首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Endothelial nitric oxide synthase (eNOS) activation with subsequent inducible NOS (iNOS), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX2) activation is essential to statin inhibition of myocardial infarct size (IS). In the rat, the peroxisome proliferator-activated receptor-gamma agonist pioglitazone (Pio) limits IS, upregulates and activates cPLA2 and COX2, and increases myocardial 6-keto-PGF1alpha levels without activating eNOS and iNOS. We asked whether Pio also limits IS in eNOS-/- and iNOS-/- mice. Male C57BL/6 wild-type (WT), eNOS-/-, and iNOS-/- mice received 10 mg.kg(-1).day(-1) Pio (Pio+) or water alone (Pio-) for 3 days. Mice underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts were harvested and subjected to ELISA and immunoblotting. As a result, Pio reduced IS in the WT (15.4+/-1.4% vs. 39.0+/-1.1%; P<0.001), as well as in the eNOS-/- (32.0+/-1.6% vs. 44.2+/-1.9%; P<0.001) and iNOS-/- (18.0+/-1.2% vs. 45.5+/-2.3%; P<0.001) mice. The protective effect of Pio in eNOS-/- mice was smaller than in the WT (P<0.001) and iNOS-/- (P<0.001) mice. Pio increased myocardial Ser633 and Ser1177 phosphorylated eNOS levels in the WT and iNOS-/- mice. iNOS was undetectable in all six groups. Pio increased cPLA2, COX2, and PGI2 synthase levels in the WT, as well as in the eNOS-/- and iNOS-/-, mice. Pio increased the myocardial 6-keto-PGF1alpha levels and cPLA2 and COX2 activity in the WT, eNOS-/-, and iNOS-/- mice. In conclusion, the myocardial protective effect of Pio is iNOS independent and may be only partially dependent on eNOS. Because eNOS activity decreases with age, diabetes, and advanced atherosclerosis, this effect may be relevant in a clinical setting and should be further characterized.  相似文献   

2.
We used (1)H-magnetic resonance spectroscopy to noninvasively determine total creatine (TCr), choline-containing compounds (Cho), and intracellular (IT) and extracellular (between-muscle fibers) triglycerides (ET) in three human skeletal muscles. Subjects' (n = 15 men) TCr concentrations in soleus [Sol; 100.2 +/- 8.3 (SE) mmol/kg dry wt] were lower (P < 0.05) than those in gastrocnemius (Gast; 125.3 +/- 9.2 mmol/kg dry wt) and tibialis anterior (TA; 123. 7 +/- 8.8 mmol/kg dry wt). The Cho levels in Sol (35.8 +/- 3.6 mmol/kg dry wt) and Gast (28.5 +/- 3.5 mmol/kg dry wt) were higher (P < 0.001 and P < 0.01, respectively) compared with TA (13.6 +/- 2. 4 mmol/kg dry wt). The IT values were found to be 44.8 +/- 4.6 and 36.5 +/- 4.2 mmol/kg dry wt in Sol and Gast, respectively. The IT values of TA (24.5 +/- 4.5 mmol/kg dry wt) were lower than those of Sol (P < 0.01) and Gast (P < 0.05). There were no differences in ET [116.0 +/- 11.2 (Sol), 119.1 +/- 18.5 (Gast), and 91.4 +/- 19.2 mmol/kg dry wt (TA)]. It is proposed that the differences in metabolite levels may be due to the differences in fiber-type composition and deposition of metabolites due to the adaptation of different muscles during locomotion.  相似文献   

3.
We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.  相似文献   

4.
Male rats were divided into control and weight-trained (WT) groups. WT rats performed squat-type exercises twice daily, 5 days/wk, for 14 wk. They averaged 36 lifts/day, with an average weight of 555 g. Muscle-to-body weight ratio (mg/g) of the soleus (Sol) was not different from control, but it increased 11 and 6% in the gastrocnemius (Gast) and plantaris, respectively (P < 0.05). The normalized twitch tension of the in situ Sol was elevated by 21%, whereas single-skinned type I fibers from the Sol showed an increased rate constant of tension redevelopment (K(tr)) but no other contractile adaptations to WT. In contrast, the Gast type I fibers showed an increase (P < 0.05) in maximal velocity of shortening (25%), peak power (15%), K(tr) (18%), and normalized tension (7%). The K(tr) and normalized tension of the Gast type IIa fibers increased by 24% (P < 0.05) and 12% (P < 0.05), respectively, whereas velocity and power showed a tendency to increase. Fiber size, determined by myosin ATPase histochemistry, was not different for any fiber type from the Gast or Sol. These results indicate that isotonic resistance exercise of the calf targets the Gast (type I and type IIa fibers) and has little effect on the Sol.  相似文献   

5.
To study the role of endothelial nitric oxide synthase (eNOS) in cardiac function, we compared eNOS expression, contractility, and relaxation in the left ventricles of wild-type and eNOS-deficient mice. eNOS immunostaining is localized to the macro- and microvascular endothelium throughout the myocardium in wild-type mice and is absent in eNOS-/- mice. Whereas blood pressure is elevated in eNOS-/- mice, baseline cardiac contractility (dP/dt(max)) is similar in wild-type and eNOS-/- mice (9,673 +/- 2, 447 and 9,928 +/- 1,566 mmHg/s, respectively). The beta-adrenergic agonist isoproterenol (Iso) at doses of >/=1 ng causes enhanced increases in dP/dt(max) in eNOS-/- mice compared with wild-type controls in vivo (P < 0.01) as well as in Langendorff isolated heart preparations (P < 0.02). beta-Adrenergic receptor binding (B(max)) is not significantly different in the two groups of animals (B(max) = 41.4 +/- 9.4 and 36.1 +/- 5.1 fmol/mg for wild-type and eNOS-/-). Iso-stimulated ventricular relaxation is also enhanced in the eNOS-/- mice, as measured by dP/dt(min) in the isolated heart. However, baseline ventricular relaxation is normal in eNOS-/- mice (tau = 5.2 +/- 1.0 and 5.6 +/- 1.5 ms for wild-type and eNOS-/-, respectively), whereas it is impaired in wild-type mice after NOS inhibition (tau = 8.3 +/- 2.4 ms). cGMP levels in the left ventricle are unaffected by eNOS gene deletion (wild-type: 3.1 +/- 0.8 pmol/mg, eNOS-/-: 3.1 +/- 0.6 pmol/mg), leading us to examine the level of another physiological regulator of cGMP. Atrial natriuretic peptide (ANP) expression is markedly upregulated in the eNOS-/- mice, and exogenous ANP restores ventricular relaxation in wild-type mice treated with NOS inhibitors. These results suggest that eNOS attenuates both inotropic and lusitropic responses to beta-adrenergic stimulation, and it also appears to regulate baseline ventricular relaxation in conjunction with ANP.  相似文献   

6.
We have previously shown that neonatal mice deficient in endothelial nitric oxide synthase (eNOS-/-) are more susceptible to hypoxic inhibition of alveolar and vascular growth. Although eNOS is downregulated, the role of nitric oxide (NO) during recovery after neonatal lung injury is poorly understood. We hypothesized that lung vascular and alveolar growth would remain impaired in eNOS-/- mice during recovery in room air and that NO therapy would augment compensatory lung growth in the eNOS-/- mice during recovery. Mice (1 day old) from heterozygous (eNOS+/-) parents were placed in hypobaric hypoxia (Fi(O2) = 0.16). After 10 days, pups were to recovered in room air (HR group) or inhaled NO (10 parts/million; HiNO group) until 3 wk of age, when lung tissue was collected. Morphometric analysis revealed that the eNOS-/- mice in the HR group had persistently abnormal lung structure compared with eNOS-sufficient (eNOS+/+) mice (increased mean linear intercept and reduced radial alveolar counts, nodal point density, and vessel density). Lung morphology of the eNOS+/- was not different from eNOS+/+. Inhaled NO after neonatal hypoxia stimulated compensatory lung growth in eNOS-/- mice that completely restored normal lung structure. eNOS+/- mice (HR group) had a 2.5-fold increase in lung vascular endothelial growth factor (VEGFR)-2 protein compared with eNOS+/+ (P < 0.05). eNOS-/- mice (HiNO group) had a 66% increase in lung VEGFR-2 protein compared with eNOS-/- (HR group; P < 0.01). We conclude that deficiency of eNOS leads to a persistent failure of lung growth during recovery from neonatal hypoxia and that, after hypoxia, inhaled NO stimulates alveolar and vascular growth in eNOS-/- mice.  相似文献   

7.
The speed with which muscle energetic status recovers after exercise is dependent on oxidative capacity and vascular O(2) pressures. Because vascular control differs between muscles composed of fast- vs. slow-twitch fibers, we explored the possibility that microvascular O(2) pressure (Pmv(O(2)); proportional to the O(2) delivery-to-O(2) uptake ratio) would differ during recovery in fast-twitch peroneal (Per: 86% type II) compared with slow-twitch soleus (Sol: 84% type I). Specifically, we hypothesized that, in Per, Pmv(O(2)) would be reduced immediately after contractions and would recover more slowly during the off-transient from contractions compared with Sol. The Per and Sol muscles of six female Sprague-Dawley rats (weight = approximately 220 g) were studied after the cessation of electrical stimulation (120 s; 1 Hz) to compare the recovery profiles of Pmv(O(2)). As hypothesized, Pmv(O(2)) was lower throughout recovery in Per compared with Sol (end contraction: 13.4 +/- 2.2 vs. 20.2 +/- 0.9 Torr; end recovery: 24.0 +/- 2.4 vs. 27.4 +/- 1.2 Torr, Per vs. Sol; P 相似文献   

8.
Pretreatment with atorvastatin (ATV) reduces infarct size (IS) and increases myocardial expression of phosphorylated endothelial nitric oxide synthase (p-eNOS), inducible NOS (iNOS), and cyclooxygenase-2 (COX2) in the rat. Inhibiting COX2 abolished the ATV-induced IS limitation without affecting p-eNOS and iNOS expression. We investigated 1) whether 3-day ATV pretreatment limits IS in eNOS(-/-) and iNOS(-/-) mice and 2) whether COX2 expression and/or activation by ATV is eNOS, iNOS, and/or NF-kappaB dependent. Male C57BL/6 wild-type (WT), University of North Carolina eNOS(-/-) and iNOS(-/-) mice received ATV (10 mg.kg(-1).day(-1); ATV(+)) or water alone (ATV(-)) for 3 days. Mice underwent 30 min of coronary artery occlusion and 4 h of reperfusion, or hearts were harvested and subjected to ELISA, immunoblotting, biotin switch, and electrophoretic mobility shift assay. As a result, ATV reduced IS only in the WT mice. ATV increased eNOS, p-eNOS, iNOS, and COX2 levels and activated NF-kappaB in WT mice. It also increased myocardial COX2 activity. In eNOS(-/-) mice, ATV increased COX2 expression but not COX2 activity or iNOS expression. NF-kappaB was not activated by ATV in the eNOS(-/-) mice. In the iNOS(-/-) mice, eNOS and p-eNOS levels were increased but not iNOS and COX2 levels; however, NF-kappaB was activated. In conclusion, both eNOS and iNOS are essential for the IS-limiting effect of ATV. The expression of COX2 by ATV is iNOS, but not eNOS or NF-kappaB, dependent. Activation of COX2 is dependent on iNOS.  相似文献   

9.
Our objective was to investigate the potential role of selective endothelial nitric oxide (NO) synthase (eNOS) overexpression in coronary blood vessels in the control of myocardial oxygen consumption (MVO2). Transgenic (Tg) eNOS-overexpressing mice (eNOS Tg) (n=22) and wild-type (WT) mice (n=24) were studied. Western blot analysis indicated greater than sixfold increase of eNOS in cardiac tissue. Echocardiography in awake mice indicated no difference in cardiac function between WT and eNOS Tg; however, systolic pressure in eNOS Tg mice decreased significantly (126 +/- 2.3 to 109 +/- 2.3 mmHg; P <0.05), whereas heart rate (HR) was not different. Total peripheral resistance (TPR) was also decreased (9.8 +/- 0.8 to 7.6 +/- 0.4 4 mmHg.ml(-1).min; P <0.05) in eNOS Tg. Furthermore, female eNOS Tg mice showed even lower TPR (7.2 +/- 0.4 mmHg.ml(-1).min) compared with male eNOS mice (8.6 +/- 0.5, mmHg.ml.min(-1); P <0.05). Left ventricular slices were isolated from WT and eNOS Tg mice. With the use of a Clark-type oxygen electrode in an airtight bath, MVO2 was determined as the percent decrease during increasing doses (10(-10) to 10(-4) mol/l) of bradykinin (BK), carbachol (CCh), forskolin (10(-12) to 10(-6) mol/l), or S-nitroso-N-acetyl penicillamine (SNAP; 10(-7) to 10(-4) mol/l). Baseline MVO2 was not different between WT (181 +/- 13 nmol.g(-1).min(-1)) and eNOS Tg (188 +/- 14 nmol.g(-1).min(-1)). BK decreased MVO2 (10(-4) mol/l) in WT by 17% +/- 1.1 and 33% +/- 2.7 in eNOS Tg (P < 0.05). CCh also decreased MVO2, 10(-4) mol/l, in WT by 20% +/- 1.7 and 31% +/- 2.0 in eNOS Tg (P <0.05). Forskolin (10(-6) mol/l) or SNAP (10(-4) mol/l) also decreased MVO2 in WT by 24% +/- 2.8 and 36% +/- 1.8 versus eNOS 31% +/- 1.8 and 37% +/- 3.5, respectively. N-nitro-L-arginine methyl ester (10(-3) mol/l) inhibited the MVO2 reduction to BK, CCh, and forskolin by a similar degree (P <0.05), but not to SNAP. Thus selective overexpression of eNOS in cardiac blood vessels in mice enhances the control of MVO2 by eNOS-derived NO.  相似文献   

10.
Dystrophin-deficient skeletal muscles of mdx mice undergo their first rounds of degeneration-regeneration at the age of 14-28 days. This feature is thought to result from an increase in motor activity at weaning. In this study, we hypothesize that if the muscle is prevented from contracting, it will avoid the degenerative changes that normally occur. For this purpose, we developed a procedure of mechanical hindlimb immobilization in 3-wk-old mice to restrain soleus (Sol) and extensor digitorum longus (EDL) muscles in the stretched or shortened position. After a 14-day period of immobilization, the striking feature was the low percentage of regenerated (centronucleated) myofibers in Sol and EDL muscles, regardless of the length at which they were fixed, compared with those on the contralateral side (stretched Sol: 8.4 +/- 6.5 vs. 46.6 +/- 10.3%, P = 0.0008; shortened Sol: 1.2 +/- 1.6 vs. 50.4 +/- 16.4%, P = 0.0008; stretched EDL: 05 +/- 0.5 vs. 32.9 +/- 17.5%, P = 0. 002; shortened EDL: 3.3 +/- 3.1 vs. 34.7 +/- 11.1%, P = 0.002). Total numbers of myofibers did not change with immobilization. This study shows that limb immobilization prevents the occurrence of the first round of myofiber necrosis in mdx mice and suggests that muscle contractions play a role in the skeletal muscle degeneration of dystrophin-deficient mdx mouse muscles.  相似文献   

11.
5'-AMP-activated protein kinase (AMPK) was recently suggested to regulate pyruvate dehydrogenase (PDH) activity and thus pyruvate entry into the mitochondrion. We aimed to provide evidence for a direct link between AMPK and PDH in resting and metabolically challenged (exercised) skeletal muscle. Compared with rest, treadmill running increased AMPKalpha1 activity in alpha(2)KO mice (90%, P < 0.01) and increased AMPKalpha2 activity in wild-type (WT) mice (110%, P < 0.05), leading to increased AMPKalpha Thr(172) (WT: 40%, alpha(2)KO: 100%, P < 0.01) and ACCbeta Ser(227) phosphorylation (WT: 70%, alpha(2)KO: 210%, P < 0.01). Compared with rest, exercise significantly induced PDH-E(1)alpha site 1 (WT: 20%, alpha(2)KO: 62%, P < 0.01) and site 2 (only alpha(2)KO: 83%, P < 0.01) dephosphorylation and PDH(a) [ approximately 200% in both genotypes (P < 0.01)]. Compared with WT, PDH dephosphorylation and activation was markedly enhanced in the alpha(2)KO mice both at rest and during exercise. The increased PDH(a) activity during exercise was associated with elevated glycolytic flux, and muscles from the alpha(2)KO mice displayed marked lactate accumulation and deranged energy homeostasis. Whereas mitochondrial DNA content was normal, the expression of several mitochondrial proteins was significantly decreased in muscle of alpha(2)KO mice. In isolated resting EDL muscles, activation of AMPK signaling by AICAR did not change PDH-E(1)alpha phosphorylation in either genotype. PDH is activated in mouse skeletal muscle in response to exercise and is independent of AMPKalpha2 expression. During exercise, alpha(2)KO muscles display deranged energy homeostasis despite enhanced glycolytic flux and PDH(a) activity. This may be linked to decreased mitochondrial oxidative capacity.  相似文献   

12.
Systemic vasodilation is the initiating event of the hyperdynamic circulatory state, being most likely triggered by increased levels of vasodilators, primarily nitric oxide (NO). Endothelial NO synthase (eNOS) is responsible for this event. We tested the hypothesis that gene deletion of eNOS and inducible NOS (iNOS) may inhibit the development of the hyperdynamic circulatory state in portal hypertensive animals. To test this hypothesis, we used mice lacking eNOS (eNOS-/-) or eNOS/iNOS (eNOS/iNOS-/-) genes. A partial portal vein ligation (PVL) was used to induce portal hypertension. Sham-operated animals were used as a control. Hemodynamic characteristics were tested 2 wk after surgery. As opposed to our hypothesis, PVL also caused significant reduction in peripheral resistance in eNOS-/- compared with sham animals (0.33 +/- 0.02 vs. 0.41 +/- 0.03 mmHg. min x kg body wt x ml(-1); P = 0.04) and in eNOS/iNOS-/- animals with PVL compared with that of the sham-operated group (0.44 +/- 0.02 vs. 0.54 +/- 0.04; P = 0.03). This demonstrates that, despite gene deletion of eNOS, the knockout mice developed hyperdynamic circulation. Compensatory vasodilator molecule(s) are upregulated in place of NO in the systemic and splanchnic circulation in portal hypertensive animals.  相似文献   

13.
Lactating female rodents protect their pups by expressing fierce aggression, termed maternal aggression, toward intruders. Mice lacking the neuronal nitric oxide synthase gene (nNOS-/-) exhibit significantly impaired maternal aggression, but increased male aggression, suggesting that nitric oxide (NO) produced by nNOS has opposite actions in maternal and male aggression. In contrast, mice lacking the endothelial nitric oxide synthase gene (eNOS-/-) exhibit almost no male aggression, suggesting that NO produced by eNOS facilitates male aggression. In the present study, maternal aggression in eNOS-/- mice was examined and found to be normal relative to wild-type (WT) mice in terms of the percentage displaying aggression, the average number of attacks against a male intruder, and the total amount of time spent attacking the male intruder. The eNOS-/- females also displayed normal pup retrieval behavior. Because a significant elevation of citrulline, an indirect marker of NO synthesis, occurs in neurons of the hypothalamus of lactating WT mice in association with maternal aggression, we examined the brains of eNOS-/- females for citrulline immunoreactivity following an aggressive encounter. The aggressive eNOS-/- females exhibited a significant elevation of citrulline in the medial preoptic nucleus and the subparaventricular zone of the hypothalamus relative to unstimulated lactating eNOS-/- females. Taken together, these results suggest that NO produced by eNOS neither facilitates nor inhibits maternal aggression and that NO produced by eNOS has a different role in maternal and male aggression.  相似文献   

14.
The effects of increased functional loading on early cellular regenerative events after exercise-induced injury in adult skeletal muscle were examined with the use of in vivo labeling of replicating myofiber nuclei and immunocyto- and histochemical techniques. Satellite cell proliferation in the soleus (Sol) of nonexercised rats (0.4 +/- 0.2% of fibers) was unchanged after an initial bout of declined treadmill exercise but was elevated after two (1.0 +/- 0.2%, P < or = 0.01), but not four or seven, daily bouts of the same task. Myonuclei produced over the 7-day period comprised 0.9-1.9% of myonuclei in isolated fibers of Sol, tibialis anterior, and vastus intermedius of nonexercised rats. The accretion of new myonuclei was enhanced (P < or = 0.05) in Sol and vastus intermedius by the initial exercise followed by normal activity (to 3.1-3.4% of myonuclei) and more so by continued daily exercise (4.2-5.3%). Observed coincident with a lower incidence of histological fiber injury and unchanged fiber diameter and myonuclei per millimeter, the greater new myonuclear accretion induced by continued muscle loading may contribute to an enhanced fiber repair and regeneration after exercise-induced injury.  相似文献   

15.
Skeletal muscle insulin resistance (IR) is closely linked to hyperglycemia and metabolic disorders. Regular exercise enhances insulin sensitivity in skeletal muscle, but its underlying mechanisms remain unknown. Sestrin3 (SESN3) is a stress-inducible protein that protects against obesity-induced hepatic steatosis and insulin resistance. Regular exercise training is known to increase SESN3 expression in skeletal muscle. The purpose of this study was to explore whether SESN3 mediates the metabolic effects of exercise in the mouse model of high-fat diet (HFD)-induced IR. SESN3?/? mice exhibited severer body weight gain, ectopic lipid accumulation, and dysregulation of glucose metabolism after long-term HFD feeding compared with the wild-type (WT) mice. Moreover, we found that SESN3 deficiency weakened the effects of exercise on reducing serum insulin levels and improving glucose tolerance in mice. Exercise training increased pAKT-S473 and GLUT4 expression, accompanied by enhanced pmTOR-S2481 (an indicator of mTORC2 activity) in WT quadriceps that were less pronounced in SESN3?/? mice. SESN3 overexpression in C2C12 myotubes further confirmed that SESN3 played an important role in skeletal muscle glucose metabolism. SESN3 overexpression increased the binding of Rictor to mTOR and pmTOR-S2481 in C2C12 myotubes. Moreover, SESN3 overexpression resulted in an elevation of glucose uptake and a concomitant increase of pAKT-S473 in C2C12 myotubes, whereas these effects were diminished by downregulation of mTORC2 activity. Taken together, SESN3 is a crucial protein in amplifying the beneficial effects of exercise on insulin sensitivity in skeletal muscle and systemic glucose levels. SESN3/mTORC2/AKT pathway mediated the effects of exercise on skeletal muscle insulin sensitivity.  相似文献   

16.
Carnitine palmitoyltransferase I (CPT I) is considered the rate-limiting enzyme in the transfer of long-chain fatty acids (LCFA) into the mitochondria and is reversibly inhibited by malonyl-CoA (M-CoA) in vitro. In rat skeletal muscle, M-CoA levels decrease during exercise, releasing the inhibition of CPT I and increasing LCFA oxidation. However, in human skeletal muscle, M-CoA levels do not change during moderate-intensity exercise despite large increases in fat oxidation, suggesting that M-CoA is not the sole regulator of increased CPT I activity during exercise. In the present study, we measured CPT I activity in intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondria isolated from human vastus lateralis (VL), rat soleus (Sol), and red gastrocnemius (RG) muscles. We tested whether exercise-related levels ( approximately 65% maximal O2 uptake) of calcium and adenylate charge metabolites (free AMP, ADP, and Pi) could override the M-CoA-induced inhibition of CPT I activity and explain the increased CPT I flux during exercise. Protein content was approximately 25-40% higher in IMF than in SS mitochondria in all muscles. Maximal CPT I activity was similar in IMF and SS mitochondria in all muscles (VL: 282 +/- 46 vs. 280 +/- 51; Sol: 390 +/- 81 vs. 368 +/- 82; RG: 252 +/- 71 vs. 278 +/- 44 nmol.min-1.mg protein-1). Sensitivity to M-CoA did not differ between IMF and SS mitochondria in all muscles (25-31% inhibition in VL, 52-70% in Sol and RG). Calcium and adenylate charge metabolites did not override the M-CoA-induced inhibition of CPT I activity in mitochondria isolated from VL, Sol, and RG muscles. Decreasing pH from 7.1 to 6.8 reduced CPT I activity by approximately 34-40% in both VL mitochondrial fractions. In summary, this study reports no differences in CPT I activity or sensitivity to M-CoA between IMF and SS mitochondria isolated from human and rat skeletal muscles. Exercise-induced increases in calcium and adenylate charge metabolites do not appear responsible for upregulating CPT I activity in human or rat skeletal muscle during moderate aerobic exercise.  相似文献   

17.
To clarify the role of uncoupling protein-3 (UCP3) in skeletal muscle, we used NMR and isotopic labeling experiments to evaluate the effect of UCP3 knockout (UCP3KO) in mice on the regulation of energy metabolism in vivo. Whole body energy expenditure was determined from the turnover of doubly labeled body water. Coupling of mitochondrial oxidative phosphorylation in skeletal muscle was evaluated from measurements of rates of ATP synthesis (using (31)P NMR magnetization transfer experiments) and tricarboxylic acid (TCA) cycle flux (calculated from the time course of (13)C enrichment in C-4 and C-2 of glutamate during an infusion of [2-(13)C]acetate). At the whole body level, we observed no change in energy expenditure. However, at the cellular level, skeletal muscle UCP3KO increased the rate of ATP synthesis from P(i) more than 4-fold under fasting conditions (wild type, 2.2 +/- 0.6 versus knockout, 9.1 +/- 1.4 micromol/g of muscle/min, p < 0.001) with no change in TCA cycle flux rate (wild type, 0.74 +/- 0.04 versus knockout, 0.71 +/- 0.03 micromol/g of muscle/min). The increased efficiency of ATP production may account for the significant (p < 0.05) increase in the ratio of ATP to ADP in the muscle of UCP3KO mice (5.9 +/- 0.3) compared with controls (4.5 +/- 0.4). The data presented here provide the first evidence of uncoupling activity by UCP3 in skeletal muscle in vivo.  相似文献   

18.
ADP mediates platelet-induced relaxation of blood vessels and may function as an important intercellular signaling molecule in the brain. We used pharmacological and genetic approaches to examine mechanisms that mediate responses of cerebral arterioles to ADP, including the role of endothelial nitric oxide synthase (eNOS). We examined responses of cerebral arterioles (control diameter approximately 30 microm) in anesthetized wild-type (WT, eNOS+/+) and eNOS-deficient (eNOS-/-) mice using a cranial window. In WT mice, local application of ADP produced vasodilation that was not altered by indomethacin but was reduced by approximately 50% by NG-nitro-L-arginine (L-NNA) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (inhibitors of NOS and soluble guanylate cyclase, respectively). In eNOS-/- mice, responses to ADP were largely preserved, and a significant component of the response was resistant to L-NNA (a finding similar to that in WT mice treated with L-NNA). In the absence of L-NNA, responses to ADP were markedly reduced by charybdotoxin plus apamin [inhibitors of Ca2+-dependent K+ channels and responses mediated by endothelium-derived hyperpolarizing factor (EDHF)] in both WT and eNOS-/- mice. Thus pharmacological and genetic evidence suggests that a significant portion of the response to ADP in cerebral microvessels is mediated by a mechanism independent of eNOS. The eNOS-independent mechanism is functional in the absence of inhibited eNOS and most likely is mediated by an EDHF.  相似文献   

19.
Increased activity of proinflammatory/stress pathways has been implicated in the pathogenesis of insulin resistance in obesity. However, the effects of obesity on the activity of these pathways in skeletal muscle, the major insulin-sensitive tissue by mass, are poorly understood. Furthermore, the mechanisms that activate proinflammatory/stress pathways in obesity are unknown. The present study addressed the effects of diet-induced obesity (DIO; 6 wk of high-fat feeding) and acute (6-h) hyperlipidemia (HL) in rats on activity of IKK/IkappaB/NF-kappaB c-Jun NH(2)-terminal kinase, and p38 MAPK in three skeletal muscles differing in fiber type [superficial vastus (Vas; fast twitch-glycolytic), soleus (Sol; slow twitch-oxidative), and gastrocnemius (Gas; mixed)]. DIO decreased the levels of the IkappaBalpha in Vas (24 +/- 3%, P = 0.001, n = 8) but not in Sol or Gas compared with standard chow-fed controls. Similar to DIO, HL decreased IkappaBalpha levels in Vas (26 +/- 5%, P = 0.006, n = 6) and in Gas (15 +/- 4%, P = 0.01, n = 7) but not in Sol compared with saline-infused controls. Importantly, the fiber-type-dependent effects on IkappaBalpha levels could not be explained by differential accumulation of triglyceride in Sol and Vas. HL, but not DIO, decreased phospho-p38 MAPK levels in Vas (41 +/- 7% P = 0.004, n = 6) but not in Sol or Gas. Finally, skeletal muscle c-Jun NH(2)-terminal kinase activity was unchanged by DIO or HL. We conclude that diet-induced obesity and acute HL reduce IkappaBalpha levels in rat skeletal muscle in a fiber-type-dependent manner.  相似文献   

20.
Skeletal muscle primarily relies on carbohydrate (CHO) for energy provision during high-intensity exercise. We hypothesized that sprint interval training (SIT), or repeated sessions of high-intensity exercise, would induce rapid changes in transport proteins associated with CHO metabolism, whereas changes in skeletal muscle fatty acid transporters would occur more slowly. Eight active men (22 +/- 1 yr; peak oxygen uptake = 50 +/- 2 ml.kg(-1).min(-1)) performed 4-6 x 30 s all-out cycling efforts with 4-min recovery, 3 days/wk for 6 wk. Needle muscle biopsy samples (vastus lateralis) were obtained before training (Pre), after 1 and 6 wk of SIT, and after 1 and 6 wk of detraining. Muscle oxidative capacity, as reflected by the protein content of cytochrome c oxidase subunit 4 (COX4), increased by approximately 35% after 1 wk of SIT and remained higher compared with Pre, even after 6 wk of detraining (P < 0.05). Muscle GLUT4 content increased after 1 wk of SIT and remained approximately 20% higher compared with baseline during detraining (P < 0.05). The monocarboxylate tranporter (MCT) 4 was higher after 1 and 6 wk of SIT compared with Pre, whereas MCT1 increased after 6 wk of training and remained higher after 1 wk of detraining (P < 0.05). There was no effect of training or detraining on the muscle content of fatty acid translocase (FAT/CD36) or plasma membrane associated fatty acid binding protein (FABPpm) (P > 0.05). We conclude that short-term SIT induces rapid increases in skeletal muscle oxidative capacity but has divergent effects on proteins associated with glucose, lactate, and fatty acid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号