首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
As a matter of fact, Araucaria angustifolia populations occur predominately in small and isolated stands; only a minor number of continuous natural forests of this dioecious wind-pollinated coniferous tree species remain. To implement reasonable conservation, breeding and restorations program it is necessary to have the knowledge of pollen dispersal distance and fine-scale genetic structure. In this paper, levels and dispersion distance of pollen and spatial genetic structure of A. angustifolia were investigated in a 14 ha transect in a continuous forest in Paraná State, Brazil. Analyses have been performed by the use of eight microsatellite loci, paternity and TwoGener approaches, and spatial autocorrelation analysis. In transect, 52 male and 56 female adult trees were mapped and genotyped, together with 190 seeds. In the present transect, A. angustifolia show spatial genetic structure at distances up to 75 m. Paternity analysis indicated that 54% of seeds were fertilized by pollen from trees outside the transect. The calculated average pollination distance within transect was 102 and 98 m based on the paternity analysis and TwoGener analysis, respectively. We found a significant pollen gene pool structure across seed-trees ( , < 0.01) that corresponds to an effective number of pollen donors of 6.4 male trees or an effective pollination neighbourhood area (A ep ) of 2.1 ha. The findings suggest long-distance pollen dispersion (>100 m) inside the continuous forest. However, the high proportion occurs in short-distance producing biparental and correlated mating as well as reducing the variance effective size.  相似文献   

2.
Dutch elm disease has severely reduced the number of large trees of U. glabra in Denmark. Consequently, the distance between large trees has increased and the overall density of the species has decreased. Patches of small trees with stem diameters up to 10 cm are, however, relatively frequent. With four microsatellites we studied potential differences in genetic diversity, mating patterns and pollen flow in trees of U. glabra that occur either in a continuous forest (Suserup Forest) or isolated in the open land. We found no indications of selfing in forest or open land but indications of biparental inbreeding in offspring of isolated trees. Estimates of effective pollen donors (N ep) and minimum number of pollen donors (N p) were alike in forest and open land (N ep of 31 and 34 and N p of 4 to >6 and 3 to >6, respectively). The number of alleles was also very similar. With indirect methods we found that average pollen dispersal was 104 m under forest conditions. The average distance between the isolated trees and their potential pollen donors was further, thus suggesting that effective pollen in the open land on average moves further than in a dense forest. Finally, 28% of small trees (diameters up to 10 cm) produced fruits. Reproduction at a young age may be a key stone in the survival of U. glabra as the vectors of the disease prefer older trees.  相似文献   

3.
The mating system, patterns of pollen mediated gene flow and levels of genetic contamination were investigated in a planted stand of Acacia saligna subsp. saligna via paternity analysis using microsatellite markers. High levels of outcrossing were detected within the stand (t m = 0.98), and the average pollen dispersal distance was 37 m with the majority of progeny sired by paternal trees within a 50-m neighbourhood of the maternal tree. Genetic contamination from the natural background population of A. saligna subsp. lindleyi was detected in 14% of the progeny of A. saligna subsp. saligna and varied among maternal trees. Long distance inter-subspecific pollen dispersal was detected for distances of over 1,500 m. The results provide information for use in the breeding and domestication programme aimed at developing A. saligna as an agroforestry crop for the low rainfall areas of southern Australia.  相似文献   

4.
This case study examines the pollen dispersal distance, pollen dispersal patterns and intra‐family genetic structure for isolated trees in pastures of the bat‐pollinated Neotropical tree species Hymenaea stigonocarpa using six microsatellite loci and parentage analysis. The sampling included 28 grouped trees (referred to as the population) and six isolated trees in pastureland along a highway in Mato Grosso do Sul State, Brazil. From the population, we sampled 137 seeds from 12 seed‐trees, and from the isolated trees, we sampled 34 seeds from two seed‐trees. The results showed that pollen was dispersed over long distances (reaching 7353 m) and therefore the spatially isolated trees were not reproductively isolated. The pollen immigration rate in the population was also high (31%). Isolated trees presented a higher selfing rate (s=26%) than trees in the population (s=12%), suggesting that the spatial isolation of the trees increased selfing. However, selfing was responsible for only 30 percent of the inbreeding in offspring and mating among relatives was 70 percent. In the population, excluding selfing, ca 72 percent of the pollen was dispersed over distances <1000 m (average: 860 m). For the two isolated seed‐trees, excluding selfing, the average pollen dispersal distance was 5229 m. The results demonstrate that although pollen can be dispersed over long distances for H. stigonocarpa isolated trees, a high percentage of pollen comes from the same tree (selfing) and mating was correlated. Consequently, seeds must be collected from a large number of seed‐trees for conservation purposes.  相似文献   

5.
The effects of population density on male and female reproductive success of Betula maximowicziana were evaluated in two mixed and two post-fire stands, with various population densities, ranging from 1.9 to 300.0 trees per ha, in central Hokkaido, Japan. First, we investigated ecological determinants of reproductive success (seed set and germination) of both seeds collected from the trees (tree seeds) and dispersed seeds collected from seed traps (dispersed seeds). We then evaluated the effects of population density on seed set and germination of tree seeds and dispersed seeds using a generalized linear mixed model (GLMM). Subsequently, we genotyped 950 seeds collected from mother trees and 940 seeds trapped after dispersal derived from tree seeds and dispersed seeds, respectively, using eleven microsatellite loci. Using the acquired data, we then evaluated the outcrossing rate and effective number of pollen donors (N ep) of the tree seeds, and the genetic structure of both pollen pools and dispersed seed populations. The seed set and germination rate of dispersed seeds was significantly lower both in the lowest-density stand and in the highest-density stand. The GLMM revealed that seed set and germination rates of dispersed seeds may be maximal at approximately 120 trees per hectare (optimal density). Outcrossing rates were consistently high (t m = 0.995), regardless of the population density. In contrast, N ep was lower in the lowest-density stands. Significant genetic structure of the dispersed seed population was found in two low-density stands, probably due to the limitation of overlapping seed shadows.  相似文献   

6.
The genetic diversity of small populations is greatly influenced by local dispersal patterns and genetic connectivity among populations, with pollen dispersal being the major component of gene flow in many plants species. Patterns of pollen dispersal, mating system parameters and spatial genetic structure were investigated in a small isolated population of the emblematic palm Phoenix canariensis in Gran Canaria island (Canary Islands). All adult palms present in the study population (n=182), as well as 616 seeds collected from 22 female palms, were mapped and genotyped at 8 microsatellite loci. Mating system analysis revealed an average of 5.8 effective pollen donors (Nep) per female. There was strong variation in correlated paternity rates across maternal progenies (ranging from null to 0.9) that could not be explained by the location and density of local males around focal females. Paternity analysis revealed a mean effective pollen dispersal distance of ∼71 m, with ∼70% of effective pollen originating from a distance of <75 m, and 90% from <200 m. A spatially explicit mating model indicated a leptokurtic pollen dispersal kernel, significant pollen immigration (12%) from external palm groves and a directional pollen dispersal pattern that seems consistent with local altitudinal air movement. No evidence of inbreeding or genetic diversity erosion was found, but spatial genetic structure was detected in the small palm population. Overall, the results suggest substantial pollen dispersal over the studied population, genetic connectivity among different palm groves and some resilience to neutral genetic erosion and subsequently to fragmentation.  相似文献   

7.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

8.
Pollen flow and dispersal patterns were investigated in a small, isolated forest fragment of the Neotropical insect pollinated tree Copaifera langsdorffii, using paternity analysis and eight microsatellite loci. We also investigated the coancestry and effective population size of progeny arrays for conservation and environmental restoration purposes. Open-pollinated seeds were collected from 15 seed trees within the forest fragment, in which all adult trees were mapped, measured and genotyped. Twenty seeds were also collected from the nearest neighbor tree located 1.2 km from the forest fragment. Our results show that levels of genetic diversity were significantly higher in adults than offspring and significant levels of inbreeding were detected in offspring (F = 0.226). From paternity analysis, we observed low levels of selfing (s = 8%) and pollen immigration (m = 8%) in the fragment, but very high levels were detected for the isolated tree (s = 20%; m = 75%), indicating that the population and the tree are not reproductively isolated and are connected by patterns of long distance pollen dispersal (maximum detected 1,420 m). Within the forest fragment, the pattern of pollen dispersal was a near neighbor pattern with 49% of the pollen being dispersed within 50 m. The effective population size of the progeny array was low, indicating the need to collect seeds from a large number of seed trees (at least 76) for conservation purposes. The results show that the spatial isolation of the population and isolated tree due to forest fragmentation has not disrupted genetic connectivity; however, spatial isolation does seem to increase selfing and correlated mating.  相似文献   

9.
Habitat fragmentation might significantly affect mating and pollen dispersal patterns in plant populations, contributing to the decline of remnant populations. However, wind-pollinated species are able to disperse pollen at longer distances after opening of the canopy. Our objectives were to characterize the mating system parameters and to estimate the average distance of effective pollen dispersal in the wind-pollinated conifer Austrocedrus chilensis. We sampled 19 “mother trees,” 200 progeny, and 81 additional adults (both male and female), in a fragmented population at the Argentinean Patagonian steppe. We registered the spatial positions of individuals and genotyped all samples with five microsatellite markers. We found a high genetic diversity, a moderated rate of biparental inbreeding (t m? ??t s?=?0.105), and a complete absence of correlated paternity (r p?=??0.015). The effective number of pollen donors contributing to a single mother (N ep) was 13.9. Applying TWOGENER, we estimated a low but significant differentiation among the inferred pollen pools (ΦFT?=?0.036, p?=?0.001) and a very large average pollen dispersal distance (d?=?1,032.3 m). The leptokurtic distribution (b?=?0.18) presumes a potential for even larger dispersal distances. The high genetic diversity, the mating patterns, and the extensive pollen dispersal presume that habitat fragmentation did not have a negative impact on pollen movement in this population of A. chilensis. Genetic connectivity among fragmented populations scattered in the Patagonian region is possible, and we stress the need of management policies at the landscape level.  相似文献   

10.
Pollen and seed dispersal are key processes affecting the demographic and evolutionary dynamics of plant species and are also important considerations for the sustainable management of timber trees. Through direct and indirect genetic analyses, we studied the mating system and the extent of pollen and seed dispersal in an economically important timber species, Entandrophragma cylindricum (Meliaceae). We genotyped adult trees, seeds and saplings from a 400‐ha study plot in a natural forest from East Cameroon using eight nuclear microsatellite markers. The species is mainly outcrossed (= 0.92), but seeds from the same fruit are often pollinated by the same father (correlated paternity, rp = 0.77). An average of 4.76 effective pollen donors (Nep) per seed tree contributes to the pollination. Seed dispersal was as extensive as pollen dispersal, with a mean dispersal distance in the study plot approaching 600 m, and immigration rates from outside the plot to the central part of the plot reaching 40% for both pollen and seeds. Extensive pollen‐ and seed‐mediated gene flow is further supported by the weak, fine‐scale spatial genetic structure (Sp statistic = 0.0058), corresponding to historical gene dispersal distances (σg) reaching approximately 1,500 m. Using an original approach, we showed that the relatedness between mating individuals (Fij = 0.06) was higher than expected by chance, given the extent of pollen dispersal distances (expected Fij = 0.02 according to simulations). This remarkable pattern of assortative mating could be a phenomenon of potentially consequential evolutionary and management significance that deserves to be studied in other plant populations.  相似文献   

11.
The server‐based program gener performs the two‐generation analysis of pollen flow for data consisting of mother/offspring arrays using genetic markers. The gener program decomposes the genetic variance sampled by maternal individuals within and among pollen pool components of genetic variance and is accessible from http://dyerlab.bio.vcu.edu . These estimates are used to construct the test statistic, Φft , whose significance is tested via permutation. The Φft statistic can subsequently be used to quantify genetic effective pollen donor population size (Nep), effective mating area and dispersal distance. Furthermore, the gener program can calculate Φft values for all pairs of substrata within the data set.  相似文献   

12.
K Ottewell  E Grey  F Castillo  J Karubian 《Heredity》2012,109(6):332-339
Pollen dispersal shapes the local genetic structure of plant populations and determines the opportunity for local selection and genetic drift, but has been well studied in few animal-pollinated plants in tropical rainforests. Here, we characterise pollen movement for an insect-pollinated Neotropical canopy palm, Oenocarpus bataua, and relate these data to adult mating system and population genetic structure. The study covers a 130-ha parcel in which all adult trees (n=185) were mapped and genotyped at 12 microsatellite loci, allowing us to positively identify the source tree for 90% of pollination events (n=287 of 318 events). Mating system analysis showed O. bataua was effectively outcrossed (tm=1.02) with little biparental inbreeding (tmts=−0.005) and an average of 5.4 effective pollen donors (Nep) per female. Dispersal distances were relatively large for an insect-pollinated species (mean=303 m, max=1263 m), and far exceeded nearest-neighbour distances. Dispersal kernel modelling indicated a thin-tailed Weibull distribution offered the best fit to the genetic data, which contrasts with the fat-tailed kernels typically reported for pollen dispersal in trees. Preliminary analyses suggest that our findings may be explained, at least in part, by a relatively diffuse spatial and temporal distribution of flowering trees. Comparison with previously reported estimates of seed movement for O. bataua suggests that pollen and seed dispersal distances may be similar. These findings add to the growing body of information on dispersal in insect-pollinated trees, but underscore the need for continued research on tropical systems in general, and palms in particular.  相似文献   

13.
Identifying the maternal origin of dispersed seeds is a challenging task because it is impossible to directly track seed movement once an animal has ingested them. However, recent development of molecular techniques allows us to identify the maternal origin of dispersed seeds in natural plant populations. Here we analyzed the maternal origin of Myrica rubra seeds found in the feces of Yakushima macaques. We detected a high level of diversity among the dispersed seeds, with an average of 3.0 maternal origins (range 1–9) in each feces. The average dispersal distance was 270.0 m (range 20.4–634.0 m) and the average of distance between maternal trees of dispersed seeds in the same feces was 161.5 m (range 0–573.9 m). These results suggest that seed dispersal by macaques plays an important role in maintaining the genetic diversity of Myrica rubra populations.  相似文献   

14.
Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long‐standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal‐dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long‐distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long‐distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine‐scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine‐scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (N em) was associated with higher effective number of pollen sources (N ep), higher effective number of parents (N e) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (N em) at frugivore seed deposition sites in driving emergent patterns of fine‐scale genetic diversity and structure.  相似文献   

15.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

16.
In this study, the mating system, contemporary pollen flow, and landscape pollen connectivity of the wild olive tree (Olea europaea subsp. cuspidata) were analyzed in a fragmented landscape of less than 4-km diameter located in north-western Ethiopia. Four remnant populations of different sizes were investigated. Eight highly polymorphic microsatellite markers were used to genotype 534 adults and 704 embryos. We used contrasting sampling schemes and different methodological approaches to analyze the pollen flow. We observed a lower rate of inbreeding and correlated mating in the fragmented vs. the non-fragmented subpopulation. Using parentage analysis, we detected a bidirectional pollen movement across subpopulations. Pollen flow was found to be directed towards small subpopulations based on parentage and anisotropic analysis. Pollen immigration amounted to more than 50%. Although most pollination occurred within a distance of less than 200 m, longer distance pollen movements of more than 3 km were also detected. Pollen dispersal in the large and dense subpopulation was reduced, and a smaller number of effective pollen sources were detected compared to a smaller fragmented subpopulation. We obtained consistent estimates for the number of effective pollen donors (approximately 6 per mother tree) using three different methods. The average pollen dispersal distance at the landscape level amounted to 276 m while at the local level, 174 m was estimated. Bigger trees were better pollen contributors than smaller trees. We showed here for the first time that pollen dispersal in wild olive follows a leptokurtic distribution.  相似文献   

17.
Pollen dispersal was investigated in five remnant populations of Eucalyptus wandoo, a dominant insect-pollinated tree in the fragmented agricultural region of southern Western Australia. Paternity analysis using six microsatellite loci identified a pollen source for 45% of seedlings, and the remainder were assumed to have arisen from pollen sources outside the stands. Outcrossing was variable, ranging from 52 to 89%, and long distance pollen dispersal was observed in all populations with up to 65% of pollen sourced from outside the populations over distances of at least 1 km. Modelling dispersal functions for pollination events within the two larger populations showed little difference between the four two-parameter models tested and indicated a fat-tailed dispersal curve. Similarity of direct and indirect historical estimates of gene flow indicates maintenance of gene flow at levels experienced prior to fragmentation. The study revealed extensive long distance pollen dispersal in remnant patches of trees within a fragmented agricultural landscape in the southern temperate region and highlighted the role of remnant patches in maintaining genetic connectivity at the landscape scale.  相似文献   

18.
Analysing pollen movement is a key to understanding the reproductive system of plant species and how it is influenced by the spatial distribution of potential mating partners in fragmented populations. Here we infer parameters related to levels of pollen movement and diversity of the effective pollen cloud for the wind-pollinated shrub Pistacia lentiscus across a highly disturbed landscape using microsatellite loci. Paternity analysis and the indirect KinDist and Mixed Effect Mating models were used to assess mating patterns, the pollen dispersal kernel, the effective number of males (Nep) and their relative individual fertility, as well as the existence of fine-scale spatial genetic structure in adult plants. All methods showed extensive pollen movement, with high rates of pollen flow from outside the study site (up to 73–93%), fat-tailed dispersal kernels and large average pollination distances (δ = 229–412 m). However, they also agreed in detecting very few pollen donors (Nep = 4.3–10.2) and a large variance in their reproductive success: 70% of males did not sire any offspring among the studied female plants and 5.5% of males were responsible for 50% of pollinations. Although we did not find reduced levels of genetic diversity, the adult population showed high levels of biparental inbreeding (14%) and strong spatial genetic structure (Sp = 0.012), probably due to restricted seed dispersal and scarce safe sites for recruitment. Overall, limited seed dispersal and the scarcity of successful pollen donors can be contributing to generate local pedigrees and to increase inbreeding, the prelude of genetic impoverishment.  相似文献   

19.
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high.  相似文献   

20.
The mating system (outcrossing, selfing, and biparental inbreeding) and the extent of pollen flow are two of the most important genetic features that determine the genetic structure of plant populations, and both are crucial for the design of conservation strategies. The objectives here were to estimate mating system parameters and to fit the pollen dispersal kernel for the southern beech, Nothofagus nervosa. We sampled 25 mothers and 372 progeny from two stands in the Tromen Lake region of Argentina. We registered spatial positions of the maternal trees, and genotyped mothers and offspring for five simple sequence repeat markers. We estimated single-locus (t s?=?0.95) and multilocus (t m?=?0.99) outcrossing rates and biparental inbreeding (t m-t s?=?0.04). The species is strongly outcrossing, but correlated paternity within maternal sibships (r p?=?0.10) indicates that each maternal parent is sampling a different and restricted array of pollen donors. We used two protocols (twogener and kindist) to fit an exponential power dispersal kernel to the structure of pollen clouds sampled by different mothers. The estimated effective number of pollen donors contributing to a single mother was N ep?=?9.9. The twogener and kindist analyses yielded slightly different estimates, but both indicated short average distances for pollen dispersal (<35?m), indicating that the dispersal kernel was strongly leptokurtic (???=?0.36). While short-distance pollen dispersal predominates, there remains a nontrivial probability of long-distance dispersal. The results are discussed in the context of ongoing conservation and management programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号