首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We disclose herein our efforts aimed at discovery of selective PARP-1 and PARP-2 inhibitors. We have recently discovered several novel classes of quinazolinones, quinazolidinones, and quinoxalines as potent PARP-1 inhibitors, which may represent attractive therapeutic candidates. In PARP enzyme assays using recombinant PARP-1 and PARP-2, the quinazolinone derivatives displayed relatively high selectivity for PARP-1 and quinoxaline derivatives showed superior selectivity for PARP-2, and the quinazolidinone derivatives did not have selectivity for PARP-1/2. Structure-based drug design analysis via a combination of X-ray structural study utilizing the complexes of inhibitors and human PARP-1 catalytic domain, and homology modeling using murine PARP-2 suggested distinct interactions of inhibitors with PARP-1 and PARP-2. These findings provide a new structural framework for the design of selective inhibitors for PARP-1 and PARP-2.  相似文献   

2.
Impaired DNA damage response pathways may create vulnerabilities of cancer cells that can be exploited therapeutically. One such selective vulnerability is the sensitivity of BRCA1- or BRCA2-defective tumors (hence defective in DNA repair by homologous recombination, HR) to inhibitors of the poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme critical for repair pathways alternative to HR. While promising, treatment with PARP-1 inhibitors (PARP-1i) faces some hurdles, including (1) acquired resistance, (2) search for other sensitizing, non-BRCA1/2 cancer defects and (3) lack of biomarkers to predict response to PARP-1i. Here we addressed these issues using PARP-1i on 20 human cell lines from carcinomas of the breast, prostate, colon, pancreas and ovary. Aberrations of the Mre11-Rad50-Nbs1 (MRN) complex sensitized cancer cells to PARP-1i, while p53 status was less predictive, even in response to PARP-1i combinations with camptothecin or ionizing radiation. Furthermore, monitoring PARsylation and Rad51 foci formation as surrogate markers for PARP activity and HR, respectively, supported their candidacy for biomarkers of PARP-1i responses. As to resistance mechanisms, we confirmed the role of the multidrug resistance efflux transporters and its reversibility. More importantly, we demonstrated that shRNA lentivirus-mediated depletion of 53BP1 in human BRCA1-mutant breast cancer cells increased their resistance to PARP-1i. Given the preferential loss of 53BP1 in BRCA-defective and triple-negative breast carcinomas, our findings warrant assessment of 53BP1 among candidate predictive biomarkers of response to PARPi. Overall, this study helps characterize genetic and functional determinants of cellular responses to PARP-1i and contributes to the search for biomarkers to exploit PARP inhibitors in cancer therapy.  相似文献   

3.
Impaired DNA damage response pathways may create vulnerabilities of cancer cells that can be exploited therapeutically. One such selective vulnerability is the sensitivity of BRCA1- or BRCA2-defective tumors (hence defective in DNA repair by homologous recombination, HR) to inhibitors of the poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme critical for repair pathways alternative to HR. While promising, treatment with PARP-1 inhibitors (PARP-1i) faces some hurdles, including (1) acquired resistance, (2) search for other sensitizing, non-BRCA1/2 cancer defects and (3) lack of biomarkers to predict response to PARP-1i. Here we addressed these issues using PARP-1i on 20 human cell lines from carcinomas of the breast, prostate, colon, pancreas and ovary. Aberrations of the Mre11-Rad50-Nbs1 (MRN) complex sensitized cancer cells to PARP-1i, while p53 status was less predictive, even in response to PARP-1i combinations with camptothecin or ionizing radiation. Furthermore, monitoring PARsylation and Rad51 foci formation as surrogate markers for PARP activity and HR, respectively, supported their candidacy for biomarkers of PARP-1i responses. As to resistance mechanisms, we confirmed the role of the multidrug resistance efflux transporters and its reversibility. More importantly, we demonstrated that shRNA lentivirus-mediated depletion of 53BP1 in human BRCA1-mutant breast cancer cells increased their resistance to PARP-1i. Given the preferential loss of 53BP1 in BRCA-defective and triple-negative breast carcinomas, our findings warrant assessment of 53BP1 among candidate predictive biomarkers of response to PARPi. Overall, this study helps characterize genetic and functional determinants of cellular responses to PARP-1i and contributes to the search for biomarkers to exploit PARP inhibitors in cancer therapy.  相似文献   

4.
Various pyridopyridazinone derivatives were designed as Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. The pyridopyridazinone scaffold was used as an isostere of the phthalazine nucleus of the lead compound Olaparib in addition to some modifications in the tail part of the molecule. Preliminary biological evaluation indicated that most compounds possessed inhibitory potencies comparable to Olaparib in nanomolar level. The best PARP-1 inhibitory activity was observed for compound 8a with (IC50 = 36 nM) compared to Olaparib as a reference drug (IC50 = 34 nM). Molecular modeling simulation revealed that, the designed compounds docked well into PARP-1 active site and their complexes are stabilized by three key hydrogen bond interactions with both Gly863 and Ser904 as well as other favorable π-π and hydrogen-π stacking interactions with Tyr907 and Tyr896, respectively. Computational ADME study predicted that the target compounds 8a and 8e have proper pharmacokinetic and drug-likeness properties. These outcomes afford a new structural framework for the design of novel inhibitors for PARP-1.  相似文献   

5.
Poly (ADP-ribose) polymerase-1 (PARP-1) and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC) and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI''s 60 human cancer cell-lines (NCI-60) in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.  相似文献   

6.
Poly(ADP-ribose) polymerase-1 (PARP-1) enzyme has critical roles in DNA replication repair and recombination. Thus, PARP-1 inhibitors play an important role in the cancer therapy. In the current study, we have performed combination of in silico and in vitro studies in order to discover novel inhibitors against PARP-1 target. Structure-based virtual screening was carried out for an available small molecules database. A total of 257,951 ligands from Otava database were screened at the binding pocket of PARP-1 using high-throughput virtual screening techniques. Filtered structures based on predicted binding energy results were then used in more sophisticated molecular docking simulations (i.e. Glide/standard precision, Glide/XP, induced fit docking – IFD, and quantum mechanics polarized ligand docking – QPLD). Potential high binding affinity compounds that are predicted by molecular simulations were then tested by in vitro methods. Computationally proposed compounds as PARP-1 inhibitors (Otava Compound Codes: 7111620047 and 7119980926) were confirmed by in vitro studies. In vitro results showed that compounds 7111620047 and 7119980926 have IC50 values of 0.56 and 63 μM against PARP-1 target, respectively. The molecular mechanism analysis, free energy perturbation calculations using long multiple molecular dynamics simulations for the discovered compounds which showed high binding affinity against PARP-1 enzyme, as well as structure-based pharmacophore development (E-pharmacophore) studies were also studied.  相似文献   

7.
The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors.  相似文献   

8.
Poly(ADP-ribose)polymerase-1 (PARP-1) is an abundant and ubiquitous chromatin-bound nuclear protein. PARP-1, a DNA repair enzyme, has been in the limelight as a chemotherapeutic target. In this study, we demonstrated the successful use of structure-based virtual screening to identify inhibitors of PARP-1 from Otava databases comprised of nearly 260,000 compounds. Five novel inhibitors belonging to thienopyrimidinone, isoquinolinoquinazolinone, pyrroloquinazolinone, and cyclopentenothienopyrimidinone scaffolds revealed inhibitory potencies with IC50 values ranged from 9.57 μM to 0.72 μM. Structural features relevant to the activity of these novel compounds within the active site of PARP-1 are discussed in detail and will guide future SAR investigation on these scaffolds.  相似文献   

9.
Cyclic nucleotide phosphodiesterase enzymes (PDEs) have functions in regulating the levels of intracellular second messengers, 3′, 5′-cyclic adenosine monophosphate (cAMP) and 3′, 5′-cyclic guanosine monophosphate (cGMP), via hydrolysis and decomposing mechanisms in cells. They take essential roles in modulating various cellular activities such as memory and smooth muscle functions. PDE type 5 (PDE5) inhibitors enhance the vasodilatory effects of cGMP in the corpus cavernosum and they are used to treat erectile dysfunction. Patch clamp experiments showed that the IC50 values of the human ether-à-go-go-related gene (hERG1) potassium (K) ion channel blocking affinity of PDE5 inhibitors sildenafil, vardenafil, and tadalafil as 33, 12, and 100 μM, respectively. hERG1 channel is responsible for the regulation of the action potential of human ventricular myocyte by contributing the rapid component of delayed rectifier K+ current (IKr) component of the cardiac action potential. In this work, interaction patterns and binding affinity predictions of selected PDE5 inhibitors against the hERG1 channel are studied. It is attempted to develop PDE5 inhibitor analogs with lower binding affinity to hERG1 ion channel while keeping their pharmacological activity against their principal target PDE5 using in silico methods. Based on detailed analyses of docking poses and predicted interaction energies, novel analogs of PDE5 inhibitors with lower predicted binding affinity to hERG1 channels without loosing their principal target activity were proposed. Moreover, molecular dynamics (MD) simulations and post-processing MD analyses (i.e. Molecular Mechanics/Generalized Born Surface Area calculations) were performed. Detailed analysis of molecular simulations helped us to better understand the PDE5 inhibitor–target binding interactions in the atomic level. Results of this study can be useful for designing of novel and safe PDE5 inhibitors with enhanced activity and other tailored properties.  相似文献   

10.
聚二磷酸腺苷核糖聚合酶 -1(PARP-1)参与 DNA 损伤修复,是近年来肿瘤治疗领域的热门靶点。从 PARP-1 的结构和作用机制出发, 综述 PARP-1 抑制剂的主要结构类型及优化思路,展望其应用前景和亟需解决的问题。  相似文献   

11.
BRCA1 and BRCA2 mutations are responsible for most familial breast carcinomas. Recent reports carried out in non-cancerous mouse BRCA1- or BRCA2-deficient embryonic stem (ES) cells, and hamster BRCA2-deficient cells have demonstrated that the targeted inhibition of poly(ADP-ribose) polymerase (PARP-1) kills BRCA mutant cells with high specificity. Although these studies bring hope for BRCA mutation carriers, the effectiveness of PARP-1 inhibitors for breast cancer remains elusive. Here we present the first in vivo demonstration of PARP-1 activity in BRCA1-deficient mammary tumors and describe the effects of PARP-1 inhibitors (AG14361, NU1025, and 3-aminobenzamide) on BRCA1-deficient ES cells, mouse and human breast cancer cells. AG14361 was highly selective for BRCA1-/- ES cells; however, NU1025 and 3-aminobenzamide were relatively non-selective. In allografts of na?ve ES BRCA1-/- cells there was either partial or complete remission of tumors. However, in allografts of mouse, BRCA1-/- mammary tumors, there was no tumor regression or remission although a partial inhibition of tumor growth was observed in both the BRCA1-/- and BRCA1+/+ allografts. In human tumor cells, PARP-1 inhibitors showed no difference in vitro in limiting the growth of mammary tumors irrespective of their BRCA1 status. These results suggest that PARP-1 inhibitors may non-specifically inhibit the growth of mammary tumors.  相似文献   

12.
Voltage-gated K+ channels are tetramers formed by coassembly of four identical or highly related subunits. All four subunits contribute to formation of the selectivity filter, the narrowest region of the channel pore which determines K+ selective conductance. In some K+ channels, the selectivity filter can undergo a conformational change to reduce K+ flux by a mechanism called C-type inactivation. In human ether-a-go-go–related gene 1 (hERG1) K+ channels, C-type inactivation is allosterically inhibited by ICA-105574, a substituted benzamide. PD-118057, a 2-(phenylamino) benzoic acid, alters selectivity filter gating to enhance open probability of channels. Both compounds bind to a hydrophobic pocket located between adjacent hERG1 subunits. Accordingly, a homotetrameric channel contains four identical activator binding sites. Here we determine the number of binding sites required for maximal drug effect and determine the role of subunit interactions in the modulation of hERG1 gating by these compounds. Concatenated tetramers were constructed to contain a variable number (zero to four) of wild-type and mutant hERG1 subunits, either L646E to inhibit PD-118057 binding or F557L to inhibit ICA-105574 binding. Enhancement of hERG1 channel current magnitude by PD-118057 and attenuated inactivation by ICA-105574 were mediated by cooperative subunit interactions. Maximal effects of the both compounds required the presence of all four binding sites. Understanding how hERG1 agonists allosterically modify channel gating may facilitate mechanism-based drug design of novel agents for treatment of long QT syndrome.  相似文献   

13.
A novel FlashPlate scintillation proximity assay has been developed for the high-throughput screening (HTS) of large compound libraries to identify inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1), an important enzyme involved in DNA repair. The assay was originally developed for the 96-well FlashPlate but is easily transferred to a 384-well format. Moreover, the authors demonstrate that the assay is sufficiently sensitive to determine accurate IC(50) values and adaptable for kinetic evaluation of lead molecules. The mechanism of action of the assay requires the binding of PARP-1 to a double-stranded DNA oligonucleotide leading to the active enzyme. Using NAD(+) and (3)H-NAD(+) as substrate, activated PARP-1 synthesizes labeled poly(ADP-ribose) chains. Once the reaction is stopped, ADP-ribose polymers are brought into proximity with the pretreated FlashPlate walls, resulting in signal amplification. This signal is then detected by a TopCount scintillation plate reader. The developed assay is a robust and reproducible method of screening for PARP-1 inhibitors that is low maintenance and cost-effective and can easily be automated.  相似文献   

14.
Clinical studies have revealed that diabetic retinopathy is a multifactorial disorder. Moreover, studies also suggest that ALR2 and PARP-1 co-occur in retinal cells, making them appropriate targets for the treatment of diabetic retinopathy. To find the dual inhibitors of ALR2 and PARP-1, the structure based design was carried out in parallel for both the target proteins. A series of novel thiazolidine-2,4-dione (TZD) derivatives were therefore rationally designed, synthesized and their in vitro inhibitory activities against ALR2 and PARP-1 were evaluated. The experimental results showed that compounds 5b and 5f, with 2-chloro and 4-fluoro substitutions, showed biochemical activities in micromolar and submicromolar range (IC50 1.34–5.03 μM) against both the targeted enzymes. The structure-activity relationship elucidated for these novel inhibitors against both the enzymes provide new insight into the binding mode of the inhibitors to the active sites of enzymes. The positive results of the biochemical assay suggest that these compounds may be further optimized and utilized for the treatment of diabetic retinopathy.  相似文献   

15.
PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains—Trp-Gly-Arg (WGR) and catalytic (CAT). In contrast, the N-terminal region (NTR) of PARP-1 is over 500 residues and includes four regulatory domains, whereas PARP-2 and PARP-3 have smaller NTRs (70 and 40 residues, respectively) of unknown structural composition and function. Here, we show that PARP-2 and PARP-3 are preferentially activated by DNA breaks harboring a 5′ phosphate (5′P), suggesting selective activation in response to specific DNA repair intermediates, in particular structures that are competent for DNA ligation. In contrast to PARP-1, the NTRs of PARP-2 and PARP-3 are not strictly required for DNA binding or for DNA-dependent activation. Rather, the WGR domain is the central regulatory domain of PARP-2 and PARP-3. Finally, PARP-1, PARP-2 and PARP-3 share an allosteric regulatory mechanism of DNA-dependent catalytic activation through a local destabilization of the CAT. Collectively, our study provides new insights into the specialization of the DNA-dependent PARPs and their specific roles in DNA repair pathways.  相似文献   

16.
17.
简介聚二磷酸腺苷核糖聚合酶-1(PARP-1)及其功能和在DNA 损伤修复中的作用,综述PARP-1 抑制剂的作用机制、发展现状以及在上皮性卵巢癌治疗中的应用,并探讨PARP-1 抑制剂靶向治疗上皮性卵巢癌的临床试验失败原因,展望PARP-1 抑制剂的应用前景,提出需对PARP-1 抑制剂在用于治疗上皮性卵巢癌中的耐药机制和选择性展开深入研究。  相似文献   

18.
19.
The binding mode of a series of competitive PARP-1 inhibitors was investigated employing a molecular docking approach by using Autodock 3.0. A particular attention was given to the role played by a water molecule present in some but not all the so far available crystal structures of the catalytic domain of PARP-1. Good correlation between calculated binding energies and experimental inhibitory activities was obtained either by including (r2=0.87) or not (r2=0.84) the structural water molecule. Closer inspection of our results suggested that this water molecule should be considered part of the hydration shell of polar inhibitors and not as a structural water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号