首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Macrophages are known to possess suppressor activities in immune responses. To determine the effects of GM-CSF and M-CSF on the expression of macrophage suppressor activities, monocyte-derived macrophages cultured with GM-CSF (GM-Mphis) were compared with those cultured with M-CSF (M-Mphis) for antigen-specific proliferation and interferon-gamma (IFN-gamma) production by lymphocytes. Both GM-Mphis and M-Mphis equally suppressed lymphocyte proliferation, but only M-Mphis suppressed IFN-gamma production in response to purified protein derivative (PPD). M-Mphis, but not GM-Mphis, released IL-10 not only in the course of macrophage differentiation but also in response to PPD after maturation to macrophages. From the results that (i) exogenous IL-10 suppressed IFN-gamma production, but not proliferation of lymphocytes, and that (ii) neutralizing antibody to IL-10 reversed suppressor activities of M-Mphis on IFN-gamma production, but not lymphocyte proliferation, it appeared that IL-10 was the major factor responsible for suppression of IFN-gamma production. Thus, these results suggest that only M-CSF augments IL-10-dependent suppressor activity of macrophages on IFN-gamma production and that both GM-CSF and M-CSF induce IL-10-independent macrophage suppressor activity on lymphocyte proliferation.  相似文献   

3.
Purified colony-stimulating factor (CSF-1) (or macrophage colony stimulating factor [M-CSF]) stimulated the glucose uptake of murine bone marrow-derived macrophages (BMM) and resident peritoneal macrophages (RPM) as measured by 3H-2-deoxyglucose (2-DOG) uptake. Similar concentrations of CSF-1 stimulated the 2-DOG uptake and DNA synthesis in BMM. Other purified hemopoietic growth factors, granulocyte-macrophage CSF (GM-CSF) and interleukin-3 (IL-3) (or multi-CSF), and the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), even though differing in their mitogenic capabilities on BMM, were also stimulators of 2-DOG uptake in BMM and RPM. The nonmitogenic agents, lipopolysaccharide (LPS) and concanavalin A (Con A), were also active. The inhibition by cytochalasin B and by high concentrations of D-glucose suggest that the basal and stimulated 2-DOG uptake occurred via a carrier-facilitated D-glucose transport system. The responses of the two macrophage populations to the hemopoietic growth factors and to the other agents were quite similar, suggesting that events that are important for the induction of DNA synthesis are not tightly coupled to the earlier rise in glucose uptake. For the BMM, the ability of a particular agent to stimulate glucose uptake did not parallel its ability to promote cell survival. However, stimulation of glucose uptake could still be a necessary but insufficient early macrophage response for cell survival and subsequent DNA synthesis.  相似文献   

4.
Polymicrobial sepsis induces suppression of macrophage function as determined by a reduction of pro-inflammatory cytokine production upon re-exposure to lipopolysaccharide (LPS) in vitro. We examined whether macrophages were refractory to only LPS challenge or if they were immunoparalyzed and unable to respond to other stimuli such as lipoteichoic acid (LTA) or zymosan (ZYM). This study evaluated the capacity of peritoneal macrophages to produce pro-inflammatory and anti-inflammatory cytokines as well as chemokines following mild or severe sepsis induced by cecal ligation and puncture (CLP). Peritoneal macrophages were isolated 29 h after CLP and challenged with different stimuli. LPS was a more potent stimulus for cytokine induction than LTA or ZYM in both mild and severe sepsis. In mild sepsis, the macrophage cytokine response to LPS was selective and less refractory than in severe sepsis. While production of IL-6 and KC was reduced, secretion of TNF-alpha and MIP-1alpha was enhanced in those cells isolated from mice with mild sepsis. Production of IL-10 and the IL-1 receptor antagonist , MIP-2, and MCP-1 in response to LPS stimulation was equivalent to the amount produced by naive macrophages. Our results indicate that macrophages are not immunoparalyzed during sepsis and may still be induced to secrete some inflammatory mediators.  相似文献   

5.
GM-CSF and M-CSF (CSF-1) induce different phenotypic changes in macrophage lineage populations. The nature, extent, and generality of these differences were assessed by comparing the responses to these CSFs, either alone or in combination, in various human and murine macrophage lineage populations. The differences between the respective global gene expression profiles of macrophages, derived from human monocytes by GM-CSF or M-CSF, were compared with the differences between the respective profiles for macrophages, derived from murine bone marrow cells by each CSF. Only 17% of genes regulated differently by these CSFs were common across the species. Whether a particular change in relative gene expression is by direct action of a CSF can be confounded by endogenous mediators, such as type I IFN, IL-10, and activin A. Time-dependent differences in cytokine gene expression were noted in human monocytes treated with the CSFs; in this system, GM-CSF induced a more dramatic expression of IFN-regulated factor 4 (IRF4) than of IRF5, whereas M-CSF induced IRF5 but not IRF4. In the presence of both CSFs, some evidence of "competition" at the level of gene expression was observed. Care needs to be exercised when drawing definitive conclusions from a particular in vitro system about the roles of GM-CSF and M-CSF in macrophage lineage biology.  相似文献   

6.
The influence of macrophage (M)-CSF on the production of inflammatory mediators has been examined in murine peritoneal macrophages. Cultures of macrophages treated with up to 30,000 U/ml of human rM-CSF or with 10,000 U/ml of L929-derived M-CSF did not reveal either PGE2, IL-1, or IL-6 secretion. In contrast, LPS, which served as a positive control, stimulated production of significant levels of PGE2, IL-1, and IL-6. Furthermore, Northern blot analysis of macrophage RNA revealed a strong induction of IL-1 alpha and IL-6 mRNA by LPS but not by M-CSF. Conditioned medium from macrophage cultures treated with purified L929 or human rM-CSF in combination with LPS exhibited a significant reduction of IL-1 bioactivity as compared with an LPS challenge alone. To investigate the mechanism involved in this M-CSF-dependent reduction of IL-1 bioactivity, we measured IL-1 alpha gene expression. The addition of M-CSF to LPS-treated macrophages did not affect IL-1 alpha mRNA levels suggesting that M-CSF may regulate production of an IL-1 inhibitor. This hypothesis was shown to be valid because removal of IL-1 alpha from conditioned medium of LPS plus M-CSF-treated cells allowed the detection of a nondialyzable factor that blocked IL-1-dependent thymocyte proliferation. The inhibitor appeared to be specific because it did not inhibit IL-2 and TNF bioactivities. Furthermore, this IL-1 inhibitor, which binds to cells and not to IL-1, competed with the binding of radioactive IL-1 alpha or beta to EL-4.6.1 cells. The results demonstrate that M-CSF alone does not induce proinflammatory mediators and PGE2 as was previously published. The data also suggest that M-CSF may play a role in the down-regulation of inflammatory responses.  相似文献   

7.
Tec family kinases have important roles in lymphocytes; however, little is known about their function in monocytes/macrophages. In this study we report that Tec family kinases are essential for M-CSF (M-CSF)-induced signaling pathways that regulate macrophage survival. Compared with wild-type bone marrow-derived macrophage (BMM) cultures, Tec(-/-)Btk(-/-) BMM cultures displayed increased cell death that correlated with a severe drop in macrophage numbers. In addition, macrophages deficient in either Tec or Btk showed expression and activation of caspase-11. Elucidation of M-CSF receptor (M-CSFR) signaling pathways revealed that the total tyrosine phosphorylation pattern upon M-CSF stimulation was altered in Tec(-/-)Btk(-/-) macrophages despite normal expression and phosphorylation of the M-CSFR. Further, Tec and Btk are required for proper expression of the GM-CSF receptor alpha (GM-CSFRalpha) chain in macrophages but not dendritic cells, implicating Tec family kinases in the lineage-specific regulation of GM-CSFRalpha expression. Taken together, our study shows that Tec and Btk regulate M-CSFR signaling-induced macrophage survival and provides a novel link between Tec family kinases and the regulation of caspase-11 and GM-CSFRalpha expression.  相似文献   

8.
The antiapoptotic molecule Bcl-xL has been implicated in the differentiation and survival of activated macrophages in inflammatory conditions. In this report, the role of Bcl-xL in LPS-induced cytokine gene expression and secretion was studied. Bcl-xL-transfected RAW 264 macrophages were protected from gliotoxin-induced apoptosis, indicating the presence of functional Bcl-xL. Overexpression of Bcl-xL in this macrophage cell line was also associated with a marked inhibition of LPS-induced TNF-alpha, JE/monocyte chemoattractant protein 1, and macrophage inflammatory protein 2 secretion. Inhibition of LPS-induced cytokine secretion was paralleled by a decrease in levels of steady-state mRNA for the above cytokines and for IL-1beta. Decreased production of TNF-alpha in Bcl-xL transfectants was not due to increased mRNA degradation, as the mRNA half-lives were the same in Bcl-xL transfectants and control macrophages. Although the composition of NF-kappaB complexes detected by EMSA and supershift analysis in nuclear lysates derived from Bcl-xL transfectants and control cells was indistinguishable, LPS-induced inhibitory kappaBalpha degradation, as well as NF-kappaB binding and AP-1 activation, were slightly decreased by ectopic expression of Bcl-xL. More strikingly, LPS-induced phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was strongly repressed by Bcl-xL overexpression, offering a possible mechanism for the inhibition of LPS-induced cytokine production. These data provide the first evidence for a novel role for Bcl-xL as an anti-inflammatory mediator in macrophages.  相似文献   

9.
A colony-stimulating factor (M-CSF) has been partially purified and concentrated from mouse yolk sac-conditioned medium (YSCM). M-CSF appeared to preferentially stimulate CBA bone marrow granulocyte-macrophage progenitor cells (GM-CFC) to differentiate to form macrophage colonies in semisolid agar cultures. By comparison, colony-stimulating factor (GM-CSF) from mouse lung-conditioned medium (MLCM) stimulated the formation of granulocytic, mixed granulocytic-macrophage, and pure macrophage colonies. Mixing experiments indicated that both M-CSF and GM-CSF stimulated all of the GM-CFC but that the smaller CFC were more sensitive to GM-CSF and that the larger CFC were more sensitive to M-CSF. Almost all developing "clones" stimulated initially with M-CSF continued to develop when transferred to cultures containing GM-CSF. In the converse situation, only 50% of GM-CSF prestimulated "clones" survived when transferred to cultures containing M-CSF. All clones initially stimulated by M-CSF or transferred to cultures stimulated by M-CSF contained macrophages after 7 days of culture. These results suggest that there is a population of cells (GM-CFC) that are capable of differentiating to form both granulocytes and macrophages, but, once these cells are activated by a specific CSF (e.g. M-CSF), they are committed to a particular differentiation pathway. The pattern of CFC differentiation was not directly related to the rate of proliferation: cultures maximally stimulated by M-CSF produced mostly macrophage colonies, but the presence of small amounts of GM-CSF produced granulocytic cells in 30% of the colonies. Gel filtration, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and affinity chromatography with concanavalin A-Sepharose indicated that M-CSF from yolk sacs was a glycoprotein with an apparent molecular weight of 60,000. There was some heterogeneity of the carbohydrate portion of the molecule as evidenced by chromatography on concanavalin A-Sepharose.  相似文献   

10.

Background

Costimulation of murine macrophages with immune complexes (ICs) and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages.

Materials and Methods

Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs). Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR.

Results

HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦIL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2). The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6.

Conclusion

HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.  相似文献   

11.
M Matsumura  N Banba  S Motohashi  Y Hattori 《Life sciences》1999,65(12):PL129-PL135
Monocytes and T-lymphocytes, both of which play a pivotal role in immune/inflammatory responses, can be attracted from the circulation into tissues by monocyte chemoattractant protein-1 (MCP-1), and monocytes can be further activated by colony-stimulating factors (CSFs), granulocyte/macrophage CSF (GM-CSF) or macrophage CSF (M-CSF). We examined whether either interleukin-6 (IL-6) or transforming growth factor-beta (TGF-beta), both of which are produced by thyroid follicular cells (TFC), can regulate the production of MCP-1 or CSF(s) in human TFC. IL-6, being effective only in the presence of soluble IL-6 receptor (sIL-6R), stimulated the expression of both MCP-1 and M-CSF, but was inhibitory on GM-CSF expression. On the other hand, TGF-beta stimulated the expression of both MCP-I and GM-CSF, but suppressed M-CSF expression. These results suggest a possible role of IL-6 or TGF-beta on the initiation and/or modulation of thyroid immune/inflammatory responses via MCP-1 production and differential production of GM-CSF or M-CSF by TFC.  相似文献   

12.
Colony stimulating factor-1 (CSF-1) (or macrophage CSF) is involved in the survival, proliferation, differentiation, and activation of cells of the monocyte/macrophage lineage. Because the mitogen-activated protein kinase family members extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinase are widely implicated in such cellular functions, we measured their activity in growing and growth-arrested cultures of bone marrow-derived macrophages (BMM), as well as their stimulation by saturating concentrations of CSF-1. ERK activity was approximately 2-fold higher in cycling BMM compared with growth-arrested BMM; in addition, CSF-1-stimulated BMM DNA synthesis was partially inhibited by PD98059, a specific inhibitor of MEK activation, suggesting a role for a mitogen-activated protein-ERK kinase (MEK)/ERK pathway in the control of DNA synthesis but surprisingly not in the control of cyclin D1 mRNA or c-myc mRNA expression. The suppression of BMM apoptosis by CSF-1, i.e. enhanced survival, was not reversed by PD98059, suggesting that a MEK/ERK pathway is not involved in this process. Using a quantitative kinase assay, it was found that CSF-1 gave a slight increase in BMM p38 activity, supporting prior data that CSF-1 is a relatively weak stimulator of inflammatory cytokine production in monocytes/macrophages. Relatively high concentrations of the p38 inhibitor, SKB202190, suppressed CSF-1-stimulated BMM DNA synthesis. No evidence could be obtained for the involvement of p38 activity in BMM apoptosis following CSF-1 withdrawal. We were not able to show that CSF-1 enhanced BMM JNK-1 activity to a significant extent; again, no role could be found for JNK-1 activity in the BMM apoptosis occurring after CSF-1 removal.  相似文献   

13.
Members of the CSF cytokine family play important roles in macrophage recruitment and activation. However, the role of M-CSF in pulmonary infection with Mycobacterium tuberculosis is not clear. In this study, we show the lungs of mice infected with M. tuberculosis displayed a progressive decrease in M-CSF in contrast to increasing levels of GM-CSF. Restoring pulmonary M-CSF levels during infection resulted in a significant decrease in the presence of foamy macrophages and increased expression of CCR7 and MHC class II, specifically on alveolar macrophages. In response to M-CSF, alveolar macrophages also increased their T cell-stimulating capacity and expression of DEC-205. These studies show that the levels of expression of M-CSF and GM-CSF participate in the progression of macrophages into foamy cells and that these cytokines are important factors in the differentiation and regulation of expression of dendritic cell-associated markers on alveolar macrophages. In addition, these studies demonstrate that M-CSF may have a role in the adaptive immune response to infection with M. tuberculosis.  相似文献   

14.
Recently, we found that resident peritoneal macrophages produce MIP-2, one of the major chemokines for neutrophils, upon coculturing with late apoptotic cells, and that intraperitoneal injection of late apoptotic cells into the peritoneal cavity causes neutrophil infiltration via MIP-2. It is not known, however, whether or not macrophages are heterogeneous in such MIP-2 production. In this study, we examined changes in the surface phenotype during the differentiation of bone marrow cells into macrophages due to M-CSF and GM-CSF, and then examined the production of cytokines, namely IL-12 p40, MIP-2, IL-10, and TGF-β, following phagocytosis of late apoptotic cells with these macrophages or LPS stimulation of these macrophages. GM-CSF and M-CSF induced macrophage populations with distinct but overlapping cell surface phenotype. Although these macrophages phagocytosed late apoptotic cells to a similar extent, they produced either IL-12 p40 or IL-10, whereas they produced MIP-2 to a similar extent after the coculture, raising the possibility that late apoptotic cells may induce neutrophil infiltration in any organs, such as the liver and lungs, where the macrophages are differentiated by either M-CSF or GM-CSF, respectively.  相似文献   

15.
16.
Macrophage CSF (M-CSF) induces responsive bone marrow precursors into rapid growth and differentiation to mature macrophages. Available cell lines that depend on M-CSF for growth are well differentiated and rather adherent. We investigated the effects of M-CSF on immature myeloid cell lines as models of the marrow precursors. The murine line NFS-60 requires IL-3 for growth and also responds to granulocyte-CSF and granulocyte-macrophage-CSF. Cultures of one NFS-60 subline, when switched from IL-3 to 10% L cell conditioned media, a source of M-CSF, or purified M-CSF, frequently acquired large, adherent cells. The adherent cells grew slowly in the presence of M-CSF, in contrast to the majority population of small, round, rapidly growing cells. The large cells had properties of differentiated macrophages that were absent in the nonadherent cells. Cells with macrophage phenotype were not observed in IL-3-supported cultures over many passages. A subline was derived from NFS-60 that grew rapidly and continuously in human or murine M-CSF as round, nonadherent cells. The line, called M-NFS-60, responded well to M-CSF and IL-3, weakly to granulocyte-CSF and not at all to murine granulocyte-macrophage-CSF, IL-4, or human IL-1. A mAb to human M-CSF specifically inhibited only M-NFS-60 proliferation induced by the human growth factor, whether produced by mammalian or bacterial cells. This study shows two effects of M-CSF on the IL-3-dependent NFS-60 line. Upon first exposure to M-CSF, cells may undergo global differentiation to slowly replicating macrophages in conditions we have not been able to define. The more common effect is rapid growth of immature myeloid cells like the bone marrow precursors, but with a block to differentiation. Thus, these cells may be useful as models of M-CSF-induced differentiation, and of permanently maintained macrophage precursors.  相似文献   

17.
The objective of this study was to elucidate the role of the cellular proteasome on endotoxin-mediated activation of the macrophage. To study this role, THP-1 cells were stimulated with lipopolysaccharide (LPS) with selective cells being pretreated with the proteasome inhibitor, lactacystin or MG-132. LPS stimulation led to the phosphorylation and degradation of IRAK, followed by activation of JNK/SAPK, ERK 1/2, and p38. Subsequently, LPS induced the degradation of IkappaB, and the nuclear activation of NF-kappaB and AP-1. Activation of these pathways was associated with the production of IL-6, IL-8, IL-10, and TNF-alpha. Proteasome inhibition with either lactacystin or MG-132 attenuated LPS-induced IRAK degradation, and enhanced activation of JNK/SAPK, ERK 1/2, and p38. Proteasome inhibition, also, led to increased LPS-induced AP-1 activation, and attenuated LPS-induced IkappaB degradation resulting in abolished NF-kappaB activation. Proteasome inhibition led to significant modulation of LPS-induced cytokine production; increased IL-10, no change in IL-6, and decreased IL-8, and TNF-alpha. Thus, this study demonstrates that cellular proteasome is critical to regulation of LPS-induced signaling within the macrophage, and inhibition of the proteasome results in a conversion to an anti-inflammatory phenotype.  相似文献   

18.
19.
There is substantial evidence that local production of proinflammatory cytokines are very important in host resistance to aspergillosis. Dexamethasone (DEX) down-regulates production of these cytokines by stimulated bronchoalveolar macrophages (BAM) and constitutes a risk factor for aspergillosis. Granulocyte-macrophage colony-stimulating factor (GM-CSF) antagonizes DEX suppression of antifungal activity by BAM. Here we investigated the possibility that GM-CSF could antagonize DEX down-regulation of interleukin (IL)-1alpha and tumour necrosis factor (TNF)-alpha production by stimulated BAM. Control BAM responded to increasing numbers of conidia of Aspergillus fumigatus with increasing production of IL-1 and TNF. DEX (10(-7)M) significantly suppressed IL-1 and TNF production by BAM+conidia. Although GM-CSF did not enhance IL-1 or TNF production by BAM+conidia, GM-CSF significantly antagonized DEX suppression of IL-1 cytokine production. For comparative purposes, lipopolysaccharide (LPS, 1 microg/ml) was used to stimulate BAM in experiments similar to the above. In contrast to the findings with conidia, GM-CSF enhanced the production of IL-1 (5-fold) and TNF (1.5-fold) by LPS treated BAM. DEX suppression of cytokine production by BAM+LPS was modestly but significantly antagonized by GM-CSF. Moreover, differences between regulation of IL-1 and TNF production by BAM+conidia or LPS and peritoneal macrophages (PM)+conidia or LPS were documented. Finally, the anti-inflammatory cytokine IL-10 was minimally produced by BAM + conidia or LPS, but IL-10 was produced by PM + conidia or LPS. In summary, these data indicate that the risk factor for aspergillosis associated with DEX could be lessened in the pulmonary compartment with GM-CSF. On the other hand, desired effects of DEX could be maintained in other compartments.  相似文献   

20.
Macrophages (Mϕ) are the major source of inflammatory cytokines and are target cells for dengue virus (DV) replication. However, Mϕ are heterogeneous and their phenotypic and functional diversities are influenced by cytokines that regulate their differentiation, tissue distribution, and defense against invading pathogens. In vitro, human primary macrophages are derived from peripheral blood CD14+ monocytes in the presence of macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF). These are essential for developing tissue/resting macrophages (M-Mϕ) and inflammatory macrophages (GM-Mϕ), respectively. While IFN production is similar between M-Mϕ and GM-Mϕ, M-Mϕ cannot produce IL-1β after DV infection. In contrast, GM-Mϕ is more susceptible to DV infection and DV triggers CLEC5A in GM-Mϕ to activate NLRP3 inflammasomes, which in turn release IL-18 and IL-1β that are critical for Th17 activation and contribute to disease severity. Thus, GM-Mϕ is more representative than M-Mϕ for investigating inflammasome activation in dengue infection, and is invaluable for revealing the molecular mechanism of pathogen-induced inflammatory reaction. Distinct phenotypes of macrophage subsets under the influence of M-CSF and GM-CSF raise the question of optimal conditions for culturing primary macrophages to study host-pathogen interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号