首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
DNA polymerase kappa (Polκ) bypasses planar polycyclic N2-guanine adducts in an error-free manner. Cholesterol derivatives may interact with DNA to form similarly bulky lesions. In accordance, these studies examined whether increased mutagenesis of DNA accompanies hypercholesterolemia in Polk−/− mice. These mice also carried apoE gene knockouts to ensure increased levels of plasma cholesterol following exposure to a high cholesterol diet. The mice carried a reporter transgene (the λ-phage cII gene) for subsequent quantitative analysis of mutagenesis in various tissues. We observed significantly increased mutation frequencies in several organs of apoE−/−Polk−/− mice following a high cholesterol diet, compared to those remaining on a standard diet. Regardless of dietary regime, the mutation frequency in many organs was significantly higher in apoE−/−Polk−/− than in apoE−/−Polk+/+ mice. As expected for polycyclic guanine adducts, the mutations mainly consisted of G:C transversions. The life expectancy of apoE−/−Polk−/− mice maintained on a high cholesterol diet was reduced compared to apoE−/−Polk+/+ mice. Overall, this study demonstrates a role for Polκ in bypass of cholesterol-induced guanine lesions.  相似文献   

2.
Reactive oxygen species (ROS) are formed as natural byproducts during aerobic metabolism and readily induce premutagenic base lesions in the DNA. The 8-oxoguanine DNA glycosylase (OGG1) and MutY homolog 1 (MYH) synergistically prevent mutagenesis and cancer formation in mice. Their localization in the mitochondria as well as in the nucleus suggests that mutations in mitochondrial DNA (mtDNA) contribute to the carcinogenesis in the myh?/?/ogg1?/? double knockout mouse.In order to test this hypothesis, we analyzed mtDNA mutagenesis and mitochondrial function in young (1 month) and adult (6 months) wt and myh?/?/ogg1?/? mice. To our surprise, the absence of OGG1 and MYH had no impact on mtDNA mutation rates in these mice, even at the onset of cancer. This indicates that mtDNA mutagenesis is not responsible for the carcinogenesis of myh?/?/ogg1?/? mice. In line with these results, mitochondrial function was unaffected in the cancerous tissues liver and lung, whereas a significant reduction in respiration capacity was observed in brain mitochondria from the adult myh?/?/ogg1?/? mouse. The reduced respiration capacity correlated with a specific reduction (?25%) in complex I biochemical activity in brain mitochondria.Our results demonstrate that mtDNA mutations are not associated with cancer development in myh?/?/ogg1?/? mice, and that impairment of mitochondrial function in brain could be linked to nuclear DNA mutations in this strain. OGG1 and MYH appear to be dispensable for antimutator function in mitochondria.  相似文献   

3.
XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa?/? and Xpc?/? exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved in the defense against oxidative DNA damage. Others have mechanistically dissected several functionalities of XPC to oxidative DNA damage sensitivity using in vitro studies. XPC has been linked to regulation of base excision repair (BER) activity, redox homeostasis and recruitment of ATM and ATR to damage sites, thereby possibly regulating cell cycle checkpoints and apoptosis. XPC has additionally been implicated in recognition of bulky (e.g. cyclopurines) and non-bulky DNA damage (8-oxodG). However, the ultimate contribution of the XPC functionality in vivo in the oxidative DNA damage response and subsequent mutagenesis process remains unclear. Our study indicates that Xpc?/? mice, in contrary to Xpa?/? and wild type mice, have an increased mutational load upon induction of oxidative stress and that mutations arise in a slowly accumulative fashion. The effect of non-functional XPC in vivo upon oxidative stress exposure appears to have implications in mutagenesis, which can contribute to the carcinogenesis process. The levels and rate of mutagenesis upon oxidative stress correlate with previous findings that lung tumors in Xpc?/? mice overall arise late in the lifespan and that the incidence of internal tumors in XP-C patients is relatively low in comparison to skin cancer incidence.  相似文献   

4.
We have generated a strain of mice lacking two DNA N-glycosylases of base excision repair (BER), NTH1 and NEIL1, homologs of bacterial Nth (endonuclease three) and Nei (endonuclease eight). Although these enzymes remove several oxidized bases from DNA, they do not remove the well-known carcinogenic oxidation product of guanine: 7,8-dihydro-8-oxoguanine (8-OH-Gua), which is removed by another DNA N-glycosylase, OGG1. The Nth1?/?Neil1?/? mice developed pulmonary and hepatocellular tumors in much higher incidence than either of the single knockouts, Nth1?/? and Neil1?/?. The pulmonary tumors contained, exclusively, activating GGT  GAT transitions in codon 12 of K-ras of their DNA. Such transitions contrast sharply with the activating GGT  GTT transversions in codon 12 of K-ras of the pathologically similar pulmonary tumors, which arose in mice lacking OGG1 and a second DNA N-glycosylase, MUTY. To characterize the biochemical phenotype of the knockout mice, the content of oxidative DNA base damage was analyzed from three tissues isolated from control, single and double knockout mice. The content of 8-OH-Gua was indistinguishable among all genotypes. In contrast, the content of 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) derived from adenine and guanine, respectively, were increased in some but not all tissues of Neil1?/? and Neil1?/?Nth1?/? mice. The high incidence of tumors in our Nth1?/?Neil1?/? mice together with the nature of the activating mutation in the K-ras gene of their pulmonary tumors, reveal for the first time, the existence of mutagenic and carcinogenic oxidative damage to DNA which is not 8-OH-Gua.  相似文献   

5.
Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr?/? model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr?/? mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe?/? mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr?/? mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr?/? were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.  相似文献   

6.
Cyp2c70?/? mice with a human-like bile acid (BA) composition, lacking hydrophilic muricholic acids (MCAs), have been reported to display cholangiopathy and biliary fibrosis with female preponderance that can be reversed by ursodeoxycholic acid (UDCA). Obeticholic acid (OCA), a steroidal BA-like FXR agonist, has been shown to improve liver function in patients with primary biliary cholangitis and is approved as second-line treatment for patients with an inadequate response or intolerance to UDCA. Here, we investigated the impact of OCA on BA hydrophobicity and cholangiopathy in Cyp2c70?/? mice. Male and female wild-type (WT) and Cyp2c70?/? mice were fed a chow diet with or without 10 mg/kg/day OCA for 4 weeks. OCA accounted for 1–5% of biliary BAs, with larger enrichments in Cyp2c70?/? than in WT mice. In WT mice, OCA induced a more hydrophilic, MCA-rich BA pool. In Cyp2c70?/? mice, however, BA pool became more hydrophobic with a larger proportion of chenodeoxycholic acid, attributable to a reduction of BA 12α-hydroxylation. OCA treatment reduced fecal BA excretion, indicating repression of hepatic BA synthesis in both WT and Cyp2c70?/? mice. OCA did, however, not impact on markers of liver (dys)function in plasma nor did it ameliorate cholangiopathy and fibrosis in male or female Cyp2c70?/? mice. OCA treatment also did not affect the expression of genes involved in fibrosis, inflammation and cellular senescence. In conclusion, 4 weeks of OCA treatment oppositely modulates the hydrophobicity of the BA pool in WT and Cyp2c70?/? mice, but does not improve or worsen the characteristic sex-dependent liver pathology in Cyp2c70?/? mice.  相似文献   

7.
FXR regulates bile acid metabolism, and FXR null (Fxr?/?) mice have elevated bile acid levels and progressive liver injury. The inositol-requiring enzyme 1α/X-box binding protein 1 (XBP1) pathway is a protective unfolded protein response pathway activated in response to endoplasmic reticulum stress. Here, we sought to determine the role of the inositol-requiring enzyme 1α/XBP1 pathway in hepatic bile acid toxicity using the Fxr?/? mouse model. Western blotting and quantitative PCR analysis demonstrated that hepatic XBP1 and other unfolded protein response pathways were activated in 24-week-old Fxr?/? compared with 10-week-old Fxr?/? mice but not in WT mice. To further determine the role of the liver XBP1 activation in older Fxr?/? mice, we generated mice with whole-body FXR and liver-specific XBP1 double KO (DKO, Fxr?/?Xbp1LKO) and Fxr?/?Xbp1fl/fl single KO (SKO) mice and characterized the role of hepatic XBP1 in cholestatic liver injury. Histologic staining demonstrated increased liver injury and fibrosis in DKO compared with SKO mice. RNA sequencing revealed increased gene expression in apoptosis, inflammation, and cell proliferation pathways in DKO mice. The proapoptotic C/EBP-homologous protein pathway and cell cycle marker cyclin D1 were also activated in DKO mice. Furthermore, we found that total hepatic bile acid levels were similar between the two genotypes. At age 60 weeks, all DKO mice and no SKO mice spontaneously developed liver tumors. In conclusion, the hepatic XBP1 pathway is activated in older Fxr?/? mice and has a protective role. The potential interaction between XBP1 and FXR signaling may be important in modulating the hepatocellular cholestatic stress responses.  相似文献   

8.
Our earlier studies identified MOG1 as a Nav1.5-binding protein that promotes Nav1.5 intracellular trafficking to plasma membranes. Genetic studies have identified MOG1 variants responsible for cardiac arrhythmias. However, the physiological functions of MOG1 in vivo remain incompletely characterized. In this study, we generated Mog1 knockout (Mog1?/?) mice. Mog1?/? mice did not develop spontaneous arrhythmias at the baseline, but exhibited a prolongation of QRS duration. Mog1?/? mice treated with isoproterenol (ISO), but not with flecainide, exhibited an increased risk of arrhythmias and even sudden death. Mog1?/? mice had normal cardiac morphology, however, LV systolic dysfunction was identified and associated with an increase in ventricular fibrosis. Whole-cell patch-clamping and Western blotting analysis clearly demonstrated the normal cardiac expression and function of Nav1.5 in Mog1?/? mice. Further RNA-seq and iTRAQ analysis identified critical pathways and genes, including extracellular matrix (Mmp2), gap junction (Gja1), and mitochondrial components that were dysregulated in Mog1?/? mice. RT-qPCR, Western blotting, and immunofluorescence assays revealed reduced cardiac expression of Gja1 in Mog1?/? mice. Dye transfer assays confirmed impairment of gap-junction function; Cx43 gap-junction enhancer ZP123 decreased arrhythmia inducibility in ISO-treated Mog1?/? mice. Transmission electron microscopy analysis revealed abnormal sarcomere ultrastructure and altered mitochondrial morphology in Mog1?/? mice. Mitochondrial dynamics was found to be disturbed, and associated with a trend toward increased mitochondrial fusion in Mog1?/? mice. Meanwhile, the level of ATP supply was increased in the hearts of Mog1?/? mice. These results indicate that MOG1 plays an important role in cardiac electrophysiology and cardiac contractile function.  相似文献   

9.
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag?/?) or O6-methylguanine methyltransferase (Mgmt?/?), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt?/? neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag?/? neurons were for the most part significantly less sensitive than wild type or Mgmt?/? neurons to MAM and HN2. Aag?/? neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt?/? mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag?/? or MGMT-overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.  相似文献   

10.
Telocytes had been identified as a peculiar stromal cell type implicated in tissue homeostasis and the development and pathophysiology of diseases. Telocyte existed in most organs and tissues in humans and animals. However, few studies have examined telocytes in ApoE gene deficient mice. In our studies, we verified the existence, the morphology and immunohistochemical characteristics of telocytes in critical organs of the ApoE?/? mice. Male adult ApoE?/? mice were selected as an experimental model. Immunohistochemical bio‐markers, such as CD34, CD117, CD28, Vimentin and PDGFR‐α were utilized to determine the distribution and morphology of telocytes in the heart, liver and kidney. Telocyte expressed positively for CD34 and CD117, and partial telocyte and telopode expressed positively for PDGFR‐α in heart and liver, but negatively in kidney. Double immunofluorescence assays for CD28/Vimentin, CD34/CD117 and CD34/PDGFR‐α were used to demonstrate the biochemistry speciality of telocytes, respectively. The evidence of telocytes in the ApoE‐/‐ mice is the first step of our sturdy, which aims to demonstrate changes in telocytes in atherosclerosis in this animal model.  相似文献   

11.
Translesion DNA synthesis (TLS) is an important pathway that avoids genotoxicity induced by endogenous and exogenous agents. DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in TLS but its protective roles against DNA damage in vivo are still unclear. To better understand these roles, we have established knock-in mice that express catalytically-inactive Polk and crossbred them with gpt delta mice, which possess reporter genes for mutations. The resulting mice (inactivated Polk KI mice) were exposed to mitomycin C (MMC), and the frequency of point mutations, micronucleus formation in peripheral erythrocytes, and γH2AX induction in the bone marrow was determined. The inactivated Polk KI mice exhibited significantly higher frequency of mutations at CpG and GpG sites, micronucleated cells, and γH2AX foci-positive cells than did the Polk wild-type (Polk+) mice. Recovery from MMC-induced DNA damage, which was evaluated by γH2AX induction, was retarded in embryonic fibroblasts from the knock-in mice when compared to those from the Polk+ mice. These results suggest that Polk mediates TLS, which suppresses point mutations and DNA double-strand breaks caused by intra- and interstrand cross-links induced by MMC treatment. The established knock-in mice are extremely useful to elucidate the in vivo roles of the catalytic activity of Polk in suppressing DNA damage that was induced by a variety of genotoxic stresses.  相似文献   

12.
The pathways of thymic lymphomagenesis are classified as Rag-dependent or -independent according to their dependence on recombination-activating gene (Rag1/2) proteins. The role of the two-lymphoma pathways in oncogene rearrangements and the connection between lymphoma pathways and rearrangement mechanisms, however, remain obscure. We compared the incidence and latency of thymic lymphomas, and associated rearrangements of the representative oncogene Notch1 among Rag2?/?, ataxia telangiectasia mutated (Atm)?/?, and severe combined immune deficiency (scid) mice combined with Rag2 deficiency. Contrary to expectations, Rag2?/? mice were prone to thymic lymphoma development, suggesting the existence of a Rag2-independent lymphoma pathway in Rag2?/? mice. The lymphoma incidence in Rag2?/?Atm?/? mice was lower than that in Atm?/? mice, but higher than that in Rag2?/? mice, indicating that Atm?/? mice develop lymphomas through both pathways. Scid mice developed lymphomas with an incidence and latency similar to Rag2?/?scid mice, suggesting that Rag2-mediated V(D)J recombination-driven events are not necessarily required for lymphomagenesis in scid mice. Notch1 rearrangement mechanisms were classified as Rag2-dependent or Rag2-independent based on the presence of recombination signal-like sequences at rearranged sites. In Rag2?/? lymphomas, Notch1 must be rearranged independently of Rag2 function, implying that Rag2?/? mice are susceptible to lymphomagenesis due to the presence of other rearrangement mechanisms. The results in Atm?/? mice suggest that Notch1 was rearranged through both lymphoma pathways. In scid mice, the frequency of Rag2-mediated rearrangements was relatively low compared with that in wild-type mice, suggesting that the Rag2-independent lymphoma pathway prevails in the development of thymic lymphomas in scid mice. Thus, two rearrangement mechanisms underlie the lymphoma pathways and constitute the mechanistic bases for lymphomagenesis, thereby providing the molecular criteria for distinguishing between Rag2-dependent and Rag2-independent lymphoma pathways.  相似文献   

13.
Sphingosine kinases phosphorylate sphingosine to sphingosine 1?phosphate (S1P), which functions as a signaling molecule. We have previously shown that sphingosine kinase 2 (Sphk2) is important for insulin secretion. To obtain a better understanding of the role of Sphk2 in glucose and lipid metabolism, we have characterized 20- and 52-week old Sphk2?/? mice using glucose and insulin tolerance tests and by analyzing metabolic gene expression in adipose tissue. A detailed metabolic characterization of these mice revealed that aging Sphk2?/? mice are protected from metabolic decline and obesity compared to WT mice. Specifically, we found that 52-week old male Sphk2?/? mice had decreased weight and fat mass, and increased glucose tolerance and insulin sensitivity compared to control mice. Indirect calorimetry studies demonstrated an increased energy expenditure and food intake in 52-week old male Sphk2?/? versus control mice. Furthermore, expression of adiponectin gene in adipose tissue was increased and the plasma levels of adiponectin elevated in aged Sphk2?/? mice compared to WT. Analysis of lipid metabolic gene expression in adipose tissue showed increased expression of the Atgl gene, which was associated with increased Atgl protein levels. Atgl encodes for the adipocyte triglyceride lipase, which catalyzes the rate-limiting step of lipolysis. In summary, these data suggest that mice lacking the Sphk2 gene are protected from obesity and insulin resistance during aging. The beneficial metabolic effects observed in aged Sphk2?/? mice may be in part due to enhanced lipolysis by Atgl and increased levels of adiponectin, which has lipid- and glucose-lowering effects.  相似文献   

14.
To supplement a previous analysis of spontaneous tandem-base mutations (TBM) in the lacI gene of Big Blue® mice, 2658 additional mutants were sequenced from 13 tissues and 44 spontaneous TBM were identified (tripling the sample size). Previous findings were confirmed and generalized and several new observations were made. TBM differ from single and other double mutations in that TBM frequency varies dramatically with tissue type. In certain tissues, most notably male germ cells, no TBM are observed despite screening as many as 26 million plaque forming units. TBM are most frequent in kidney and liver (3.45 and 2×10−6, respectively), accounting for 7.6 and 4.8% of all mutational events in kidney and liver, respectively. There is a trend for elevated TBM frequency in thymic lymphomas in p53-deficient mice. TBM are more frequent in old age in both liver and kidney. TBM differ from single mutations and other double mutations because they display a marked difference in pattern and dramatic tissue specificity for target sequence. Five of the 78 possible TBM outcomes comprise 79% of those observed, and mutations at GG/CC predominate. TBM in mice were compared with TBM found in human mutation databases. TBM are also rare in the human germline (one in 5133 germline mutations reported in five human mutation databases). In general, the types of somatic TBM are similar in mice and humans except for an excess of TG/CA to CA/TG TBM in humans (TBM related to ultraviolet light-induced skin cancer were excluded). TBM may be the result of unknown mechanisms that may have some similarities in mice and humans.  相似文献   

15.
A homozygous H493R mutation in the active site of tyrosyl-DNA phosphodiesterase (TDP1) has been implicated in hereditary spinocerebellar ataxia with axonal neuropathy (SCAN1), an autosomal recessive neurodegenerative disease. However, it is uncertain how the H493R mutation elicits the specific pathologies of SCAN1. To address this question, and to further elucidate the role of TDP1 in repair of DNA end modifications and general physiology, we generated a Tdp1 knockout mouse and carried out detailed behavioral analyses as well as characterization of repair deficiencies in extracts of embryo fibroblasts from these animals. While Tdp1?/? mice appear phenotypically normal, extracts from Tdp1?/? fibroblasts exhibited deficiencies in processing 3′-phosphotyrosyl single-strand breaks and 3′-phosphoglycolate double-strand breaks (DSBs), but not 3′-phosphoglycolate single-strand breaks. Supplementing Tdp1?/? extracts with H493R TDP1 partially restored processing of 3′-phosphotyrosyl single-strand breaks, but with evidence of persistent covalent adducts between TDP1 and DNA, consistent with a proposed intermediate-stabilization effect of the SCAN1 mutation. However, H493R TDP1 supplementation had no effect on phosphoglycolate (PG) termini on 3′ overhangs of double-strand breaks; these remained completely unprocessed. Altogether, these results suggest that for 3′-phosphoglycolate overhang lesions, the SCAN1 mutation confers loss of function, while for 3′-phosphotyrosyl lesions, the mutation uniquely stabilizes a reaction intermediate.  相似文献   

16.
IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33 and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type, IL-25?/?, IL-33?/? and TSLP receptor (TSLPR)?/? mice with Plasmodium berghei (P. berghei) ANKA, a murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain, liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not critical for host defense against P. berghei ANKA.  相似文献   

17.
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr?/?) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE?/?) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE?/? mice. In apoE?/? mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE?/? mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.  相似文献   

18.
19.
Hurler syndrome (MPS IH) is caused by a mutation in the gene encoding alpha-L-iduronidase (IDUA) and leads to the accumulation of partially degraded glycosaminoglycans (GAGs). Ganglioside content is known to increase secondary to GAG accumulation. Most studies in organisms with MPS IH have focused on changes in gangliosides GM3 and GM2, without the study of other lipids. We evaluated the total lipid distribution in the whole brain and cerebellum of MPS IH (Idua ?/?) and control (Idua +/?) mice at 6 months and at 12 months of age. The content of total sialic acid and levels of gangliosides GM3, GM2, and GD3 were greater in the whole brains of Idua ?/? mice then in Idua +/? mice at 12 months of age. No other significant lipid differences were found in either whole brain or in cerebellum at either age. The accumulation of ganglioside GD3 suggests that neurodegeneration occurs in the Idua ?/? mouse brain, but not to the extent seen in human MPS IH brain.  相似文献   

20.
Background and aimWe have described a novel Mahvash disease of hyperglucagonemia and pancreatic neuroendocrine tumors (PNETs) associated with an inactivating glucagon receptor mutation, and identified the glucagon receptor-deficient (Gcgr?/?) mice as its murine model. We aim to elucidate the natural history of the rare Mahvash disease by long-term observation of the Gcgr?/? mice.Materials and methodWild type (WT) (n = 52), heterozygous (n = 127), and Gcgr?/? (n = 56) mice living under standard vivarium conditions were observed without specific treatments over 22 months. Autopsy was performed on dead animals.ResultsThe WT and heterozygous mice did not exhibit any measurable differences. The Gcgr?/? mice became progressively lethargic and cachexic after 12 months. Random glucose levels were stable in WT and heterozygous mice but decreased with age in the Gcgr?/? mice. At the end of observation, 28/56 Gcgr?/?, 7/52 WT, and 24/127 heterozygous mice died. The survival curve of Gcgr?/? mice began to separate from those of WT and heterozygous mice at 12 months and the survival difference widened with age. At 18 months, survival probability was 17% for Gcgr?/? mice but 77% for WT and 81% for heterozygous mice. Autopsy revealed numerous PNETs up to 15 mm in diameter in most well-preserved Gcgr?/? pancreata (17/20) but none in WT or heterozygous ones. Four Gcgr?/? mice developed liver or subcutaneous metastasis.ConclusionThe untreated Mahvash disease may cause cachexia, severe hypoglycemia, and early death. Patients with Mahvash disease need to undergo life-long surveillance for PNETs. Functional glucagon receptor is thus required for long-term survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号