首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the −2,015 bp 5′-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and β-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds. Progressive 5′-deletions up to the −963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression. Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both EGFP intensity and fluorometric GUS activity, respectively.  相似文献   

2.
Höfig KP  Moyle RL  Putterill J  Walter C 《Planta》2003,217(6):858-867
Four male cone-specific promoters were isolated from the genome of Pinus radiata D. Don, fused to the -glucuronidase (GUS) reporter gene and analysed in the heterologous host Arabidopsis thaliana (L.) Heynh. The temporal and spatial activities of the promoters PrCHS1, PrLTP2, PrMC2 and PrMALE1 during seven anther developmental stages are described in detail. The two promoters PrMC2 and PrMALE1 confer an identical GUS expression pattern on Arabidopsis anthers. DNA sequence analysis of the PrMC2 and PrMALE1 promoters revealed an 88% sequence identity over 276 bp and divergence further upstream (<40% sequence identity). GUS expression driven by a 276-bp PrMALE1 promoter fragment showed the same pattern in Arabidopsis anthers as observed for the full-length PrMALE1 promoter. Within the 276-bp promoter fragment a region of high homology to a previously described 16-bp anther-box was identified. In gain-of-function experiments the putative PrMALE1 anther-box was fused upstream of a 90-bp CaMV 35S minimal promoter, as a single copy in the sense direction and as an inverted repeat. No GUS expression was conferred to Arabidopsis anthers by either of these two constructs. In a loss-of-function experiment a 226-bp PrMALE1 deletion construct, which did not contain the putative PrMALE1 anther-box, still maintained the originally observed PrMALE1 GUS expression pattern. Hence, gain-of-function as well as loss-of-function experiments consistently showed that the putative anther-box of the PrMALE1 promoter is non-functional in the Arabidopsis genetic background. For the analysis of the four full-length pine promoters PrCHS1, PrLTP2, PrMC2 and PrMALE1, transformation vectors based on pCAMBIA2200 and pCAMBIA1302 were used. It will also be demonstrated in this article that sequences within the T-DNA borders of these vectors caused a characteristic histological background expression in Arabidopsis, with staining observed in vascular tissue of leaves, sepals, roots, filaments of stamens and in stems and pistils.Abbreviation GUS -glucuronidaseGenBank accession numbers for the analysed promoters: AF 337656 (PrCHS1), AF 337655 (PrLTP2), AF 337657 (PrMC2) and AF 337658 (PrMALE1).  相似文献   

3.
A 1.6 kb upstream regulatory sequence (GenBank accession no. AF472487) of plasma membrane aquaporinBnPIP1 gene fromBrassica napus was obtained by genomic walking based on ligation-mediated PCR method. Sequence analysis indicated that this fragment contained seed germination specific and vascular specific sequences. The 1.6 kb upstream sequence and various 5′ end deleted sequences were fused withuidA gene and constructed into plant expression vectors which were used for tobacco transformation. GUS histochemical assay showed that the 1.6 kb fragment had high levels of promoter activity and the GUS staining was mainly distributed in vascular systems and tissues with rapid expanding and proliferating cells. Promoter deletion analysis showed that the deletion of -1610 — -1030 bp resulted in a dramatic reduction in GUS activity. It was assumed that there might be cis-acting element(s) existing in this region. Whereas, the region located at -1030 — -902 bp strongly inhibited the expression ofgus and probably contained negative regulatory element(s). The fragment of -902 — -19 bp could also directgus expression at high level.  相似文献   

4.
Tomilov A  Tomilova N  Yoder JI 《Planta》2007,225(5):1059-1071
Parasitic plants in the Orobanchaceae invade roots of neighboring plants to rob them of water and nutrients. Triphysaria is facultative parasite that parasitizes a broad range of plant species including maize and Arabidopsis. In this paper we describe transient and stable transformation systems for Triphysaria versicolor Fischer and C. Meyer. Agrobacterium tumefaciens and Agrobacterium rhizogenes were both able to transiently express a GUS reporter in Triphysaria seedlings following vacuum infiltration. There was a correlation between the length of time seedlings were conditioned in the dark prior to infiltration and the tissue type transformed. In optimized experiments, nearly all of the vacuum infiltrated seedlings transiently expressed GUS activity in some tissue. Calluses that developed from transformed tissues were selected using non-destructive GUS staining and after several rounds of in vivo GUS selection, we recovered uniformly staining GUS calluses from which roots were subsequently induced. The presence and expression of the transgene in Triphysaria was verified using genomic PCR, RT PCR and Southern hybridizations. Transgenic roots were also obtained by inoculating A. rhizogenes into wounded Triphysaria seedlings. Stable transformed roots were identified using GUS staining or fluorescent microscopy following transformation with vectors containing GFP, dsRED or EYFP. Transgenic roots derived from both A. tumefaciens and A. rhizogenes transformations were morphologically normal and developed haustoria that attached to and invaded lettuce roots. Transgenic roots also remained competent to form haustoria in response to purified inducing factors. These transformation systems will allow an in planta assessment of genes predicted to function in plant parasitism. Alexey Tomilov and Natalya Tomilova made an equal contribution in the paper.  相似文献   

5.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

6.
Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The β-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85–90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.  相似文献   

7.
Earlier, a pollen-specific Oryza sativa indica pollen allergen gene (OSIPA), coding for expansins/pollen allergens, was isolated from rice, and its promoter—upon expression in tobacco and Arabidopsis—was found active during the late stages of pollen development. In this investigation, to analyze the effects of different putative regulatory motifs of OSIPA promoter, a series of 5′ deletions were fused to β-glucuronidase gene (GUS) which were stably introduced into rice and Arabidopsis. Histochemical GUS analysis of the transgenic plants revealed that a 1631 bp promoter fragment mediates maximum GUS expression at different stages of anther/pollen development. Promoter deletions to −1272, −966, −617, and −199 bp did not change the expression profile of the pollen specificity. However, the activity of promoter was reduced as the length of promoter decreased. The region between −1567 and −199 bp was found adequate to confer pollen-specific expression in both rice and Arabidopsis systems. An approximate 4-fold increase in the GUS activity was observed in the pollen of rice when compared to that of Arabidopsis. As such, the OSIPA promoter seems promising for generation of stable male-sterile lines required for the production of hybrids in rice and other crop plants.  相似文献   

8.
9.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

10.
11.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.  相似文献   

12.
In silico analysis showed that the differentially expressed type 3 oil palm metallothionein-like genes MT3-A and MT3-B share at least 11 common putative promoter regulatory elements. The identified motifs include W-boxes, TATCCA element, binding element for cytokinin response regulators and pollen-specific elements. A high degree of conservation was observed in their genomic organisation where the coding regions are divided at two identical positions in both genes by two AT-rich introns. Promoter activity of the MT3-B gene was analysed using a transient assay by bombarding oil palm tissue slices with a β-glucuronidase (GUS) gene construct and a stable reporter assay by analysing GUS expression in transformed Arabidopsis thaliana plants. Transient expression analysis revealed MT3-B promoter activity in oil palm root tissues but not in fruit mesocarp at 12 weeks after anthesis and spear leaves. The T3 homozygous transgenic Arabidopsis plants, harbouring the MT3-B promoter/GUS construct, showed reporter activity in cotyledons and mature leaves with lower expression levels in root tissues. The expression levels in the roots of the T3 homozygous transgenic plants increased five- and 2.5-folds when treated with 80 μM of Zn2+ and Fe2+, respectively. Altogether, these results indicate that the MT3-A and MT3-B promoter activities may be regulated by a variety of abiotic factors and MT3-B promoter may potentially be manipulated for use in plant genetic engineering for induced synthesis of gene product.  相似文献   

13.
ADP-glucose pyrophosphorylase (AGPase) represents a key regulatory step in starch synthesis. A 0.9 kb of 5′ flanking region preceding Brittle2 gene, encoding the small subunit of maize endosperm AGPase, was cloned from maize genome and its expression pattern was studied via the expression of β-glucuronidase (GUS) gene in transgenic tobacco. Analysis of GUS activities showed that the 0.9 kb fragment flanking Brittle2 gene was sufficient for driving the seed-preferred expression of the reporter gene. The activity of the 0.9 kb 5′ flanking fragment was compared with that of the tandem promoter region from a zein gene (zE19, encoding a maize 19 kDa zein protein). The results indicated that both promoters were seed-preferred in a dicotyledonous system as tobacco and the activity of zE19 promoter was three to fourfold higher than that of the 0.9 kb fragment flanking Brittle2 gene in transgenic tobacco seeds. At the same time, zE19-driven GUS gene expressed earlier than Brittle2 promoter during seed development. Histochemical location of GUS activity indicated that both promoters showed high expression in embryos, which is different from similar promoters tested in maize.  相似文献   

14.
In the filamentous fungus Trichoderma reesei, endoglucanase III (EGIII) is coordinately expressed with other cellulases during growth on cellulose, its derivatives, and L-sorbose. To elucidate EGIII induction mechanism, we cloned and sequenced the upstream region of egl3 encoding EGIII. Two GGCTAA motifs, a putative binding site for ACEII and xylanase regulator Xyr1, were found on the template strand of the egl3 upstream region. Deletion analysis of the egl3 upstream region using the beta-glucuronidase (GUS) reporter system revealed that removal of regions containing the GGCTAA motifs and the region between −1,045 and −1,002 bp containing GGCTAT motif severely affected GUS inducibility. Furthermore, mutation of the two GGCTAA motifs and the GGCTAT motif of this region led to a significant decrease in GUS activity. These data indicate that both GGCTAA and GGCTAT are key motifs for egl3 expression, and that egl3 induction may also be controlled by Xyr1. This hypothesis was supported by in vitro electrophoretic mobility shift assay, in which heterologously expressed Xyr1 specifically bound not only GGCTAA but also GGCTAT motif.  相似文献   

15.
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.  相似文献   

16.
We isolated the 5′ flanking region of a gene for phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) from Pinus taeda, PtaPAL. To investigate the tissue-specific expression of the PtaPAL promoter, histochemical assay of GUS activity was performed using the transgenic tobacco expressing the PtaPAL promoter-GUS. The region of −897 to −420 in PtaPAL promoter showed high activities in the secondary xylem and response to bending stress. To characterize the cis-regulatory functions of the promoters for enzymes in phenylpropanoid biosynthesis, we examined the activity of chimeric promoters of PtaPAL and a 4-coumarate CoA ligase, Pta4CLα. The chimeric promoter showed similar activity as the Pta4CLα promoter. Electrophoretic mobility shift assays implicated −897 to –674 of PtaPAL promoter containing cis-elements of the expression in xylem of Pinus taeda. The results suggested that AC elements of PtaPAL have multiple functions in the expression under the various developmental stages and stress conditions in the transgenic tobacco. The nucleotide sequence data reported will appear in the EMBL, GenBank, and DDBJ Nucleotide Sequence Databases under the accession number AB449103 (PtaPAL promoter sequence).  相似文献   

17.
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays ADH1 5′ MAR, Nicotiana tabacum Rb7 3′ MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer–promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed between the cauliflower mosaic virus 35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::β-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated. Accession numbers: TBS from Petunia hybrida cultivar V26, GenBank accession number EU864306.  相似文献   

18.
19.
We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5′ flanking regions of close homologs were used to drive expression of the GUSPlus gene, 50–60% of the transgenic events showed expression in apical and axillary meristems. However, expression was also common in other organs, including in leaf veins (40 and 46% of WUS and STM transgenic events, respectively) and hydathodes (56% of WUS transgenic events). Histochemical GUS staining of explants during callogenesis and shoot regeneration using in vitro stems as explants showed that expression was detectable prior to visible shoot development, starting 3–15 days after explants were placed onto callus inducing medium. A minority of WUS and STM events also showed expression in the cambium, phloem, or xylem of regenerated, greenhouse grown plants undergoing secondary growth. Based on microarray gene expression data, a paralog of poplar WUS was detectably up-regulated during shoot initiation, but the other paralog was not. Both paralogs of poplar STM were down-regulated threefold to sixfold during early callus initiation. We identified 15–35 copies of cytokinin response regulator binding motifs (ARR1AT) and one copy of the auxin response element (AuxRE) in both promoters. Several of the events recovered may be useful for studying the process of primary and secondary meristem development, including treatments intended to stimulate meristem development to promote clonal propagation and genetic transformation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
We have previously isolated a Brassica juncea cDNA encoding a novel chitinase BjCHI1 with two chitin-binding domains (Zhao and Chye in Plant Mol Biol 40:1009–1018, 1999). The expression of BjCHI1 was highly inducible by methyl jasmonate (MeJA) treatment, wounding, caterpillar feeding, and pathogenic fungal infection. These observations suggest that the promoter of BjCHI1 gene might contain specific cis-acting elements for stress responses. Here, we report the cloning and characterization of the BjCHI1 promoter. A 1,098 bp BjCHI1 genomic DNA fragment upstream of the ATG start codon was isolated by PCR walking and various constructs were made by fusing the BjCHI1 promoter or its derivatives to β-glucuronidase reporter gene. The transgenic Arabidopsis plants showed that the BjCHI1 promoter responded to wounding and MeJA treatment, and to treatments with either NaCl or polyethyleneglycol (PEG 6000), indicating that the BjCHI1 promoter responses to both biotic and abiotic stresses. A transient gene expression system of Nicotiana benthamiana leaves was adopted for promoter deletion analysis, and the results showed that a 76 bp region from −695 to −620 in the BjCHI1 promoter was necessary for MeJA-responsive expression. Furthermore, removal of a conserved T/G-box (AACGTG) at −353 to −348 of the promoter greatly reduced the induction by MeJA. This is the first T/G-box element identified in a chitinase gene promoter. Gain-of-function analysis demonstrated that the cis-acting element present in the 76 bp region requires coupling with the T/G-box to confer full magnitude of BjCHI1 induction by MeJA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号