首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfur reduction in tobacco plants is a light-enhanced process that predominantly takes place in the leaves rather than the roots. The amount of sulfate reduced in mature leaves can exceed their own requirement and enables an export of reduced sulfur, both basipetal toward the roots as well as acropetal toward the growing parts of the stem. Evidence is presented that translocation of reduced sulfur toward the roots occurs in the phloem. TLC and paper chromatography reveal that glutathione is the main transport form of reduced sulfur in tobacco plants; 67–70% of reduced 35S was confined to glutathione, 27–30% to methionine, and 2–8% to cysteine.Abbreviation TLC thin-layer chromatography  相似文献   

2.
This study with poplar (Populus tremula × Populus alba) cuttings was aimed to test the hypothesis that sulfate uptake is regulated by demand-driven control and that this regulation is mediated by phloem-transported glutathione as a shoot-to-root signal. Therefore, sulfur nutrition was investigated at (a) enhanced sulfate demand in transgenic poplar over-expressing γ-glutamylcysteine (γ-EC) synthetase in the cytosol and (b) reduced sulfate demand during short-term exposure to H2S. H2S taken up by the leaves increased cysteine, γ-EC, and glutathione concentrations in leaves, xylem sap, phloem exudate, and roots, both in wild-type and transgenic poplar. The observed reduced xylem loading of sulfate after H2S exposure of wild-type poplar could well be explained by a higher glutathione concentration in the phloem. In transgenic poplar increased concentrations of glutathione and γ-EC were found not only in leaves, xylem sap, and roots but also in phloem exudate irrespective of H2S exposure. Despite enhanced phloem allocation of glutathione and its accumulation in the roots, sulfate uptake was strongly enhanced. This finding is contradictory to the hypothesis that glutathione allocated in the phloem reduces sulfate uptake and its transport to the shoot. Correlation analysis provided circumstantial evidence that the sulfate to glutathione ratio in the phloem may control sulfate uptake and loading into the xylem, both when the sulfate demand of the shoot is increased and when it is reduced.  相似文献   

3.
When [1-14C]indol-3yl-acetic acid ([1-14C]IAA) was applied to the upper surface of a mature foliage leaf of garden pea (Pisum sativum L. cv. Alderman), 14C effluxed basipetally but not acropetally from 30-mm-long internode segments excised 4 h after the application of [1-14C]IAA. This basipetal efflux was strongly inhibited by the inclusion of 3.10–6 mol· dm3 N-1-naphthylphthalamic acid (NPA) in the efflux buffer. In contrast, when [14C] sucrose was applied to the leaf, the efflux of label from stem segments excised subsequently was neither polar nor sensitive to NPA. The [1-14C]IAA was initially exported from mature leaves in the phloem — transport was rapid and apolar; label was recovered from aphids feeding on the stem; and label was recovered in exudates collected from severed petioles in 20 mM ethylenediaminetetraacetic acid. No 14C was detected in aphids feeding on the stems of plants to which [1-14C]IAA had been applied apically, even though the internode on which they were feeding transported considerable quantities of label. Localised applications of NPA to the stem strongly inhibited the basipetal transport of apically applied [1-14C]IAA, but did not affect transport of [1-14C]IAA in the phloem. These results demonstrate for the first time that IAA exported from leaves in the phloem can be transferred into the extravascular polar auxin transport pathway but that reciprocal transfer probably does not occur. In intact plants, transfer of foliar-applied [1-14C]IAA from the phloem to the polar auxin transport pathway was confined to immature tissues at the shoot apex. In plants in which all tissues above the fed leaf were removed before labelling, a limited transfer of IAA occurred in more mature regions of the stem.Abbreviations IAA indol-3yl-acetic acid - EDTA ethylenediaminetetraacetic acid - NPA N-1-naphthylphthalamic acid We are grateful to the Nuffield Foundation for supporting this research under the NUF-URB95 scheme and for the provision of a bursary to A.J.C. We thank Professor Dennis A. Baker for constructive comments on a draft of this paper and Mrs. Rosemary Bell for her able technical assistance.  相似文献   

4.
Cystine catabolism in mycelia of Microsporum gypseum,a dermatophytic fungus   总被引:3,自引:0,他引:3  
The fate of 35S label was studied during cystine degradation by mycelia of the dermatophytic fungus Microsporum gypseum. Excess free cystine in the medium was readily taken up and its sulfur moiety excreted as inorganic sulfate and sulfite. At intervals after 3–60 min of incubation with 35S cystine the products of cystine catabolism were extracted from the mycelia by boiling water and separated by thin layer chromatography and electrophoresis. A total of 10 sulfur-containing compounds were identified, and their relative radioactivity was assessed. After 3 min the mycelia contained, in addition to cystine, labeled cysteine and particularly cysteine sulfinic acid which was accompanied by a smaller amount of cysteic acid. Later on, oxidized and reduced glutathione, inorganic sulfate and taurine appeared consecutively. In all extracts, small amounts of labeled S-sulfocysteine were found, not, however, sulfite.The results suggest that the intermediates of cysteine degradation in the fungal mycelia are cysteine, cysteine sulfinate, unstable sulfinylpyruvate, sulfite and sulfate, i.e., that the catabolic pattern is similar to that of higher organisms.The formation and the role of S-sulfocysteine, cysteic acid, and of taurine is not yet completely understood, although certainly autoxidative processes are involved in the formation of the latter two compounds, and sulfitolysis in that of the former compound.  相似文献   

5.
Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm–1 day–1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm–2 day–1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm–2 day–1 .During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

6.
Various organic sulfides and inorganic sulfide were studied in respect to their effect on growth and methane production of Methanobacterium strain AZ. In mineral, sulfide-free medium, cysteine regulated the specific rate of methane production (optimum concentration =5·10–4 mole/l). A supplement of sulfide (10–4 mole/l) caused an additional stimulation. Coenzyme M** or glutathione could be substituted for cysteine when sulfide was present. Growth was stimulated by CoM and glutathione to the same extent as with cysteine in sulfide-containing media. The concentration of sulfide in cysteine-containing media affected the excretion of amino acids.Abbreviations CoM Coenzyme M; HS–CH2–CH2–SO3 (Taylor and Wolfe, 1974)  相似文献   

7.
Evidence for an intracellular sulfur cycle in cucumber leaves   总被引:1,自引:0,他引:1  
H2S emission from cucumber (Cucumis sativus L.) leaf discs supplied with L-cysteine in the dark is inhibited 80–90% by aminooxyacetic acid (AOA), an inhibitor of pyridoxal-phosphate dependent enzymes. Exposure to L-cysteine in the light enhanced the emission of H2S in response to this sulfur source. Turning off the light reduced the emission of H2S to the rate observed in continuous dark; turning on the light enhanced the emission of H2S to the rate observed in continuous light. Therefore, in the light H2S emission in response to L-cysteine becomes a partially light-dependent process. Treatment with cyanazine, an inhibitor of photosynthetic electron transport, reduced H2S emission in the light to the rate observed in continuous dark, but did not affect H2S emission in the dark. In leaf discs pre-exposed to L-cysteine in the light, treatment with cyanazine+ AOA inhibited the emission of H2S in response to L-cysteine completely. Therefore, only part of the H2S emitted in response to this sulfur source is derived from a light-independent, but pyridoxal-phosphate-dependent process; the balance of the H2S emitted is derived from a light-dependent process that can be inhibited by cyanazine. When cucumber leaf discs were supplied with a pulse of L-[35S]cysteine, radioactively labeled H2S was emitted in two waves, one during the first hour of exposure to L-cysteine, and a second after 3–4 h; unlabeled H2S, however, was emitted continuously. The second wave of emission of labeled H2S was not observed in pulse-chase experiments in which sulfate or cyanazine were added to the treatment solution after 3 h of exposure to L-cysteine, or when the lights was turned off. The labeling pattern of sulfur compounds inside cucumber cells supplied with a pulse of L-[35S]cysteine showed that the labeled H2S released from L-cysteine partially enters first the sulfite, then the sulfate pool of the cells. The radioactively labeled sulfate, however, is not incorporated into L-cysteine, but enters the H2S pool of the cells again. These observations are consistent with the idea of an intracellular sulfur cycle in plant cells. The L-cysteine taken up by the leaf discs seems to be desulfhydrated in a light-independent, but pyridoxal-phosphate-dependent process. The H2S synthesized this way may be partially released into the atmosphere; the other part of the H2S produced in response to L-cysteine may be oxidized to sulfite, then to sulfate, which is subsequently reduced via the light-depent sulfate assimilation pathway. In the presence of excess L-cysteine, synthesis of additional cysteine may be inhibited, and the sulfide moiety may be split off carrier bound sulfide to enter the H2S pool of the cells again. It is suggested that the function of this sulfur cycle may be regulation of the free cysteine pool.Abbreviation AOA aminooxyacetic acid  相似文献   

8.
Sulphate uptake and xylem loading of young pea (Pisum sativum L.) seedlings   总被引:3,自引:0,他引:3  
Herschbach  C.  Pilch  B.  Tausz  M.  Rennenberg  H.  Grill  D. 《Plant and Soil》2002,238(2):227-233
Sulphate uptake and xylem loading was analysed in young pea (Pisum sativum) seedlings. The rate of sulphate uptake into intact 8-days-old pea seedlings (determined by a 1 h exposure to radiolabelled sulphate in the nutrient solution) was 585 nmol sulphate g–1 root fresh weight h–1. When the cotyledons were removed on day 6 the 8-days-old seedlings took up only 7% of the controls. Interruption of the phloem transport by steam girdling of the stem or the root (1 h before incubation with radiolabelled sulphate) diminished sulphate uptake by approximately 50%. The addition of sucrose to the nutrient solution during incubation did not restore sulphate uptake rates indicating that the decrease was not due to a lack of energy. Apparently, a signal from the shoot and/or the cotyledons is necessary to stimulate sulphate uptake into the roots of pea seedlings. Glutathione fed to the roots for 3 h prior to incubation with radiolabelled sulphate diminished sulphate uptake by approximately 50%. The relative proportion of the sulphate taken up that was loaded into the xylem remained unchanged (between 7 and 9% of total uptake), even when the stem was girdled above the cotyledons or when the seedlings were pre-exposed to glutathione. Only removal of the cotyledons or girdling of the root below the cotyledons increased the proportion of sulphate loaded into the xylem to 13–15% of total uptake upon exposure to glutathione. Apparently, a signal from the cotyledons represses xylem loading to some extent.  相似文献   

9.
Sulfate concentration in the growth medium exerted a strong influence on the sulfur content of protein in two marine bacteria, Pseudomonas halodurans and Alteromonasluteo-violaceus, but the distribution of sulfur in major biochemical fractions was not affected. 90% of the total cellular sulfur was contained in low molecular weight organic compounds and protein; inorganic sulfate was not an important component. The sulfur content of isolated protein and total cellular sulfur increased in proportion to the external sulfate concentration for both bacteria, reaching a maximum at about 100–250 M. The growth rate of P. halodurans only was dependent on the sulfate concentration.Sulfur starvation of cells labeled to equilibrium with 35S-sulfate resulted in a rapid decrease in low molecular weight organic S with a concommitant increase in alcohol soluble (P. halodurans) or residue protein (A. luteo-violaceus). Although cell division was prevented, total protein increased in both bacteria, resulting in synthesis of sulfur-deficient protein. This effect was most pronounced in P. halodurans.Addition of 35S-sulfate to sulfur-starved A. luteo-violaceus further demonstrated that sulfur metabolism was restricted primarily to the synthesis and utilization of sulfurcontaining protein precursors. The low molecular weight organic S pool was replenished rapidly, and the pool size per cell reached twice the normal value before cell division resumed. Incorporation into protein was very rapid.Abbreviations L.M.W. low molecular weight - TCA trichloroacetic acid  相似文献   

10.
Sucrose (2,5–1000 mmol l–1), labeled with [14C]sucrose, was taken up by the xylem when supplied to one end of a 30-cm-long leaf strip of Zea mays L. cv. Prior. The sugar was loaded into the phloem and transported to the opposite end, which was immersed in diluted Hoagland's nutrient solution. When the Hoagland's solution at the opposite end was replaced by unlabeled sucrose solution of the same molarity as the labeled one, the two solutions met near the middle of the leaf strip, as indicated by radioautographs. In the dark, translocation of 14C-labeled assimilates was always directed away from the site of sucrose application, its distance depending on sugar concentration and translocation time. When sucrose was applied to both ends of the leaf strip, translocation of 14C-labeled assimilates was directed toward the lower sugar concentration. In the light, transport of 14-C-labeled assimilates can be directed (1) toward the morphological base of the leaf strip only (light effect), (2) toward the base and away from the site of sucrose application (light and sucrose effect), or (3) away from the site of sucrose application independent of the (basipetal or acropetal) direction (sucrose effect). The strength of a sink, represented by the darkened half of a leaf strip, can be reduced by applying sucrose (at least 25 mmol l–1) to the darkened end of the leaf strip. However, equimolar sucrose solutions applied to both ends do not affect the strength of the dark sink. Only above 75 mmol l–1 sucrose was the sink effect of the darnened part of the leaf strip reduced. Presumably, increasing the sucrose concentration replenishes the leaf tissue more rapidly, and photosynthates from the illuminated part of the leaf strip are imported to a lesser extent by the dark sink.Supported by Deutsche Forschungsgemeinschaft  相似文献   

11.
Photoheterotrophic and heterotrophic suspension cultures of tobacco (Nicotiana tabacum L.) were grown with 1 mM glutathione (reduced; GSH) as sole source of sulfur. Addition of sulfate to both cultures did not alter the rate of exponential growth, but affected the removal of GSH and sulfate in different ways. In photoheterotrophic suspensions, addition of sulfate caused a decline in the net uptake of GSH, whereas sulfate was taken up by the green cells immediately. In heterotrophic suspensions, however, addition of sulfate did not affect the net uptake of GSH and sulfate was only taken up by the cells after the GSH supply in the medium had been exhausted. Apparently, GSH uptake in photoheterotrophic cells is inhibited by sulfate, whereas sulfate uptake is inhibited by GSH in heterotrophic cells. The differences in the effect of GSH on sulfate uptake in photoheterotrophic and heterotrophic tobacco suspensions cannot be attributed to differences in the kinetic properties of sulfate carriers. In short-time transport experiments, both cultures took up sulfate almost entirely by an active-transport system as shown by experiments with metabolic inhibitors; sulfate transport of both cultures obeyed monophasic Michaelis-Menten kinetics with similar app. Km (photoheterotrophic cells: 16.0±2.0 M; heterotrophic cells: 11.8±1.8 M) and Vmax (photoheterotrophic cells: 323±50 nmol·min-1·g-1 dry weight; heterotrophic cells: 233±3 nmol·min-1·g-1 dry weight). Temperature- and pH-dependence of sulfate transport showed almost identical patterns. However, the cultures exhibited remarkable differences in the inhibition of sulfur influx by GSH in short-time transport experiments. Whereas 1 mM GSH inhibited sulfate transport into heterotrophic tobacco cells completely, sulfate transport into photoheterotrophic cells proceeded at more than two-thirds of its maximum velocity at this GSH concentration. The mode of action of GSH on sulfate transport in chloroplast-free tobacco cell does not appear to be direct: a 14-h exposure to 1 mM GSH was found to be necessary to completely block sulfate transport; a 4-h time of exposure did not affect this process. Consequently, glutathione does not seem to be a product of sulfur metabolism acting on sulfate-carrier entities by negative feedback control. When transferred to the whole plant, the observed differences in sulfate and glutathione influx into green and chloroplast-free cells may be interpreted as a regulatory device to prevent the uptake of excess sulfate by plants.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DNP dinitrophenol - DW dry weight - FW fresh weight - GSH reduced glutathione  相似文献   

12.
Rates of in situ sulfate reduction (SRR) in planted and unplanted rice fieldsoil were measured by the 35SO2– 4-radiotracermethod using soil microcosms. The concentration of 35SO2– 4 decreased exponentially with time.However, time course experiments indicated that incubation times of10–30 min were appropriate for measurements of SRRusing a single time point in routine assays. Unplanted microcosmsshowed high SRR of 177 nmol cm-3 d-1 inthe uppermost centimeter where average sulfate concentrations were<33 µM. Fine scaled measurements (1 mmresolution) localized highest SRR (<100 nmol cm-3d-1) at the oxic/anoxic interface at 2–5 mmdepth. In planted rice field soil, SRR of <310 nmolcm-3 d-1 were observed at 0–2cm depth. Sulfate reduction rates were determined at a millimeter-scalewith distance to a two dimensional root compartment. The SRR was highestat 0–1.5 mm distance to the root layer with rates up to500 nmol cm-3 d-1, indicating a highstimulation potential of the rice roots. SRR seemed to be mainlydependent on the in situ sulfate porewater concentrations. At thesoil surface of unplanted microcosms sulfate concentration decreasedfrom <150 µM to <10 µM within the first 8 mm of depth. In planted microcosmssulfate concentration varied from 87–99 µMsulfate at the 0–3 mm distance to the root layer to48–62 µM sulfate at a root distance>4 mm from the roots.The depth distribution of inorganic sulfur compounds was determinedfor planted and unplanted rice field soil. Sulfate, acid volatilesulfide (AVS) and chromium reducible sulfide (CRS) were up to 20 foldhigher in planted than in unplanted microcosms. CRS was the majorinsoluble sulfur fraction with concentrations >1.7µmol cm-3. Organic sulfur accounted for25–46% of the total sulfurpresent (269 µg/g dw) in an unplanted microcosm.The biogeochemical role of sulfate reduction forshort-term accumulation of inorganic sulfur compounds(FeS, FeS_2 and S°) in rice soil wasdetermined in a time course experiment with incubationperiods of 5, 10, 20, 30 and 60 min. The relativedistribution of CRS and AVS formation showedlittle depth dependence, whereas the formation of35S° seemed to be the highest in themore oxidized upper soil layers and near the root surface.AV35S was the first major product of sulfatereduction after 20–30 min, whereas CR35Swas formed, as AV35S and 35S°decreased, at longer incubation periods of >30 min.  相似文献   

13.
The intercellular distribution of the enzymes and metabolites of assimilatory sulfate reduction and glutathione synthesis was analyzed in maize (Zea mays L. cv LG 9) leaves. Mesophyll cells and strands of bundle-sheath cells from second leaves of 11-d-old maize seedlings were obtained by two different mechanical-isolation methods. Cross-contamination of cell preparations was determined using ribulose bisphosphate carboxylase (EC 4.1.1.39) and nitrate reductase (EC 1.6.6.1) as marker enzymes for bundle-sheath and mesophyll cells, respectively. ATP sulfurylase (EC 2.7.7.4) and adenosine 5′-phosphosulfate sulfotransferase activities were detected almost exclusively in the bundle-sheath cells, whereas GSH synthetase (EC 6.3.2.3) and cyst(e)ine, γ-glutamylcysteine, and glutathione were located predominantly in the mesophyll cells. Feeding experiments using [35S]sulfate with intact leaves indicated that cyst(e)ine was the transport metabolite of reduced sulfur from bundle-sheath to mesophyll cells. This result was corroborated by tracer experiments, which showed that isolated bundle-sheath strands fed with [35S]sulfate secreted radioactive cyst(e)ine as the sole thiol into the resuspending medium. The results presented in this paper show that assimilatory sulfate reduction is restricted to the bundle-sheath cells, whereas the formation of glutathione takes place predominantly in the mesophyll cells, with cyst(e)ine functioning as a transport metabolite between the two cell types.  相似文献   

14.
Summary In a split root experiment translocation of N from shoot to root was studied using15NO 3 . The three plant species selected for this experiment differed significantly with respect to root NRA. For lupin, maize and cocklebur about 80, 50 and 6% of all absorbed NO 3 was assmilated in the roots, respectively.Although NO 3 was reduced in the roots of lupin and maize plants to a greater extent than required for the roots' demand for organic N, a significant phloem flow of N from shoot to roots was found in these plants. Unexpectedly, for cocklebur, the plant with the very low root NRA, the fraction of total N present in the root that has been imported from the shoot was only half that as found for lupin and maize.  相似文献   

15.
The levels of cysteine (Cys), γ-glutamylcysteine (γEC), and glutathione (GSH) were measured in the endosperms, scutella, roots, and shoots of maize (Zea mays L.) seedlings. GSH was the major thiol in roots, shoots, and scutella, Cys predominated in endosperms. The endosperm, scutellum, and functional phloem translocation were required for maintenance of GSH pools in roots and shoots of 6-day-old seedlings. Exposure of roots to 3 micromolar Cd, besides causing a decline in GSH, caused an accumulation of γEC, as if the activity of GSH synthetase was reduced in vivo. [35S]Cys injected into endosperms of seedlings was partly metabolized to [35S]sulfate. The scutella absorbed both [35S]sulfate and [35S]Cys and transformed 68 to 87% of the radioactivity into [35S]GSH. [35S]GSH was translocated to roots and shoots in proportion to the tissue fresh weight. Taken together, the data supported the hypothesis that Cys from the endosperm is absorbed by the scutellum and used to synthesize GSH for transfer through the phloem to the root and shoot. The estimated flux of GSH to the roots was 35 to 60 nanomoles per gram per hour, which totally accounted for the small gain in GSH in roots between days 6 and 7. For Cd-treated roots the GSH influx was similar, yet the GSH pool did not recover to control levels within 24 hours. The estimated flux of GSH to the entire shoot was like that to the roots; however, it was low (11-13 nanomoles per gram per hour) to the first leaf and high (76-135 nanomoles per gram per hour) to the second and younger leaves.  相似文献   

16.
Summary Phloem conductance of14C-labelled assimilates was investigated in natural stands of Norway spruce showing substantial damage from needle yellowing and needle loss disease. Terminal current-year shoots of a branch were allowed to fix14CO2 (300–600 ppm in air) and carbon dioxide net uptake was monitored with a gas analyser. The difference between14C-uptake and the amount of radiocarbon determined in the photosynthesizing needles was interpreted to reflect assimilate export from the needles to the axis of the tree. Compared with an undamaged control tree,14C-export from the assimilating needles was not impaired in the yellowing tree and only slightly reduced in the tree showing needle loss. Incorporation of14C into starch increased significantly during autumn particularly in the tree showing needle loss. Import of radiocarbon from the14C-labelled phloem sap in twig axes and needles older than 1 year was used as a measure of phloem conductivity of older sections of a branch which showed considerable damage. Carbon uptake by these older plant parts was more pronounced than in undamaged twigs. In the case of older needles enhancement of14C-incorporation suggested an increased sink strength, while the same phenomenon in the twig axes was interpreted as a consequence of partially impaired conductivity of individual sieve elements resulting in an inhomogeneous velocity of phloem transport. The hypothesis is put forward that curtailed viability of the sieve cells is responsible for a delay of transport, which is compensated for by an augmented production of phloem elements from the cambium.  相似文献   

17.
Chlorella pyrenoidosa Chick (Emerson strain 3) utilizes thiosulfate for growth as effectively as sulfate, and more effectively than a variety of organic sulfur compounds containing sulfur in various oxidation states. Thiosulfates, differentially labeled with 35S in either the SH— or SO3 — sulfur moieties, were used to follow the incorporation of thiosulfate-sulfur into constituents of the insoluble fraction and of the soluble pools. Labeled sulfate was also used for purposes of comparison. Label from both sulfur atoms of thiosulfate and from sulfate is incorporated into the cysteine, homocysteine, and glutathione of the soluble pools, and into the methionine and cystine of protein in the insoluble fraction. Label from SO3-sulfur of thiosulfate is incorporated more slowly into protein methionine and cystine than label from the SH-sulfur. Moreover, the SO3-sulfur of thiosulfate is recovered largely as sulfate in both the soluble pools and the insoluble fraction, while only a trace of SH-sulfur is recovered as sulfate in either case. Consistent with this, the metabolism of the SO3-sulfur of thiosulfate more closely resembles the metabolism of sulfate. Thus it would appear that exogenous thiosulfate undergoes early dismutation in which the SO3-sulfur is preferentially oxidized, and the SH-sulfur is preferentially incorporated in a reduced state. These results are discussed in relation to the conversion of sulfate to thiosulfate by cell-free extracts of Chlorella previously described.  相似文献   

18.
Concentrations of various sulfur compounds (SO42−, H2S, S0, acid-volatile sulfide, and total sulfur) were determined in the profundal sediments and overlying water column of a shallow eutrophic lake. Low concentrations of sulfate relative to those of acid-volatile sulfide and total sulfur and a decrease in total sulfur with sediment depth implied that the contribution of dissimilatory sulfur reduction to H2S production was relatively minor. Addition of 1.0 mM Na235SO4 to upper sediments in laboratory experiments resulted in the production of H235S with no apparent lag. Kinetic experiments with 35S demonstrated an apparent Km of 0.068 mmol of SO42− reduced per liter of sediment per day, whereas tracer experiments with 35S indicated an average turnover time of the sediment sulfate pool of 1.5 h. Total sulfate reduction in a sediment depth profile to 15 cm was 15.3 mmol of sulfate reduced per m2 per day, which corresponds to a mineralization of 30% of the particulate organic matter entering the sediment. Reduction of 35S0 occurred at a slower rate. These results demonstrated that high rates of sulfate reduction occur in these sediments despite low concentrations of oxidized inorganic compounds and that this reduction can be important in the anaerobic mineralization of organic carbon.  相似文献   

19.
Sulfate Reduction in Peat from a New Jersey Pinelands Cedar Swamp   总被引:2,自引:0,他引:2       下载免费PDF全文
Microbial sulfate reduction rates in acidic peat from a New Jersey Pine Barrens cedar swamp in 1986 were similar to sulfate reduction rates in freshwater lake sediments. The rates ranged from a low of 1.0 nmol cm−3 day−1 in February at 7.5- to 10.0-cm depth to 173.4 nmol cm−3 day−1 in July at 5.0- to 7.5-cm depth. The presence of living Sphagnum moss at the surface generally resulted in reduced rates of sulfate reduction. Pore water sulfate concentrations and water table height also apparently affected the sulfate reduction rate. Concentrations of sulfate in pore water were nearly always higher than those in surface water and groundwater, ranging from 26 to 522 μM. The elevated pore water sulfate levels did not result from the evapotranspiratory concentration of infiltrating stream water or groundwater, but probably resulted from oxidation of reduced sulfur compounds, hydrolysis of ester sulfates present in the peat, or both. The total sulfur content of peat that had no living moss at the surface was 164.64 ± 1.5 and 195.8 ± 21.7 μmol g (dry weight)−1 for peat collected from 2.5 to 5.0 and 7.5 to 10.0 cm, respectively. Organosulfur compounds accounted for 84 to 88% of the total sulfur that was present in the peat. C-bonded sulfur accounted for 91 to 94% of the organic sulfur, with ester sulfate being only a minor constituent. Reduced inorganic sulfur species in peat from 2.5 to 7.5 cm were dominated by H2S-FeS (68%), while pyritic sulfide was the predominant inorganic sulfur species in the peat from depths of 7.5 to 10.0 cm (75%).  相似文献   

20.
This study with poplar (Populus tremula x Populus alba) cuttings was aimed to test the hypothesis that sulfate uptake is regulated by demand-driven control and that this regulation is mediated by phloem-transported glutathione as a shoot-to-root signal. Therefore, sulfur nutrition was investigated at (a) enhanced sulfate demand in transgenic poplar over-expressing gamma-glutamylcysteine (gamma-EC) synthetase in the cytosol and (b) reduced sulfate demand during short-term exposure to H2S. H(2)S taken up by the leaves increased cysteine, gamma-EC, and glutathione concentrations in leaves, xylem sap, phloem exudate, and roots, both in wild-type and transgenic poplar. The observed reduced xylem loading of sulfate after H2S exposure of wild-type poplar could well be explained by a higher glutathione concentration in the phloem. In transgenic poplar increased concentrations of glutathione and gamma-EC were found not only in leaves, xylem sap, and roots but also in phloem exudate irrespective of H(2)S exposure. Despite enhanced phloem allocation of glutathione and its accumulation in the roots, sulfate uptake was strongly enhanced. This finding is contradictory to the hypothesis that glutathione allocated in the phloem reduces sulfate uptake and its transport to the shoot. Correlation analysis provided circumstantial evidence that the sulfate to glutathione ratio in the phloem may control sulfate uptake and loading into the xylem, both when the sulfate demand of the shoot is increased and when it is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号