首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light dependency of the photosynthetic recovery of Nostoc flagelliforme   总被引:7,自引:0,他引:7  
PS II photochemical efficiency (Fv/Fm) of Nostoc flagelliforme was examined after rewetting in order to investigate the light-dependency of its photosynthetic recovery. Fv/Fm was not detected in the dark, but was immediately recognized in the light. Different levels of light irradiation (4, 40 and 400 μmol photon m2 s-1) displayed different effects on the recovery process of photosynthesis. The intermediate level led to the best recovery of photochemical efficiency; the low light required longer and the high light inhibited the extent of the recovered efficiency. It was concluded that the photosynthetic recovery of N. flagelliforme is both light-dependent and influenced by photon flux density. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Inhibition of photosynthesis by UV-B was investigated in the thalloid liverwort Conocephalum conicum Dum. UV-B irradiance was adjusted to a strength producing 50% inhibition of the rate of photosynthesis during 10 min of irradiation. A linear relationship of the fluorescence terms Fv/Fm of photosystem (PS) II and JP was observed following a UV-B irradiation. This suggested that PS II was a major site of UV-B-induced damage of photosynthesis. The apparent inhibition of Fv/Fm was much smaller when electron flow to the secondary PS II acceptor QB was inhibited by DCMU or when Fv/Fm was measured at 77 K. Apparently, the major target of UV-B effects was electron donation to the PS II reaction center, rather than electron transfer reactions at the PS II acceptor side. The time required for repair of PS II from UV-B-induced damage was light-dependent and minimal at a flux density of 5 μE m?2 s?1. Low temperatures and the presence of streptomycin inhibited the repair processes of PS II, indicating that protein synthesis may be involved in the recovery of PS II. The data indicate that UV-B irradiation on bright and cool winter days may be most harmful for photosynthesis of C. conicum. A repeated irradiation of the thalli with UV-B induced tolerance of photosynthesis which was related to an accumulation of pigments with a maximum of absorption around 315 nm.  相似文献   

3.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

4.
The responses of photosynthesis to high light and low temperature were studied in vines cultivated in the greenhouse in low light. Exposure to high light (1000 /umol m?2 s?1) or low temperature (5 °C) alone had no measurable effect on the photosynthetic processes, but the combination of high light and low temperature caused rapid loss of photosynthetic capacity and a decrease in the efficiency of photosynthetic energy conversion. After a 15 h exposure to 5°C at high light, the Fv/sb/Fmratio had decreased by 80% and the apparent quantum yield by 75%. Nevertheless, when the leaves were returned to low light at 22°C, these parameters recovered rapidly. The foliar pools of ascorbate and glutathione decreased in the first hours of photoinhibitory treatment while the zeaxanthin content increased from negligible levels to about 50% of the total foliar xanthophyll pool. There was a clear correlation between the zeaxanthin content of the leaves and their Fv/Fm ratio during both photoinhibition and recovery. However, there was also a good correlation between the decrease in theFv Fm ratio and the measured decrease in the total foliar levels of the antioxidants ascorbate and glutathione. The amount of D, protein diminished over the same period as the zeaxanthin levels were increasing. This approach, involving simultaneous measurements of several parameters considered to influence photosystemy II activity, clearly demonstrates that measured decreases in Fv/Fm may not simply be related to zeaxanthin levels or to amounts of D1 protein alone but result from multifactoral influences.  相似文献   

5.
The effects of chilling (CT, day/night temperatures of 12/10 °C, an irradiance of 250 μmol m?2 s?1), chilling combined with a low irradiance (CL, 12/10 °C, 80 μmol m?2 s?1), and a high temperature (HT, 42/40 °C, 250 μmol m?2 s?1) on chlorophyll content, chlorophyll fluorescence, and gas exchange were studied in two watermelon cultivars, ZJ8424 and YS01, differing in their resistance. The chlorophyll content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) decreased substantially, whereas the intercellular CO2 concentration (ci) increased when the two watermelon cultivars were grown under these stresses. The photosynthetic parameters showed greater changes at chilling than at the high temperature, and the CL caused a more pronounced inhibition in PN compared with the CT. After 2 d exposure to the CT, YS01 had higher PN, gs, and E, but a lower ci compared with ZJ8424. The maximum efficiency of photosystem (PS) II photochemistry (Fv/Fm), effective quantum yield of PS II photochemistry (ΦPSII), photochemical quenching (qP), and electron transport rate (ETR) decreased under the CT and CL but showed only a slight drop under the HT. All these stresses significantly increased non-photochemical quenching (NPQ). The CT brought more damage to the photosynthetic apparatus of leaves compared with the CL. In addition, after returning to normal conditions (25/15 °C, 250 μmol m?2 s?1) for 3 d, the photosynthetic parameters recovered to pre-stress levels in HT treated seedlings but not in CT treated seedlings. In conclusion, the low irradiance could help to alleviate the extent of photoinhibition of PS II photochemistry caused by chilling and cv. ZJ8424 was more sensitive to the extreme temperatures than cv. YS01.  相似文献   

6.
7.
In order to investigate the effects of low irradiation (LI) on cucumber (Cucumis sativus L. cv. Jinyou 35) during a ripening stage, our experiment was carried out in a climate chamber. Two levels of PAR were set for plants: normal irradiation [NI, 600 μmol(photon) m?2 s?1] and low irradiation [LI, 100 μmol(photon) m?2 s?1], respectively. The experiments lasted for 9 d; then both groups of plants were transferred under NI to recover for 16 d. The plants showed severe chlorosis after the LI treatment. Chlorophyll (Chl) a, initial slope, photosynthetic rate at saturating irradiation (Pmax), light saturation point, maximal photochemical efficiency of PSII (Fv/Fm), electron transport rate of PSII (ETR), soluble protein content, and catalase (CAT) activity in cucumber leaves decreased under LI stress, while Chl b, carotenoids, light compensation point, nonphotochemical quenching (qN), superoxide dismutase (SOD), and malondialdehyde (MDA) exhibited an increasing trend under LI. After 16 d of recovery, values of Pmax, Fv/Fm, ETR, qN, SOD, CAT, MDA, and soluble protein were close to those of the control after one, three, and five days of the LI treatment, while those kept under LI for 7 and 9 d could not return to the control level. Therefore, 7 d of LI stress was a meteorological disaster index for LI in cucumber at the fruit stage.  相似文献   

8.
Many laboratories have solely used the Wilson isolate to physiologically characterize the harmful algal bloom (HAB) dinoflagellate Karenia brevis (C. C. Davis) G. Hansen et Moestrup. However, analysis of one isolate may lead to misinterpretations when extrapolating measurements to field populations. In this study, pulse‐amplitude‐modulated chlorophyll fluorometer (PAM‐FL) relative electron transport rate (ETR), Fv/Fm, and chl were compared with traditional techniques, such as 14C photosynthesis versus irradiance (P–E) curves, DCMU [3‐(3′,4′‐dichlorophenyl)‐1,1‐dimethyl urea] Fv/Fm, and extracted chl. The DCMU and PAM‐FL values of Fv/Fm (r2 = 0.51) and chl (r2 = 0.58) were in good agreement. There was no correlation between 14C and PAM‐FL α, Pmax, and β parameters because PAM‐FL ETR was only a relative measurement. The PAM‐FL techniques were then used to investigate P–E curves, quantum yield of PSII (Fv/Fm), and chl from 10 K. brevis isolates to determine whether one or all isolates would better represent the species. Comparisons were made with a radial photosynthetron, which allowed for controlled conditions of light and temperature. Isolate α, Pmax, and β varied between 0.097 and 0.204 μmol e? · m?2 · s?1 · (μmol quanta · m?2 · s?1)?1, 80.41 and 241 μmol e? · m?2 · s?1, and 0.005 and 0.160 μmol e? · m?2 · s?1 · (μmol quanta · m?2 · s?1)?1, respectively. Either carbon limitation and/or bacterial negative feedback were implicated as the cause of the P–E parameter variability. Furthermore, these results directly contradicted some literature suggestions that K. brevis is a low‐light‐adapted dinoflagellate. Results showed that K. brevis was more than capable of utilizing and surviving in light conditions that may be present on cloudless days off Florida.  相似文献   

9.
The data presented here deal with the effects of high-light exposure on the 77 K fluorescence characteristics of Elatostema repens. It is shown that the decrease of the variable fluorescence during the treatment is biphasic. The reactions responsible for the first phase of fluorescence quenching are saturated under 700 mol photon m-2 s-1 and insensitive to streptomycin, whereas those responsible for the second phase are not yet saturated under 700 mol photon m-2 s-1 and sensitive to streptomycin. It is concluded that only the second phase of fluorescence quenching is associated with photoinhibitory processes. Rate and amplitude of recovery from photoinhibition are maximum under very low light (3.5 mol photon m-2 s-1), and very small at a moderate light (160 mol photon m-2 s-1) which does not cause photoinhibition. It is concluded that recovery processes are inhibited during photoinhibition. It is suggested that they could be associated with damage occuring on the oxidizing side of PSII.Abbreviations Fo, Fv, Fm initial, variable and maximum fluorescence, respectively - PFD photon flux density - PS II photosystem II  相似文献   

10.
The physiological ecology of Prasiola stipitata was examined in situ from two supralittoral sites in the Bay of Fundy (Nova Scotian, Canada) during November 2011, when the population was undergoing major expansion. Photosynthetic parameters (effective quantum yield, ΦPSII, maximum quantum yield, Fv/Fm, and relative electron transport rate, rETR) were evaluated using chlorophyll fluorescence of PSII. A largely shaded and continuously moist population showed no change in ΦPSII from one hour after sunrise to sunset in which natural irradiance varied between 3 and 300 μmol photons m?2 s?1. High irradiance (up to 1800 μmol photons m?2 s?1) had no apparent negative impacts on either quantum yield or rETR, but high desiccation in the field reduced quantum yield to almost zero. When thalli were brought into the laboratory, no change in Fv/Fm was observed up to 60% dehydration; however, there was a steep decline in Fv/Fm between 60% and 85% dehydration. Thalli showed complete recovery of Fv/Fm within one hour of reimmersion in seawater after 2 days of desiccation. After 15 days of desiccation full recovery required 24 h and after 30 days of desiccation thalli showed only partial recovery. These observations confirm the adaptation to photosynthesis in high irradiances and the rapid recovery following extreme desiccation observed in other Prasiola species.  相似文献   

11.
The C3–CAM epiphytic bromeliad Guzmania monostachia var. monostachia may be exposed to high incident photosynthetically active radiation (PAR) during the dry season in Trinidad, and resultant variations in photochemical efficiency have been investigated for ‘exposed’ (receiving ~100% incident PAR), ‘semi-exposed’ (~60% PAR) and shaded populations under natural conditions. The more succulent leaves of the plants growing fully exposed within the canopy had higher overall CAM activity (measured as ΔH+, the dawn-dusk titratable acidity), a smaller proportion of chlorenchyma and lower total chlorophyll content. There was a gradation of morphological and physiological characteristics between these and shaded leaves. Diurnal time-courses of photosynthetic light responses (as O2 evolution) showed marked variations in apparent quantum yield (AQY) and light-saturated rates for both exposed and semi-exposed populations, dependent on incident PAR during the day. Similar measurements of photosystem II fluorescence characteristics showed that Fv/Fm declined from 0·70 to 0·42 at midday for exposed plants (on a day when total incident PAR was 44 mol photon m?2), indicating non-photochemical quenching (qNP) of photosynthesis. However, in contrast to AQY determinations, Fv/Fm recovered during the afternoon. The decrease in Fv/Fm was reduced from 0·72 to 0·64 under 24 mol photon m?2 d?1. The long–term recovery of photo-synthetic efficiency was assessed for exposed plants placed under three shading regimes (60, 30 and 3% of incident PAR) over a 17-d period. During this time, total chlorophyll content increased from 228 to 515 and 585 μg g?1 fresh weight (for 3 and 30%, respectively) and chlorophyll a:b declined. While AQY recovery was much longer under the lowest PAR (17d), under 30% PAR both AQY and Fv/Fm had recovered after 2d shading. The differences between timing of recovery for Fv/Fm during diurnal time courses and in the long term suggest that, while quenching associated with PSII recovers rapidly, enzyme activation and/or protein synthesis of other photosynthetic components may be limiting under low PAR. However, it is suggested that the occurrence of qNP on a daily basis may preclude long-term photoinhibitory damage under natural conditions during the dry season.  相似文献   

12.
Photosynthetic response to high light was determined for Bull kelp, Nereocystis luetkeana (K. Mertens) Postels and Ruprecht in order to understand how this species is affected by short‐term fluctuations in irradiance. Exposure of N. luetkeana blades to high intensity photosynthetically active radiation (1000 µmol photons m?2 s–1) caused increased non‐photochemical quenching of fluorescence and higher de‐epoxidation ratios for xanthophyll pigments indicating that energy‐quenching xanthophylls were used to protect blades against photoinhibition. Despite initiation of these photoprotective mechanisms, maximum photochemical efficiency of photosystem II (Fv/Fm) decreased 40% in response to a 60 min exposure to 1000 µmol photons m?2 s–1 photosynthetically active radiation indicating that photoinhibition had occurred. Light‐saturated rates of oxygen evolution were not changed significantly by the high light treatment. Recovery of maximum photochemical efficiency of photosystem II to within 8% of initial values occurred after a 300‐min dim light period. Younger sections of the blades were slightly more susceptible to high light damage than older sections. Middle sections of the blades were more prone to light‐induced damage at water temperatures of 7°C or 18°C, as compared to 13°C. Exposure to biologically effective ultraviolet‐B radiation (UV‐Bbe) (up to 4.5 kJ m–2 day–1) in photoinhibitory light conditions did not significantly affect light‐induced damage to photosystem II.  相似文献   

13.
The role of the xanthophyll cycle in regulating the energy flow to the PS II reaction centers and therefore in photoprotection was studied by measurements of light-induced absorbance changes, Chl fluorescence, and photosynthetic O2 evolution in sun and shade leaves of Hedera canariensis. The light-induced absorbance change at 510 nm (A510) was used for continuous monitoring of zeaxanthin formation by de-epoxidation of violaxanthin. Non-radiative energy dissipation (NRD) was estimated from non-photochemical fluorescence quenching (NPQ).High capacity for zeaxanthin formation in sun leaves was accompanied by large NRD in the pigment bed at high PFDs as indicated by a very strong NPQ both when all PS II centers are closed (F'm) and when all centers are open (F'o). Such Fo quenching, although present, was less pronounced in shade leaves which have a much smaller xanthophyll cycle pool.Dithiothreitol (DTT) provided through the cut petiole completely blocked zeaxanthin formation. DTT had no detectable effect on photosynthetic O2 evolution or the photochemical yield of PS II in the short term but fully inhibited the quenching of Fo and 75% of the quenching of Fm, indicating that NRD in the antenna was largely blocked. This inhibition of quenching was accompanied by an increased closure of the PS II reaction centers.In the presence of DTT a photoinhibitory treatment at a PFD of 200 mol m-2 s-1, followed by a 45 min recovery period at a low PFD, caused a 35% decrease in the photon yield of O2 evolution, compared to a decrease of less than 5% in the absence of DTT. The Fv/Fm ratio, measured in darkness showed a much greater decrease in the presence than in the absence of DTT. In the presence of DTT Fo rose by 15–20% whereas no change was detected in control leaves.The results support the conclusion that the xanthophyll cycle has a central role in regulating the energy flow to the PS II reaction centers and also provide direct evidence that zeaxanthin protects against photoinhibitory injury to the photosynthetic system.Abbreviations F, Fm, Fo, Fv Fluorescence yield at actual degree of PS II center closure, when all centers are closed, when all centers are open, variable fluorescence - NPQ non-photochemical fluorescence quenching - NRD non-radiative energy dissipation - PFD photon flux density - QA primary acceptor PS II  相似文献   

14.
Freezing and thawing of the endemic moss species Grimmia antarctici Card, caused photoinhibition. When snow cover was removed from moss in the field, resulting in exposure to fluctuating temperatures and light conditions, photoinhibition, measured as a reduction in the ratio of variable to maximum chlorophyll a fluorescence (Fv/Fm), was observed. The extent of photoinhibition was highly variable and appeared to be reversible during periods of warmer temperatures. A series of controlled laboratory studies found that the light conditions that prevail between freezing and thawing events influenced the recovery from photoinhibition observed during freezing and thawing, with low light conditions facilitating the greatest rates of recovery. After four cycles of freezing and thawing, recovery from photoinhibition in hydrated moss was achieved within 12 h of transfer to 5°C and 15 μmol quanta m?2 s?1. These results favour the hypothesis that photoinhibition observed during freezing represents a protective process involving the down-regulation of photo-system II when photosynthetic carbon assimilation is limited by low temperatures.  相似文献   

15.
Six months old in vitro-grown Anoectochilus formosanus plantlets were transferred to ex-vitro acclimation under low irradiance, LI [60 μmol(photon) m−2 s−1], intermediate irradiance, II [180 μmol(photon) m−2 s−1], and high irradiance, HI [300 μmol(photon) m−2 s−1] for 30 d. Imposition of II led to a significant increase of chlorophyll (Chl) b content, rates of net photosynthesis (P N) and transpiration (E), stomatal conductance (g s), electron transfer rate (ETR), quantum yield of electron transport from water through photosystem 2 (ΦPS2), and activity of ribulose-1,5-bisphosphate carboxylase/ oxygenase (RuBPCO, EC 4.1.1.39). This indicates that Anoectochilus was better acclimated at II compared to LI treatment. On the other hand, HI acclimation led to a significant reduction of Chl a and b, P N, E, g s, photochemical quenching, dark-adapted quantum efficiency of open PS2 centres (Fv/Fm), probability of an absorbed photon reaching an open PS2 reaction centre (Fv′/Fm′), ETR, ΦPS2, and energy efficiency of CO2 fixation (ΦCO2PS2). This indicates that HI treatment considerably exceeded the photo-protective capacity and Anoectochilus suffered HI induced damage to the photosynthetic apparatus. Imposition of HI significantly increased the contents of antheraxanthin and zeaxanthin (ZEA), non-photochemical quenching, and conversion of violaxanthin to ZEA. Thus Anoectochilus modifies its system to dissipate excess excitation energy and to protect the photosynthetic machinery.  相似文献   

16.
以切花菊品种‘神马’为试材,在偏低温弱光(16℃/12℃,PFD100μmol.m-2.s-1)和临界低温弱光(12℃/8℃,PFD60μmol.m-2.s-1)下分别胁迫11d,然后转入正常条件(22℃/18℃,PFD450μmol.m-2.s-1)恢复11d,研究不同低温弱光强度及恢复对菊花光合作用和叶绿素荧光参数的影响.结果表明:低温弱光导致菊花叶片的净光合速率(Pn)和气孔限制值(Ls)下降,而胞间CO2浓度(Ci)上升.偏低温弱光胁迫下菊花叶片暗适应下最大光化学效率(Fv/Fm)和初始荧光(Fo)无明显变化,但光适应下最大光化学效率(Fv′/Fm′)在处理前期略有下降,后期则有所回升;而临界低温弱光处理的Fo明显升高,Fv/Fm和Fv′/Fm′显著降低.PSⅡ光合电子传递量子效率(ΦPSⅡ)、光化学猝灭系数(qP)和表观光合电子传递速率(ETR)均随着低温弱光胁迫程度的增加和时间的延长而降低;偏低温弱光处理植株在解除胁迫后能迅速恢复到对照水平,而临界低温弱光处理植株回升速度较慢;同时,低温弱光胁迫下吸收光强用于分配光化学反应部分(Prate)的比例减少,而天线热耗散(Drate)和反应中心的能量耗散(Ex)比例上升,但天线热耗散为过剩光能的主要分配途径.  相似文献   

17.
Photoinhibition under irradiance of 2 000 μmol m−2 s−1 (HI) was studied in detached control (C) and water deficit (WD) leaves of grapevine (Vitis vinifera L.) plants. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem (PS) 2, Fv/Fm, marginally declined under HI in WD-leaves without significant increase of F0. In contrast, Fv/Fm ratio declined markedly with significant increase of F0 in C-leaves. In isolated thylakoids, the rate of whole chain and PS2 activity under HI were more decreased in C-than WD-leaves. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in both C-and WD-leaves. Thus HI operates at the acceptor side of PS2 in both leaf types. Quantification of the PS2 reaction centre protein D1 following HI exposure of leaves showed pronounced differences between C-and WD-leaves. The marked loss of PS2 activity under HI of C-leaves was due to the marked loss of D1 protein of the PS2 reaction centre.  相似文献   

18.
The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.Abbreviations D1 The 32 kDa protein of Photosystem 2 reaction center - Fm maximum chlorophyll fluorescence yield - F0 minimal chlorophyll fluorescence yield obtained when all PS 2 centers are open - Fi intermediate fluorescence level corresponding to PS 2 centers which are loosely or not connected to plastoquinone (non-B centers) - Fv maximum variable chlorophyll fluorescence yield (Fv=Fm–F0) - PS 2 Photosystem 2 - QA and QB respectively, primary and secondary quinonic acceptors of PS 2 - S1, S2 and S3 respectively, the one, two and three positively charged states of the oxygen evolving system - Z secondary donor of PS 2  相似文献   

19.
Chronic photoinhibition in seedlings of tropical trees   总被引:1,自引:0,他引:1  
Seedlings of five canopy species of tropical trees from Costa Rica and Puerto Rico were grown in full shade (midday range of photosynthetic photon flux density [PPFD], 100–140 μmol m?2 s?1), partial shade (midday PPFD, 400–600 μmol m?2 s?1) and full sun (midday PPFD, 1 500–1 800 μmol m?2 s?1) for 3 months. The species were Ochroma lagopus (Bombacaceae), a pioneer species; Inga edulis (Fabaceae), found in secondary forest; and Dipteryx panamensis (Fabaceae), Hampea appendiculata (Malvaceae), and Manilkara bidentata (Sapotaceae), three species characteristic of primary forest. After the plants were placed in the dark overnight, chlorophyll fluorescence characteristics were measured for recently expanded and mature leaves. The ratio of variable fluorescence to maximum fluorescence (Fv/Fm) was used to estimate the degree of chronic photoinhibition. Only individuals of one species, Dipteryx panamensis, showed significant depression of Fv/Fm after long-term exposure to full sun. The depression was highly correlated with quantum yield of O2 evolution which also declined after exposure to full sun. The decline may have been related to foliar N concentration. Although all plants were supplied with ample nutrients, foliar N did not increase significantly for Dipteryx seedlings in full sun, whereas it did for Ochroma and Inga. Leaf age affected Fv/Fm only in the cases of Manilkara, where it was slightly lower in recently expanded leaves, and of Dipteryx where it interacted with the effects of light regime. We conclude that chronic photoinhibition is not common in seedlings of canopy trees of tropical rain forests except when availability of mineral nutrients may be limiting.  相似文献   

20.
A profile of high light to intense self-shading conditions was constructed using a white light source and cultures of the cyanobacterium Synechococcus 6301; this profile approximates to a natural self-shading gradient of decreasing light intensity and PS II/PS I excitation ratio. Samples of S.6301 were placed along this profile and allowed to state adapt. To separate the effects of light intensity and wavelength on state adaptation, samples were also placed in a shade profile produced by a white light source and neutral density filters. After adaptation, samples were fixed in their resulting state by the addition of glutaraldehyde, and fluorescence measurements were made at 35° C or –160 °C. It is concluded:
  1. Under conditions of deep shade (<5 μmol m?2s?1 PAR) and weak shade (>200 μmol m?2s?1 PAR), cells adapt to a low PS II fluorescence state (state 2); in moderate shade (20–60 μmol m?2s?1PAR) cells adapt to a high PS II fluorescence state (state 1). We suggest these findings provide evidence for the operation of different factors on the control of state adaptations in cyanobacteria; one set operates at low light and another at high light intensities.
  2. Under conditions of self-shading, there is little evidence to support the contention that state adaptations in cyanobacteria are produced by wavelength-dependent changes in the PS II/PS I excitation ratio, instead, it appaers they are produced by changes in the intensity of incident irradiation.
  3. The observed fluorescence changes do not appear to involve major changes in the phycobilisome sensitisation of PS II and PS I. Instead, it appears that these changes are effected by alterations in ΦF of PS II (i.e. changes in PS II excitation density caused by alterations in the rate constants controlling spillover to PS I, photochemistry, fluorescence emission or thermal deactivation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号