首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hepatocyte growth factor (HGF) is a multifunctional growth factor affecting cell proliferation and differentiation. Due to its mitogenic potential, HGF plays an important role in tubular repair and regeneration after acute renal injury. However, recent reports have shown that HGF also acts as an anti-inflammatory and anti-fibrotic factor, affecting various cell types such as renal fibroblasts and triggering tubulointerstitial fibrosis of the kidney.The present study provides evidence that HGF stimulation of renal fibroblasts results in the activation of both the Erk1/2 and the Akt pathways. As previously shown, Erk1/2 phosphorylation results in Smad-linker phosphorylation, thereby antagonizing cellular signals induced by TGFβ. By siRNA mediated silencing of the Erk1/2-Smad linkage, however, we now demonstrate that Akt signaling acts as an auxiliary pathway responsible for the anti-fibrotic effects of HGF. In order to define the anti-fibrotic function of HGF we performed comprehensive expression profiling of HGF-stimulated renal fibroblasts by microarray hybridization. Functional cluster analyses and quantitative PCR assays indicate that the HGF-stimulated pathways transfer the anti-fibrotic effects in renal interstitial fibroblasts by reducing expression of extracellular matrix proteins, various chemokines, and members of the CCN family.  相似文献   

2.
Hepatocyte growth factor (HGF), which is a potent growth factor of adult rat hepatocytes in primary culture, also strongly stimulated DNA synthesis of rabbit renal tubular epithelial cells in secondary culture. Its mitogenic activity was dose-dependent, being detectable at 3 ng/ml and maximal at 30 ng/ml. Over 20% of the cells were shifted to the S-phase by HGF alone, judging by the labeling index. HGF had additive effects with EGF, acidic fibroblast growth factor (a-FGF), and insulin. Transforming growth factor-beta 1 (TGF-beta 1) strongly inhibited DNA synthesis of renal tubular cells stimulated by HGF. The growth of renal tubular epithelial cells was also regulated by cell density: DNA synthesis stimulated by HGF was high at lower cell density and was strongly suppressed at high cell density. These results suggest that HGF may act as a renotropic factor in compensatory renal growth or renal regeneration in vivo.  相似文献   

3.
D F Balkovetz 《Life sciences》1999,64(16):1393-1401
It is becoming increasingly apparent that hepatocyte growth factor (HGF) plays an important role in kidney development, regeneration, and transformation to carcinoma. Previous in vitro studies have shown that HGF stimulates cell scattering, but not proliferation, in the renal epithelial cell line Madin-Darby canine kidney (MDCK) when grown on plastic at low density. This communication demonstrates that HGF treatment of confluent monolayers of MDCK also stimulates DNA synthesis and cell division. HGF stimulated thymidine incorporation in confluent MDCK cell monolayers grown on plastic in a dose dependent fashion, but did not stimulate thymidine incorporation in MDCK cells at 10-20% confluency on plastic. Additionally, basolaterally, but not apically, applied HGF stimulated thymidine incorporation in confluent MDCK cell monolayers grown on filters. Immunofluorescent labeling of nuclei in control and HGF treated MDCK cell monolayers grown on filters demonstrated an increase in mitotic figures. Confocal X-Z section views and direct cell counts of MDCK cell monolayers grown on filters demonstrated an increase in cell number after HGF treatment compared to controls. This is the first report of HGF stimulating cell proliferation in previously quiescent renal epithelial cell monolayers. This model will be useful for studying the mechanisms controlling cell proliferation rates in epithelial tissue.  相似文献   

4.
慢性肾脏疾病患者的肾功能会随时间的推移而进行性恶化,肾实质细胞进行性丧失及细胞外基质蛋白过度沉积将导致肾纤维化形成,肾纤维化进行性发展将最终走向终末期肾衰竭。肝细胞生长因子(HGF)及其受体c-Met对肾发育和急性肾损伤后的肾脏再生修复具有重要作用,在慢性肾衰竭及肾纤维化时,HGF还具有营养肾脏及抗肾纤维化的作用。简要综述了HGF抑制肾纤维化形成的细胞分子机制的研究进展,提示HGF在治疗肾纤维化方面所具有的前景。  相似文献   

5.
The renal expressions of the receptor gene (c-met) for hepatocyte growth factor (HGF) were examined in unilateral nephrectomy (UNX), renal ischemia or folic acid administration. The levels of c-met mRNA were increased rapidly in all rat models at 6h after the operations. On the other hand, the expression of c-met mRNA in a kidney cell line (MDCK cells) was down-regulated for 8 h after HGF addition, indicating that c-met mRNA induction in rat models may be independent of the stimulated production of HGF. The stimulated expression of c-met in these models suggest that HGF may play an important role in renal hypertrophy after UNX and regeneration after ischemic or nephrotoxic injury.  相似文献   

6.
Hepatocyte growth factor (HGF), a potent mitogen for mature hepatocytes, has been considered to act as a hepatotropic factor for liver regeneration. We examined the effect of HGF on albumin synthesis and DNA synthesis of adult rat hepatocytes cultured at various cell densities. HGF stimulated albumin synthesis of hepatocytes by 40-60% when they were cultured at higher cell densities such that there was tight cell-cell contact. But at lower cell densities HGF failed to stimulate albumin synthesis. In contrast, the stimulatory effect of HGF on DNA synthesis of hepatocytes was more potent at lower than at higher cell densities: HGF did not stimulate DNA synthesis of hepatocytes cultured at confluent cell density. Thus, HGF seems to stimulate both albumin synthesis and DNA synthesis of hepatocytes, in a reciprocal relationship depending on cell density. When the effects of various cytokines were examined, epidermal growth factor, transforming growth factor-alpha, and acidic fibroblast growth factor also stimulated albumin synthesis by 20-30%. However, transforming growth factor-beta 1, basic fibroblast growth factor, and interleukin-1 beta had no effect on albumin synthesis, while interleukin-6 inhibited it by 42%. Thus HGF was the most potent in stimulating albumin synthesis in these cytokines. Since HGF is markedly increased in the liver or plasma following various liver insults, HGF may be involved in liver regeneration through the potential to stimulate both cell growth and liver-specific functions such as albumin synthesis in a cell density-dependent manner.  相似文献   

7.
Hepatocyte growth factor (HGF), a most potent growth factor for mature hepatocytes may act as a trigger for liver regeneration. We reported that HGF strongly stimulates DNA synthesis of rabbit renal tubular cells in secondary culture (Igawa, T., Kanda, S., Kanetake, H., Saitoh, Y., Ichihara, A., Tomita, Y., and Nakamura, T. (1991) Biochem. Biophys. Res. Commun. 174, 831-838). To investigate whether or not HGF is involved in renal regeneration, we examined changes in HGF mRNA, HGF activity, and HGF receptor in the rat kidney following unilateral nephrectomy or treatment with carbon tetrachloride (CCl4). In the intact kidney, the HGF mRNA increased markedly reaching a maximum 6 h after unilateral nephrectomy, followed by an increase of HGF activity at 12 h after the surgery. The marked increase in HGF mRNA and HGF activity was also found in the kidney of rats treated with CCl4. Results of in situ hybridization suggested that cells producing HGF in the kidney are endothelial cells. The number of HGF receptors on renal plasma membranes decreased to 30% of the normal value 12 h after unilateral nephrectomy, with no change in the Kd value. The HGF receptor was greatly diminished 24 h after the operation, and recovery to 60% of the normal level was evident 1 week after the operation. Because the decrease in HGF binding may result from internalization of the HGF receptor, the HGF may bind to its receptor in vivo and act as a mitogen for renal epithelial cells. HGF may function as a renotropic factor during renal regeneration after kidney injury.  相似文献   

8.
肝细胞再生因子(hepatocyte growth factor, HGF)对多种细胞都具有促进增殖及运动、抗凋亡的作用,对组织器官的发育形成也起到重要作用.在肝脏、肾脏、肺、心脏等器官受损之后的修复过程中,有积极的促进再生的作用.本研究采用了心虚血再灌流大鼠模型,发现心肌细胞受损伤后 6 h 血清中HGF水平显著增高.在比较了肾脏、肺、肝脏、脾脏等组织提取液中HGF的含量之后,发现心虚血再灌流手术后,肾脏、肺、肝脏中HGF的含量变化不明显,而脾脏的提取液中HGF的含量增加显著.对脾脏组织的连续切片进行HGF与血管内皮细胞的特异性标志物von Willanbrand Factor (vWF)免疫组织化学染色研究,发现手术后脾脏中产生HGF的细胞主要为血管内皮细胞.此项研究首次阐明组织器官受损后,远端组织器官的血管内皮细胞能够增加HGF的合成和分泌,增加的HGF通过体液循环到达受损组织器官,促进其修复再生.  相似文献   

9.
Hepatocyte growth factor (HGF) plays a crucial role in the recovery of injured liver. Liver functions are mostly impaired in patients with liver diseases including cirrhosis. However, a significant amount of inactive HGF precursor (proHGF) is reported in the plasma of these patients. proHGF is proteolytically converted to an active form (mature HGF) by HGF-activator. Thus conversion of proHGF into mature HGF presumably contributes to the recovery of liver functions. In this study, rats with a partial hepatectomy were used, as proHGF is accumulated in the remnant liver. Recombinant human HGF-activator was administered via the portal vein to investigate the effect on molecular forms of HGF and its biological signaling. rhHGF-activator promptly converted proHGF into mature HGF, reaching maximal levels at 5-10 min after the injection, while the decreased proHGF was quickly recovered to the initial levels in the liver. The HGF receptor/c-Met was found to be autophosphorylated in the liver treated with rhHGF-activator. Further, the proliferating cell nuclear antigen labeling index and the liver regeneration rate were significantly higher in rhHGF-activator group than in control animals. These results indicate that exogenously administered HGF-activator produces a biologically active HGF from its precursor form and increases the potential for liver regeneration in vivo.  相似文献   

10.
Following damage to skeletal muscle, satellite cells become activated, migrate towards the injured area, proliferate, and fuse with each other to form myotubes which finally mature into myofibers. We tested a new approach to muscle regeneration by incorporating myoblasts, with or without the exogenous growth factors bFGF or HGF, into three-dimensional gels of reconstituted basement membrane (matrigel). In vitro, bFGF and HGF induced C2C12 myoblast proliferation and migration and were synergistic when used together. In vivo, C2C12 or primary i28 myoblasts were injected subcutaneously together with matrigel and growth factors in the flanks of nude mice. The inclusion of either bFGF or HGF increased the vascularization of the gels. Gels supplemented with bFGF showed myogenesis accompanied by massive mesenchymal cell recruitment and poor organization of the fascicles. Samples containing HGF showed delayed differentiation with respect to controls or bFGF, with increased myoblast proliferation and a significantly higher numbers of cells in myotubes at later time points. HGF samples showed limited mesenchymal cell infiltration and relatively good organization of fascicles. The use of both bFGF and HGF together showed increased numbers of nuclei in myotubes, but with bFGF-mediated fibroblast recruitment dominating. These studies suggest that an appropriate combination of basement membrane components and growth factors could represent a possible approach to enhance survival dispersion, proliferation, and differentiation of myogenic cells during muscle regeneration and/or myoblast transplantation. This model will help develop cell therapy of muscle diseases and open the future to gene therapy approaches.  相似文献   

11.
Hepatocyte growth factor (HGF) is a potent growth factor for various epithelial cells including mature hepatocytes and renal tubular cells. When 70% of the rat liver was excised, HGF mRNA in the intact lung markedly increased at 6 h later, then decrease to normal levels at 24 h. A similar marked increase of HGF mRNA was found in the lung of rats with hepatitis induced by CCl4. Moreover HGF mRNA in the intact lung also increased to about a 5 times higher level than the normal, within 12 h after unilateral nephrectomy. Isolated alveolar macrophages significantly expressed HGF mRNA, yet the amount remained unchanged after injury of the liver. The marked increase of HGF mRNA in lungs of partially hepatectomized rats remained even after removal of alveolar macrophages. In situ hybridization showed a marked increase of HGF mRNA signal found in endothelial cells in the lung after partial hepatectomy. We postulate that endothelial cells in the lung recognize damage of distal organs through a mediator and that lung-derived HGF may contribute to tissue repair or regeneration of injured organs, through endocrine-related mechanisms.  相似文献   

12.
Hepatocyte growth factor (HGF) is known to promote the survival and foster neuritic outgrowth of different subpopulations of CNS neurons during development. Together with its corresponding receptor c-mesenchymal-epithelial transition factor (Met), it is expressed in the developing and the adult murine, rat and human CNS. We have studied the role of HGF in paradigms of retinal ganglion cell (RGC) regeneration and cell death in vitro and in vivo. After application of recombinant HGF in vitro, survival of serum-deprived RGC-5 cells and of growth factor-deprived primary RGC was significantly increased. This was shown to be correlated to the phosphorylation of c-Met and subsequent activation of serine/threonine protein kinase Akt and MAPK downstream signalling pathways involved in neuronal survival. Furthermore, neurite outgrowth of primary RGC was stimulated by HGF. In vivo, c-Met expression in RGC was up-regulated after optic nerve axotomy lesion. Here, treatment with HGF significantly improved survival of axotomized RGC and enhanced axonal regeneration after optic nerve crush. Our data demonstrates that exogenously applied HGF has a neuroprotective and regeneration-promoting function for lesioned CNS neurons. We provide strong evidence that HGF may represent a trophic factor for adult CNS neurons, which may play a role as therapeutic target in the treatment of neurotraumatic and neurodegenerative CNS disorders.  相似文献   

13.
Hepatocyte growth factor (HGF), a humoral mediator for regeneration of liver and kidney, possesses multiple biological activities. To investigate target cell specificity and to examine whether multiple actions of HGF are related to properties of the HGF receptor on target cells, we examined the effects of HGF on cell growth and motility and analyzed the HGF receptor in various species of cells. HGF stimulated growth and DNA synthesis of PAM212 (naturally immortalized mouse keratinocytes), Mv1Lu (mink lung epithelia), and A431 (human epidermoid carcinoma) cells, as well as mature hepatocytes, but inhibited those of IM-9 (human B-lymphoblasts). Conversely, HGF had a marked stimulatory effect on cell motility of MDCK (Mardin-Darby canine kidney epithelia) cells, but not on their growth. Also, HGF enhanced the motility of various species of cells, including A431, PAM212, HepG2 (human hepatoma), KB (human epidermoid carcinoma), and J-111 (human monocytes) cells. Scatchard analysis of 125I-HGF binding to hepatocytes indicated that the cells expressed both high- and low-affinity binding sites for HGF with Kd values of 23 and 260 pM, respectively. High-affinity HGF receptor with Kd values of 20-25 pM was detected at 40-720 sites/cell in MDCK, A431, PAM212, Lu99, and IM-9 cells, but not in fibroblasts and hematopoietic cells. In contrast, low-affinity binding sites were detected in all cell lines examined, even in those not responsive to HGF. Northern blots revealed that cells possessing a high-affinity HGF receptor expressed c-MET/HGF receptor mRNA. Therefore, HGF probably regulates both cell growth and motility of various types of epithelial cells and some types of mesenchymal cells. The multiple biological activities of HGF may be exerted through a high-affinity HGF receptor linked to multiple distinct intracellular signaling pathways.  相似文献   

14.
Hepatocyte growth factor (HGF) acts as an organotropic factor for regeneration and protection in various organs and has the ability to attenuate cerebral ischemia-induced cell death. However, the effect of HGF on learning and memory function after a cerebral ischemic event is unknown. We demonstrate here that administration of human recombinant HGF (hrHGF) into the ventricle reduced the prolongation of the escape latency in the acquisition and retention tests in the water maze task on days 12-28 after microsphere embolism-induced cerebral ischemia. In addition, disruption of the blood-brain barrier at the early stage after microsphere embolism, which was determined by FITC-albumin leakage, was markedly reduced by treatment with hrHGF. We demonstrated that this effect of hrHGF on the blood-brain barrier was associated with protection against the apoptotic death of the cerebral endothelial cells at the early stage after the ischemia. These results suggest that hrHGF can prevent the learning and memory dysfunction soon after sustained cerebral ischemia by protecting against injury to the endothelial cells. The use of HGF may be a potent strategy for the treatment of cerebrovascular diseases, including cerebral infarct and vascular dementia.  相似文献   

15.
Yamashita Y  Jeschke MG  Wolf SE 《Cytokine》2000,12(9):1293-1298
Hepatocyte growth factor (HGF) plays a role as an organotropic factor for regeneration of injured organs. HGF is synthesized as an inactive single-chain precursor which is then converted to a biologically active heterodimeric form by proteolytic processing. Burn is the insult that results in hypovolemia which causes systemic organ injury. In this study, we investigated the induction and activation of HGF in various rat organs following burn trauma. Tissue HGF content determined as the total amount of the single-chain and heterodimeric form increased significantly in liver, lung, spleen, and kidney 12 h after burn. Molecular analysis revealed that HGF in these four organs of control rats was the single-chain precursor. In the burned rats, HGF was the single-chain form in the liver and lung, whereas heterodimeric HGF was detected in the spleen and kidney. Tissue protein content, an index of tissue injury, decreased significantly in the spleen and kidney, indicating that tissue damage was severe in these two organs. These results suggest that burn induces the production of HGF in various organs, and that the induced HGF is activated according to the severity of tissue damage caused by burn.  相似文献   

16.
Hepatocyte growth factor (HGF) has been shown to be indispensable for liver regeneration because it serves as a main mitogenic stimulus driving hepatocytes toward proliferation. We hypothesized that ablating HGF in adult mice would have a negative effect on the ability of hepatocytes to regenerate. Deletion of the HGF gene was achieved by inducing systemic recombination in mice lacking exon 5 of HGF and carrying the Mx1-cre or Cre-ERT transgene. Analysis of liver genomic DNA from animals 10 days after treatment showed that a majority (70–80%) of alleles underwent cre-induced genetic recombination. Intriguingly, however, analysis by RT-PCR showed the continued presence of both unrecombined and recombined forms of HGF mRNA after treatment. Separation of liver cell populations into hepatocytes and non-parenchymal cells showed equal recombination of genomic HGF in both cell types. The presence of the unrecombined form of HGF mRNA persisted in the liver in significant amounts even after partial hepatectomy (PH), which correlated with insignificant changes in HGF protein and hepatocyte proliferation. The amount of HGF produced by stellate cells in culture was indirectly proportional to the concentration of HGF, suggesting that a decrease in HGF may induce de novo synthesis of HGF from cells with residual unrecombined alleles. Carbon tetrachloride (CCl4)-induced regeneration resulted in a substantial decrease in preexisting HGF mRNA and protein, and subsequent PH led to a delayed regenerative response. Thus, HGF mRNA persists in the liver even after genetic recombination affecting most cells; however, PH subsequent to CCl4 treatment is associated with a decrease in both HGF mRNA and protein and results in compromised liver regeneration, validating an important role of this mitogen in hepatic growth.  相似文献   

17.
18.
Induction of hepatocyte growth factor/scatter factor (HGF/SF) may be one of the critical steps in organ regeneration, wound healing, and embryogenesis. We previously reported the production of HGF/SF from various human leukemia cell lines and a high level of the growth factor in blood and bone marrow plasma from patients with various types of leukemia. We determined here the effects of hematopoietic cytokines on HGF/SF production in human leukemia cell lines, KG-1, a myeloid cell line, and RPMI-8226, a B cell line. Interferon (IFN)-γ remarkably stimulated HGF/SF production in both cell lines at concentrations of more than 0.1 or 1 IU/ml. IFN-α and IFN-β were as effective as IFN-γ in RPMI-8226 cells, but less than IFN-γ in KG-1 cells. HGF/SF gene expression in KG-1 cells was also up-regulated by IFN-γ. Granulocyte colony-stimulating factor (G-CSF), granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-5 and IL-6 had no effect on HGF/SF production in the 2 leukemia cell lines. We also determined the effects of HGF/SF inducers known for human fibroblasts on the growth factor production in leukemia cells. Out of phorbol 12-myristate 13-acetate (PMA), cholera toxin, IL-1β, and tumor necrosis factor (TNF)-α, the former three were as effective as IFN-γ in KG-1 cells, but only TNF-α stimulated HGF/SF production in RPMI-8226 cells, whose effect was less than those of IFN-α, IFN-β, and IFN-γ. The effect of IFN-γ in KG-1 cells was synergistic with that of PMA. In contrast with the effect in leukemia cells, HGF/SF induction by IFN-γ in human skin fibroblasts was much less than that by PMA or cholera toxin. These results indicated that IFN-γ is a potent inducer of HGF/SF in human leukemia cells. This finding suggests the presence of a homeostatic control mechanism in liver regeneration and repair: hepatic injury, DNA synthesis inhibition, or apoptosis caused by IFN-γ is subsequently overcome by cytokine-induced HGF/SF, a potent promoter of liver DNA synthesis. J. Cell. Physiol. 174:107–114, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Hepatocyte growth factor (HGF) is a potent mitogen for various epithelial cells, including mature hepatocytes and renal tubular cells. Here, HGF mRNA was found to be markedly increased in non-injured kidney and spleen, when the liver or kidney in rats was injured by 70% partial hepatectomy or unilateral nephrectomy. HGF mRNA increased to 3-4 fold higher level than the normal in the kidney and spleen as well as in the remnant liver after partial hepatectomy. Similarly, HGF mRNA markedly increased in the spleen as well as in the remnant kidney after unilateral nephrectomy. These results suggest that the onset of injury to the liver or kidney may be recognized by distal non-injured organs by the signalling of a humoral factor and that HGF derived from these organs may be involved in the regeneration of liver or kidney, through an endocrine mechanism.  相似文献   

20.
Several growth factors play an important role in liver regeneration. Once hepatic injury occurs, liver regeneration is stimulated by hepatocyte growth factor (HGF), transforming growth factor (TGF)-alpha, and heparin-binding epidermal growth factor-like growth factor (HB-EGF), whereas TGF-beta1 terminates liver regeneration. In this study, we analyzed the effect of a combination of HGF and epidermal growth factor (EGF) on mitogen-activated protein kinase (MAPK) activity and G1 cyclin expression in primary cultured rat hepatocytes. Treatment with a combination of HGF and EGF, in comparison with that of either HGF or EGF, induced tyrosine phosphorylation of both c-Met and EGF receptor (EGFR) independently and additively stimulated MAPK activity and cyclin D1 expression, resulting in additive stimulation of DNA synthesis. On the other hand, although TGF-beta1 treatment did not affect tyrosine phosphorylation of c-Met and EGFR, MAPK activity, and cyclin D1 expression, which were stimulated by HGF and EGF, DNA synthesis was completely inhibited through a marked decrease in cyclin E expression. These results indicate that potent mitogens, such as HGF, TGF-alpha, and HB-EGF, could induce the additive enhancement of liver regeneration cooperatively through an increase in Ras/MAPK activity followed by cyclin D1 expression, and that TGF-beta1 suppresses the growth factor-induced signals between cyclin D1 and cyclin E, resulting in the inhibition of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号