta/alpha)(8)-barrel and alter the ability of AEE and MLE II to bind the substrate of the OSBS reaction. The substitutions relax the substrate specificity, thereby allowing catalysis of the mechanistically diverse OSBS reaction with the assistance of the active site lysines. The generation of functionally promiscuous and mechanistically diverse enzymes via single-amino acid substitutions likely mimics the natural divergent evolution of enzymatic activities and also highlights the utility of the (beta/alpha)(8)-barrel as a scaffold for new function.  相似文献   

7.
Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.  相似文献   

8.
Enzymes of the thiolase superfamily catalyze the formation of carbon-carbon bond via the Claisen condensation reaction. Thiolases catalyze the reversible non-decarboxylative condensation of acetoacetyl-CoA from two molecules of acetyl-CoA, and possess a conserved Cys-His catalytic diad. Elongation enzymes (beta-ketoacyl-acyl carrier protein synthase (KAS) I and KAS II and the condensing domain of polyketide synthase) have invariant Cys and two His residues (CHH triad), while a Cys-His-Asn (CHN) triad is found in initiation enzymes (KAS III, 3-ketoacyl-CoA synthase (KCS) and the chalcone synthase (CHS) family). These enzymes all catalyze decarboxylative condensation reactions. 3-Hydroxyl-3-methylglutaryl-CoA synthase (HMGS) also contains the CHN triad, although it catalyzes a non-decarboxylative condensation. That the enzymes of the thiolase superfamily share overall similarity in protein structure and function suggested a common evolutionary origin. All thiolases were found to have, in addition to the Cys-His diad, either Asn or His (thus C(N/H)H) at a position corresponding to the His in the CHH and CHN triads. In our phylogenetic analyses, the thiolase superfamily was divided into four main clusters according to active site architecture. During the functional divergence of the superfamily, the active architecture was suggested to evolve from the C(H)H in archaeal thiolases to the C(N/H)H in non-archaeal thiolases, and subsequently to the CHH in the elongation enzymes and the CHN in the initiation enzymes. Based on these observations and available biochemical and structural evidences, a plausible evolutionary history for the thiolase superfamily is proposed that includes the emergence of decarboxylative condensing enzymes accompanied by a recruitment of the His in the CHH and CHN triads for a catalytic role during decarboxylative condensation. In addition, phylogenetic analysis of the plant CHS family showed separate clustering of CHS and non-CHS members of the family with a few exceptions, suggesting repeated gene birth-and-death and re-invention of non-CHS functions throughout the evolution of angiosperms. Based on these observations, predictions on the enzymatic functions are made for several members of the CHS family whose functions are yet to be characterized. Further, a moss CHS-like enzyme that is functionally similar to a cyanobacterial enzyme was identified as the most recent common ancestor to the plant CHS family.  相似文献   

9.
The hydrolytic cleavage of the hydantoin ring of allantoin, catalyzed by allantoinase, is required for the utilization of the nitrogen present in purine-derived compounds. The allantoinase gene (DAL1), however, is missing in many completely sequenced organisms able to use allantoin as a nitrogen source. Here we show that an alternative allantoinase gene (puuE) can be precisely identified by analyzing its logic relationship with three other genes of the pathway. The novel allantoinase is annotated in structure and sequence data bases as polysaccharide deacetylase for its homology with enzymes that catalyze hydrolytic reactions on chitin or peptidoglycan substrates. The recombinant PuuE protein from Pseudomonas fluorescens exhibits metal-independent allantoinase activity and stereospecificity for the S enantiomer of allantoin. The crystal structures of the protein and of protein-inhibitor complexes reveal an overall similarity with the polysaccharide deacetylase beta/alpha barrel and remarkable differences in oligomeric assembly and active site geometry. The conserved Asp-His-His metal-binding triad is replaced by Glu-His-Trp, a configuration that is distinctive of PuuE proteins within the protein family. An extra domain at the top of the barrel offers a scaffold for protein tetramerization and forms a small substrate-binding cleft by hiding the large binding groove of polysaccharide deacetylases. Substrate positioning at the active site suggests an acid/base mechanism of catalysis in which only one member of the catalytic pair of polysaccharide deacetylases has been conserved. These data provide a structural rationale for the shifting of substrate specificity that occurred during evolution.  相似文献   

10.
The condensation step of fatty acid elongation is the addition of a C2 unit from malonyl-CoA to an acyl primer catalyzed by one of two families of enzymes, the 3-ketoacyl-CoA synthases and the ELO-like condensing enzymes. 3-Ketoacyl-CoA synthases use a Claisen-like reaction mechanism while the mechanism of the ELO-catalyzed condensation reaction is unknown. We have used site-directed mutagenesis of Dictyostelium discoideum EloA to identify residues important to catalytic activity and/or structure. Mutation of highly conserved polar residues to alanine resulted in an inactive enzyme strongly suggesting that these residues play a role in the condensation reaction.  相似文献   

11.
The pentein superfamily is a mechanistically diverse superfamily encompassing both noncatalytic proteins and enzymes that catalyze hydrolase, dihydrolase and amidinotransfer reactions on guanidine substrates. Despite generally low sequence identity, they possess a conserved structural fold and display common mechanistic themes in catalysis. The structurally characterized catalytic penteins possess a conserved core of residues that include a Cys, His and two polar, guanidine-binding residues. All known catalytic penteins use the core Cys to attack the substrate's guanidine moiety to form a covalent thiouronium adduct and all cleave one or more of the guanidine C―N bonds. The mechanistic information compiled to date supports the hypothesis that this superfamily may have evolved divergently from a catalytically promiscuous ancestor.  相似文献   

12.
Comparative analysis of the sequences of enzymes encoded in a variety of prokaryotic and eukaryotic genomes reveals convergence and divergence at several levels. Functional convergence can be inferred when structurally distinct and hence non-homologous enzymes show the ability to catalyze the same biochemical reaction. In contrast, as a result of functional diversification, many structurally similar enzyme molecules act on substantially distinct substrates and catalyze diverse biochemical reactions. Here, we present updates on the ATP-grasp, alkaline phosphatase, cupin, HD hydrolase, and N-terminal nucleophile (Ntn) hydrolase enzyme superfamilies and discuss the patterns of sequence and structural conservation and diversity within these superfamilies. Typically, enzymes within a superfamily possess common sequence motifs and key active site residues, as well as (predicted) reaction mechanisms. These observations suggest that the strained conformation (the entatic state) of the active site, which is responsible for the substrate binding and formation of the transition complex, tends to be conserved within enzyme superfamilies. The subsequent fate of the transition complex is not necessarily conserved and depends on the details of the structures of the enzyme and the substrate. This variability of reaction outcomes limits the ability of sequence analysis to predict the exact enzymatic activities of newly sequenced gene products. Nevertheless, sequence-based (super)family assignments and generic functional predictions, even if imprecise, provide valuable leads for experimental studies and remain the best approach to the functional annotation of uncharacterized proteins from new genomes.  相似文献   

13.
The N-terminal nucleophile (Ntn) hydrolases are a superfamily of enzymes specialized in the hydrolytic cleavage of amide bonds. Even though several members of this family are emerging as innovative drug targets for cancer, inflammation, and pain, the processes through which they catalyze amide hydrolysis remains poorly understood. In particular, the catalytic reactions of cysteine Ntn-hydrolases have never been investigated from a mechanistic point of view. In the present study, we used free energy simulations in the quantum mechanics/molecular mechanics framework to determine the reaction mechanism of amide hydrolysis catalyzed by the prototypical cysteine Ntn-hydrolase, conjugated bile acid hydrolase (CBAH). The computational analyses, which were confirmed in water and using different CBAH mutants, revealed the existence of a chair-like transition state, which might be one of the specific features of the catalytic cycle of Ntn-hydrolases. Our results offer new insights on Ntn-mediated hydrolysis and suggest possible strategies for the creation of therapeutically useful inhibitors.  相似文献   

14.
Pseudomonas cepaciae lipase adsorbed onto non-porous structured fiber supports in the form of woven fabrics, was used to catalyze hydrolysis and transesterification reactions in the gas phase. The enzyme adsorbed onto carbon fiber support exhibited much higher catalytic activity compared to the enzyme immobilized onto glass fiber carrier. The effect of temperature and relative humidity on reactions catalyzed by P. cepaciae lipase adsorbed onto structured fiber carbon support was studied in the gas system. Under the conditions investigated (up to 60 °C and 80% relative humidity), the immobilized enzyme showed a high thermostability and could be efficiently used to catalyze hydrolytic and transesterification reactions in continuous mode. Structured fiber supports, with a high specific surface area and a high mechanical resistance, showed a low-pressure drop during the passage of reactants through a reactor. The approach proposed in this study could be suitable for immobilization of a wide variety of enzymes.  相似文献   

15.
A class of metalloenzymes, known as zinc hydrolases, catalyze a variety of hydrolytic reactions on many different substrates in important metabolic pathways. Deacetylation is an example of one of the types of reactions catalyzed by zinc hydrolases. The biological importance of the reactions catalyzed by many zinc hydrolases, including zinc-dependent deacetylases, has made these enzymes pharmaceutical targets for the development of inhibitors and, therefore, a clear understanding of the mechanisms of these enzymes is warranted. This review focuses on the current understanding of the mechanisms catalyzed by various zinc-dependent deacetylases and, in particular, the reaction mechanism catalyzed by the enzyme UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase, also known as LpxC. In general, the zinc-water functions as the nucleophile with zinc stabilization of the tetrahedral intermediate and general-acid-base catalysis (GABC) provided by enzyme residue(s). Two types of GABC mechanisms have been identified, one that uses a single bifunctional GABC and another that uses a GABC pair.  相似文献   

16.
The alpha-D-phosphohexomutase superfamily is composed of four related enzymes that catalyze a reversible, intramolecular phosphoryl transfer on their sugar substrates. The enzymes in this superfamily play important and diverse roles in carbohydrate metabolism in organisms from bacteria to humans. Recent structural and mechanistic studies of one member of this superfamily, phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa, have provided new insights into enzyme mechanism and substrate recognition. Here we use sequence-sequence and sequence-structure comparisons via evolutionary trace analysis to examine 71 members of the alpha-D-phosphohexomutase superfamily. These analyses show that key residues in the active site, including many of those involved in substrate contacts in the P. aeruginosa PMM/PGM complexes, are conserved throughout the enzyme family. Several important regions show class-specific differences in sequence that appear to be correlated with differences in substrate specificity exhibited by subgroups of the family. In addition, we describe the translocation of a 20-residue segment containing the catalytic phosphoserine of phosphoacetylglucosamine mutase, which uniquely identifies members of this subgroup.  相似文献   

17.
Armstrong RN 《Biochemistry》2000,39(45):13625-13632
It is now appreciated that the relationships of proteins, particularly enzymes, within a protein superfamily can be understood not only in terms of their sequence similarities and three-dimensional structures but also by chemical threads that relate their functional attributes. The mechanistic ties among superfamily members can often be traced to a common transition state for the rate-limiting step of the reactions being catalyzed. This paper presents an analysis of a metalloenzyme superfamily, the members of which catalyze a very diverse set of reactions with unrelated transition states but a more general common mechanistic imperative. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta alpha beta beta beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. The known types of reactions that are catalyzed include isomerizations (glyoxalase I), epimerizations (methylmalonyl-CoA epimerase), oxidative cleavage of C-C bonds (extradiol dioxygenase), and nucleophilic substitutions (fosfomycin resistance proteins). The remarkable access to mechanism space that is provided by the VOC superfamily appears to derive from a simple, pseudosymmetric structural fold that maximizes the catalytic versatility of the metal center.  相似文献   

18.
Splicing of nuclear pre-mRNA occurs via two steps of the transesterification reaction, forming a lariat intermediate and product. The reactions are catalyzed by the spliceosome, a large ribonucleoprotein complex composed of five small nuclear RNAs and numerous protein factors. The spliceosome shares a similar catalytic core structure with that of fungal group II introns, which can self-splice using the same chemical mechanism. Like group II introns, both catalytic steps of pre-mRNA splicing can efficiently reverse on the affinity-purified spliceosome. The spliceosome also catalyzes a hydrolytic spliced-exon reopening reaction as observed in group II introns, indicating a strong link in their evolutionary relationship. We show here that, by arresting splicing after the first catalytic step, the purified spliceosome can catalyze debranching of lariat-intron-exon 2. The debranching reaction, although not observed in group II introns, has similar monovalent cation preferences as those for splicing catalysis of group II introns. The debranching reaction is in competition with the reverse Step 1 reaction influenced by the ionic environment and the structure of components binding near the catalytic center, suggesting that the catalytic center of the spliceosome can switch between different conformations to direct different chemical reactions.  相似文献   

19.
The past few years have seen significant advances in research related to the 'latent skills' of enzymes - namely, their capacity to promiscuously catalyze reactions other than the ones they evolved for. These advances regard (i) the mechanism of catalytic promiscuity - how enzymes, that generally exert exquisite specificity, promiscuously catalyze other, and sometimes barely related, reactions; (ii) the evolvability of promiscuous functions - namely, how latent activities evolve further, and in particular, how promiscuous activities can firstly evolve without severely compromising the original activity. These findings have interesting implications on our understanding of how new enzymes evolve. They support the key role of catalytic promiscuity in the natural history of enzymes, and suggest that today's enzymes diverged from ancestral proteins catalyzing a whole range of activities at low levels, to create families and superfamilies of potent and highly specialized enzymes.  相似文献   

20.
The de novo synthesis of fatty acids occurs in two distinct cellular compartments. Palmitate (16:0) is synthesized from acetyl-CoA and malonyl-CoA in the cytoplasm by the enzymes acetyl-CoA carboxylase 1 and fatty acid synthase. The synthesis of fatty acids longer than 16 carbons takes place in microsomes and utilizes malonyl-CoA as the carbon source. Each two-carbon addition requires four sequential reactions: condensation, reduction, dehydration, and a final reduction to form the elongated fatty acyl-CoA. The initial condensation reaction is the regulated and rate-controlling step in microsomal fatty acyl elongation. We previously reported the cDNA cloning and characterization of a murine long chain fatty acyl elongase (LCE) . Overexpression of LCE in cells resulted in the enhanced addition of two-carbon units to C12-C16 fatty acids, and evidence was provided that LCE catalyzed the initial condensation reaction of long chain fatty acid elongation. The remaining three enzymes in the elongation reaction have not been identified in mammals. Here, we report the identification and characterization of two mammalian enzymes that catalyze the 3-ketoacyl-CoA and trans-2,3-enoyl-CoA reduction reactions in long and very long chain fatty acid elongation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号