首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Harmful algae》2011,10(6):563-567
The large diatom Coscinodiscus wailesii is one of the problematic species which indirectly cause bleaching damage to “Nori” (Porphyra thalli) cultivation through competitive utilization of nutrients during its bloom. In the present study, we experimentally investigated the nitrate (N) and phosphate (P) uptake kinetics of C. wailesii, Harima-Nada strain. Maximum uptake rates (ρmax), obtained by short-term experiments, were 58.3 and 95.5 pmol cell−1 h−1 for nitrate and 41.9 and 59.1 pmol cell−1 h−1 for phosphate at 9 and 20 °C, respectively. The half saturation constants for uptake (Ks) were 2.91 and 5.08 μM N and 5.62 and 6.67 μM P at 9 and 20 °C, respectively. The ρmax values of C. wailesii, much higher than those of other marine phytoplankton species, suggest that C. wailesii is able to take up large amounts of nutrients from the water column. On the other hand, Vmax/Ks (Vmax; Vmax = ρmax/Q0, Q0; minimum cell quota) values of C. wailesii, which is a better measure to evaluate the competitive ability for nutrient uptake, were low in dominant diatom species. This parameter indicates that C. wailesii is disadvantaged compared to other diatom species in competing for nutrients, and the decreasing nutrient concentrations from winter to spring is an important factor limiting C. wailesii blooming in early spring.  相似文献   

2.
The diatom Eucampia zodiacus is a harmful species that indirectly causes bleaching to nori (Pyropia) cultivation through competitive utilization of nutrients during its bloom, however cellular storage and changes in physiology by asexual reproduction remains unclear. In the present study, we experimentally investigated the nitrate (N), phosphate (P) and silicic acid (Si) consumption by various cell sizes of E. zodiacus strains, the apical axis length of which ranged from 10.2 to 77.3 μm. Nutrient cell quotas of E. zodiacus ranged from 2.7 to 8.4 pM cell−1 for N, 0.34–0.76 pM cell−1 for P and 1.7–7.3 pM cell−1 for Si, and they increased with cell size, in which there is a significant correlation between these two elements. The N and P quotas were estimated to be several times higher than the minimum cell quotas. In contrast, the Si cell quotas were approximately equal to those of the minimum values. Based on the present cell quotas, total nitrate consumption by E. zodiacus population when the blooms reached maximum cell density (=1000 cells ml−1) were estimated to be 6.5 μM. Monthly mean concentrations of dissolved inorganic nitrogen (DIN) range from 3.5 to 8.2 μM during the period of late nori harvest season when E. zodiacus blooms occur, and nori bleaching is reported at the condition of DIN concentration of less than 3 μM in Harima-Nada, eastern Seto Inland Sea, Japan. Therefore, the present results suggest that E. zodiacus causes serious damage to nori cultivation due to high levels of nutrient consumption.  相似文献   

3.
《Harmful algae》2011,10(6):531-539
Temporal and spatial variability in the kinetic parameters of uptake of nitrate (NO3), ammonium (NH4+), urea, and glycine was measured during dinoflagellate blooms in Changjiang River estuary and East China Sea coast, 2005. Karenia mikimotoi was the dominant species in the early stage of the blooms and was succeeded by Prorocentrum donghaiense. The uptake of nitrogen (N) was determined using 15N tracer techniques. The results of comparison kinetic parameters with ambient nutrients confirmed that different N forms were preferentially taken up during different stages of the bloom. NO3 (Vmax 0.044 h−1; Ks 60.8 μM-N) was an important N source before it was depleted. NH4+ (Vmax 0.049 h−1; Ks 2.15 μM-N) was generally the preferred N. Between the 2 organic N sources, urea was more preferred when K. mikimotoi dominated the bloom (Vmax 0.020 h−1; Ks 1.35 μM-N) and glycine, considered as a dominant amino acid, was more preferred when P. donghaiense dominated the bloom (Vmax 0.025 h−1; Ks 1.76 μM-N). The change of N uptake preference by the bloom-forming algae was also related to the variation in ambient N concentrations.  相似文献   

4.
The phytase of Sporotrichum thermophile was purified to homogeneity using acetone precipitation followed by ion-exchange and gel-filtration column chromatography. The purified phytase is a homopentamer with a molecular mass of ~456 kDa and pI of 4.9. It is a glycoprotein with about 14% carbohydrate, and optimally active at pH 5.0 and 60 °C with a T1/2 of 16 h at 60 °C and 1.5 h at 80 °C. The activation energy of the enzyme reaction is 48.6 KJ mol?1 with a temperature quotient of 1.66, and it displayed broad substrate specificity. Mg2+ exhibited a slight stimulatory effect on the enzyme activity, while it was markedly inhibited by 2,3-butanedione suggesting a possible role of arginine in its catalysis. The chaotropic agents such as guanidinium hydrochloride, urea and potassium iodide strongly inhibited phytase activity. Inorganic phosphate inhibited enzyme activity beyond 3 mM. The maximum hydrolysis rate (Vmax) and apparent Michaelis–Menten constant (Km) for sodium phytate were 83 nmol mg?1 s?1 and 0.156 mM, respectively. The catalytic turnover number (Kcat) and catalytic efficiency (Kcat/Km) of phytase were 37.8 s?1 and 2.4 × 105 M?1 s?1, respectively. Based on the N-terminal and MALDI–LC–MS/MS identified amino acid sequences of the peptides, the enzyme did not show a significant homology with the known phytases.  相似文献   

5.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

6.
Pectinesterase isolated from Malatya apricot pulp was covalently immobilized onto glutaraldehyde-containing amino group functionalized porous glass beads surface by chemical immobilization at pH 8.0. The amount of covalently bound apricot PE was found 1.721 mg/g glass support. The properties of immobilized enzyme were investigated and compared to those of free enzyme. The effect of various parameters such as pH, temperature, activation energy, heat and storage stability on immobilized enzyme were investigated. Optimum pH and temperature were determined to be 8.0 and 50 °C, respectively. The immobilized PE exhibited better thermostability than the free one. Kinetic parameters of the immobilized enzyme (Km and Vmax values) were also evaluated. The Km was 0.71 mM and the Vmax was 0.64 μmol min?1 mg?1. No drastic change was observed in the Km and Vmax values. The patterns of heat stability indicated that the immobilization process tends to stabilize the enzyme. Thermal and storage stability experiments were also carried out. It was observed that the immobilized enzyme had longer storage stability and retained 50% of its initial activity during 30 days.  相似文献   

7.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

8.
An industrial enzyme, alkaline serine endopeptidase, was immobilized on surface modified SBA-15 and MCF materials by amide bond formation using carbodiimide as a coupling agent. The specific activities of free enzyme and enzyme immobilized on SBA-15 and MCF were studied using casein (soluble milk protein) as a substrate. The highest activity of free enzyme was obtained at pH 9.5 while this value shifted to pH 10 for SBA-15 and MCF immobilized enzyme. The highest activity of immobilized enzymes was obtained at higher temperature (60 °C) than that of the free enzyme (55 °C). Kinetic parameters, Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax), were calculated as Km = 13.375, 11.956, and 8.698 × 10?4 mg/ml and Vmax = 0.156, 0.163 and 0.17 × 10?3 U/mg for the free enzyme and enzyme immobilized on SBA-15 and MCF, respectively. The reusability of immobilized enzyme showed 80% of the activity retained even after 15 cycles. Large pore sized MCF immobilized enzyme was found to be more promising than the SBA-15 immobilized enzyme due to the availability of larger pores of MCF, which offer facile diffusion of substrate and product molecules.  相似文献   

9.
The pool of thiamine diphosphate (TDP), available for TDP-dependent enzymes involved in the major carbohydrate metabolic pathways, is controlled by two enzyme systems that act in the opposite directions. The thiamine pyrophosphokinase (TPK) activates thiamine into TDP and the numerous phosphatases perform the reverse two-step dephosphorylation of TDP to thiamine monophosphate (TMP) and then to free thiamine. Properties and a possible cooperation of those enzymes in higher plants have not been extensively studied. In this work, we characterize highly purified preparations of TPK and a TDP/TMP phosphatase isolated from 6-day Zea mays seedlings. TPK was the 29-kDa monomeric protein, with the optimal activity at pH 9.0, the Km values of 12.4 μM and 4.7 mM for thiamine and ATP, respectively, and the Vmax value of 360 pmol TDP min?1 mg?1 protein. The enzyme required magnesium ions, and the best phosphate donor was GTP. The purified phosphatase was the dimer of 24 kDa subunits, showed the optimal activity at pH 5.0 and had a rather broad substrate specificity, although TDP, but not TMP, was one of the preferable substrates. The Km values for TDP and TMP were 36 μM and 49 μM, respectively, and the Vmax value for TDP was significantly higher than for TMP (164 versus 60 nmoles min?1 mg?1 protein). The total activities of TPK and TDP phosphatases were similarly decreased when the seedlings were grown under the illumination, suggesting a coordinated regulation of both enzymes to stabilize the pool of the essential coenzyme.  相似文献   

10.
Polyvinyl alcohol (PVA)–silica nanohybrids have been synthesized in a modified Stöber process. The bioactivities of the enzyme loaded hybrids were monitored and the optimum activity sample (H) was calcined at 300 °C in N2 to obtain hybrid gel (H3) with improved performance. The synthesized hybrids have been characterized by Fourier Transform Infra Red spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and BET surface area analysis. Under the optimized conditions, the bioactivity of the enzyme impregnated H3 (H3-Enz) was 21.823 U/mg. On recycling, H3-Enz retained 88% of its initial bioactivity in the sixth cycle. The kinetic parameters of soluble starch hydrolysis for the immobilized (KM = 4.137 mg mL?1; Vmax = 5.95 mg mL?1 min?1) and free enzyme (KM = 10.667 mg mL?1; Vmax = 6.0557 mg mL?1 min?1) indicated that the immobilization has nearly doubled the enzyme's affinity for the substrate, while the maximum rate of the enzymatic reaction at the saturation point was not much affected. The immobilized enzyme showed greater shelf life in comparison to the free enzyme.  相似文献   

11.
In recent decades, β-xylosidases have been used in many processing industries. In this work, the study of xylosidase production by Penicillium sclerotiorum and its characterization are reported. Optimal production was obtained in medium supplemented with oat spelts xylan, pH 5.0, at 30 °C, under stationary condition for six days. The optimum activity temperature was 60 °C and unusual optimum pH 2.5. The enzyme was stable at 50 and 55 °C, with half-life of 240 and 232 min, respectively. High pH stability was verified from pH 2.0 to 4.0 and 7.5. The β-xylosidase was strongly inhibited by divalent cations, sensitive to denaturing agents SDS, EDTA and activated by thiol-containing reducing agents. The apparent Vmax and Km values was 0.48 μmol PNXP min?1 mg?1 protein and 0.75 mM, respectively. The enzyme was xylose tolerant with a Ki of 28.7. This enzyme presented interesting characteristics for biotechnological process such as animal feed, juice and wine industries.  相似文献   

12.
《Harmful algae》2008,7(6):763-773
The diatom Eucampia zodiacus Ehrenberg is one of the harmful diatom species which indirectly cause bleachings of Nori (Porphyra thalli) in aquaculture through competitive utilizing of nutrients (especially nitrogen) and resultant nutrient depletion in water columns during the bloom events. The seasonal changes in environmental factors, cell density and cell size of E. zodiacus were investigated for 4 years (April 2002–December 2005) to understand the population ecology of this diatom in Harima-Nada, the eastern part of the Seto Inland Sea, Japan. Vegetative cells of E. zodiacus were usually detected year-round. Total cell densities of E. zodiacus annually peaked from mid-February to early April, and high cell densities were observed in the whole water columns during the bloom-period. Nutrient concentrations decreased with the increase of cell density of E. zodiacus, and low nutrients concentrations continued throughout the E. zodiacus bloom-period. The average cell size (length of apical axis) of E. zodiacus populations ranged from 10.8 μm to 81.2 μm, and the restoration of cell size occurred once in autumn every year just after reaching the minimum cell size. In addition, its great seasonal regularity was confirmed by the decrease and restoration of its cell size through 4-year study period. Temperature and nutrients were suitable in autumn for the growth of E. zodiacus, its blooms never occur in that season. These results strongly suggest that E. zodiacus did not have a resting stage, and it spends autumn for size restoration and starts to bloom thereafter in Harima-Nada in winter and spring, causing fishery damage to Nori aquaculture by resulting nutrient deprivation.  相似文献   

13.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

14.
《Aquatic Botany》2008,88(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

15.
ThxynA, an extracellular xylanase of T. halotolerans YIM 90462T, was purified to homogeneity from a fermentation broth by ultra-filtration, ammonium sulphate precipitation, hydrophobic chromatography and ion exchange chromatography. The purified xylanase has a molecular mass of 24 kDa and is optimally active at 80 °C and pH 6.0. The enzyme is stable over a broad pH range (pH 6.0–10.0) and shows good thermal stability when incubated at 70 °C for 1 h. The Km and Vmax values of the enzyme are 11.6 mg/mL and 434 μmol mg?1 min?1, respectively, using oat spelt xylan as a substrate. Moreover, the enzyme seemingly has both xylanase activity and cellulase activity. These unique properties suggest that it may be useful for industrial applications.  相似文献   

16.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to α-, β-, γ- and ζ-classes and from various organisms, ranging from the bacteria, archaea to eukarya domains, were investigated for their esterase/phosphatase activity with 4-nitrophenyl acetate, 4-nitrophenyl phosphate and paraoxon as substrates. Only α-CAs showed esterase/phosphatase activity, whereas enzymes belonging to the β-, γ- and ζ-classes were completely devoid of such activity. Paraoxon, the metabolite of the organophosphorus insecticide parathione, was a much better substrate for several human/murine α-CA isoforms (CA I, II and XIII), with kcat/KM in the range of 2681.6–4474.9 M?1 s?1, compared to 4-nitrophenyl phosphate (kcat/KM of 14.9–1374.4 M?1 s?1).  相似文献   

17.
Most of type II restriction endonucleases show an absolute requirement for divalent metal ions as cofactors for DNA cleavage. While Mg2+ is the natural cofactor other metal ions can substitute it and mediate the catalysis, however Ca2+ (alone) only supports DNA binding. To investigate the role of Mg2+ in DNA cleavage by restriction endonucleases, we have studied the Mg2+ and Mn2+ concentration dependence of DNA cleavage by SepMI and EhoI. Digestion reactions were carried out at different Mg2+ and Mn2+ concentrations at constant ionic strength. These enzymes showed different behavior regarding the ions requirement, SepMI reached near maximal level of activity between 10 and 20 mM while no activity was detected in the presence of Mn2+ and in the presence of Ca2+ cleavage activity was significantly decreased. However, EhoI was more highly active in the presence of Mn2+ than in the presence of Mg2+ and can be activated by Ca2+. Our results propose the two-metal ion mechanism for EhoI and the one-metal ion mechanism for SepMI restriction endonuclease. The analysis of the kinetic parameters under steady state conditions showed that SepMI had a Km value for pTrcHisB DNA of 6.15 nM and a Vmax of 1.79 × 10?2 nM min?1, while EhoI had a Km for pUC19 plasmid of 8.66 nM and a Vmax of 2 × 10?2 nM min?1.  相似文献   

18.
《Process Biochemistry》2014,49(3):445-450
A cyanide hydratase from Aspergillus niger K10 was expressed in Escherichia coli and purified. Apart from HCN, it transformed some nitriles, preferentially 2-cyanopyridine and fumaronitrile. Vmax and Km for HCN were ca. 6.8 mmol min−1 mg−1 protein and 109 mM, respectively. Vmax for fumaronitrile and 2-cyanopyridine was two to three orders of magnitude lower than for HCN (ca. 18.8 and 10.3 μmol min−1 mg−1, respectively) but Km was also lower (ca. 14.7 and 3.7 mM, respectively). Both cyanide hydratase and nitrilase activities were abolished in truncated enzyme variants missing 18–34 C-terminal aa residues. The enzyme exhibited the highest activity at 45 °C and pH 8–9; it was unstable at over 35 °C and at below pH 5.5. The operational stability of the whole-cell catalyst was examined in continuous stirred membrane reactors with 70-mL working volume. The catalyst exhibited a half-life of 5.6 h at 28 °C. A reactor loaded with an excess of the catalyst was used to degrade 25 mM KCN. A conversion rate of over 80% was maintained for 3 days.  相似文献   

19.
Anoxybacillus beppuensis TSSC-1 (GenBank Number, EU710556), a thermophilic bacterium isolated from a hot spring reservoir, was found to optimally secrete a monomeric α-amylase at 55 °C and pH 7. The enzyme was purified to homogeneity by a single-step purification on phenyl sepharose 6FF, achieving a 58% yield, 10,000 U/mg specific activity and 19.5 fold purification. The molecular weight, Km and Vmax were 43 kD, 0.5 mg ml?1 and 3571.42 μmol ml?1 m?1, respectively. The enzymatic catalysis of soluble starch was optimum at 80 °C and pH 7. The thermodynamic parameters, Kd, t1/2, ΔH*, ΔS*, E and ΔG*, were consistent. The very compact structure of the enzyme and the transitional enzyme–substrate complex resisted denaturation at extreme temperatures and alkaline pH. The Kd and t1/2 measurements were consistent with the high thermostability and pH tolerance observed. The structural stability of the enzyme was also reflected by the values of ΔH*, ΔS*, E and ΔG*. While the enzyme did not exhibit metal ion dependency, it was resistant to chemical denaturation. The broad thermo- and pH-tolerance of this enzyme suggests potential commercial opportunities.  相似文献   

20.
A highly efficient laccase-producing fungus was isolated from soil and identified as Coltricia perennis SKU0322 by its morphology and by comparison of its internal transcribed spacer (ITS) rDNA gene sequence. Extracellular laccase (Cplac) from C. perennis was purified to homogeneity by anion-exchange and gel filtration chromatography. Cplac is a monomeric glycoprotein with 12% carbohydrate content and a molecular mass of 66 kDa determined by polyacrylamide-gel electrophoresis. Ultraviolet-visible absorption spectroscopy observed type 1 and type 3 copper signals from Cplac. The enzyme acted optimally at pH 3–4 and 75 °C. Its optimal activity was with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), it also oxidized various lignin-related phenols. The enzyme was characterized as a multi-copper blue laccase by its substrate specificity and internal amino acid sequence. It showed a higher catalytic efficiency towards ABTS (kcat/Km = 18.5 s?1 μM?1) and 2,6-dimethoxyphenol (kcat/Km = 13.9 s?1 μM?1) than any other reported laccase. Its high stability and catalytic efficiency suggest its suitability for industrial applications: it detoxified phenolic compounds in acid-pretreated rice straw and enhanced saccharification yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号