首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Non‐native plant invasions can alter nutrient cycling processes and contribute to global climate change. In southern California, California sage scrub (hereafter sage scrub), a native shrub‐dominated habitat type in lowland areas, has decreased to <10% of its original distribution. Postdisturbance type‐conversion to non‐native annual grassland, and increasingly to mustard‐dominated invasive forbland, is a key contributor to sage scrub loss. To better understand how type‐conversion by common invasive annuals impacts carbon (C) and nitrogen (N) storage in surface soils, we examined how the identity of the invader (non‐native grasses, Bromus spp.; and non‐native forbs, Brassica nigra), microbial concentrations, and soil properties interact to influence soil nutrient storage in adjacent native and invasive habitat types at nine sites along a coast to inland gradient. We found that the impact of type‐conversion on nutrient storage was contingent upon the invasive plant type. Sage scrub soils stored more C and N than non‐native grasslands, whereas non‐native forblands had nutrient storage similar to or higher than sage scrub. We calculate that >940 t C km?2 and >60 t N km?2 are lost when sage scrub converts to grass‐dominated habitat, demonstrating that grass invasions are significant regional contributors to greenhouse gas emissions. We found that sites with greater total C and N storage were associated with high cation exchange capacities and bacterial concentrations. Non‐native grassland habitat type was a predictor of lower total C, and soil pH, which was greatest in invasive habitats, was a predictor of lower total N. We demonstrate that modeling regional nutrient storage requires accurate classification of habitat type and fine‐scale quantification of cation exchange capacity, pH, and bacterial abundance. Our results provide evidence that efforts to restore and conserve sage scrub enhance nutrient storage, a key ecosystem service reducing atmospheric CO2 concentrations.  相似文献   

2.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

3.
Murray  K. G.  Winnett-Murray  K.  Cromie  E. A.  Minor  M.  Meyers  E. 《Plant Ecology》1993,107(1):217-226
We investigated the role of seed packaging (division of total seed volume among individual seeds) and fruit color in determining feeding preferences of American Robins (Turdus migratorius). Experiments were conducted using artificial fruits with either 8 small plastic beads or a single large one with equivalent volume. Other fruit characters were held constant. As predicted, large seeds were voided rapidly by regurgitation, resulting in higher pulp consumption rates for large-seeded fruits than for small-seeded ones, whose seeds were passed through the gut. Most birds apparently used this difference in profitability as a choice criterion: four of seven preferred large-seeded fruits. That three individuals did not do so suggests that birds may differ in their ability to perceive minor differences in fruit profitability, or to use them as choice criteria. Pulp color was also important: blue fruits were preferred by all seven birds. This preference was surprising, since Robins commonly feed on red fruits in the field.  相似文献   

4.
In a field dominated by Formica polyctena Foerst. ants, we examined the effect of seed aggregation on the seed-removal rates of two plant species: a large-seeded obligate myrmecochore Viola odorata L. and a small-seeded diplochore Chelidonium majus L., which was autochorous as well as myrmecochorous. The effect was statistically non-significant in V. odorata but significant in C. majus, with more closely aggregated seeds having higher removal rates. The large seeds of the obligate myrmecochore were more quickly discovered and repeatedly removed by ant workers than were the small seeds of the diplochore.  相似文献   

5.
Summary This study established the preferences of shrubsteppe granivores among seeds of 6 common sagebrushsteppe plants and related the preferences observed to physical and nutritional attributes of the seeds. Seeds of big sagebrush (Artemisia tridentata), cheatgrass (Bromus tectorum), Indian ricegrass (Oryzopsis hymenoides), western wheatgrass (Pascopyrum smithii), bitterbrush (Purshia tridentata) and green needlegrass (Stipa viridula) were placed in groups of petri dishes designed such that seed removal could be ascribed to either diurnal vertebrates, nocturnal vertebrates or ants. Though absolute quantities of seeds removed varied among the 3 granivore classes, calculations of preference based on weights of each seed species removed by each granivore class indicated that all 3 ranked the seeds similarly. Preference hierarchies of the 3 granivore classes were highly positively correlated with both calories per seed and % soluble carbohydrate of the seeds. The first correlation supports a basic prediction of optimal foraging theory —that foragers should maximize energy intake per unit time spent foraging. Both correlations emphasize the role of seed nutritional qualities in granivore seed selectivity in that soluble carbohydrate is a water-efficient energy source and its percentage is a good indicator of the digestible energy available in a food item. A corollary experiment comparing granivore use of an exotic seed (millet [Panicum miliaceum]) and a preferred native seed (Oryzopsis) demonstrated a distinct preference for the exotic. Since millet seeds are particularly high in % soluble carbohydrate, this result reinforced the apparent value of this nutritional attribute as a predictor of granivore seed preference. Among many seed resource characteristics upon which granivore seed selectivity might operate, our results indicate that individual species' nutritional composition may be particularly important. Thus, inferences about seed selectivity and resource partitioning among arid-land granivores should be interpreted with caution, especially those based on experiments using seed introductions, since the influence of seed nutritional attributes has not been widely acknowledged heretofore.  相似文献   

6.
In a natural population of the perennial semi-shrub Artemisia halodendron in a shifting sandy habitat in the Horqin Desert of eastern Inner Mongolia, six isolated adult A. halodendron individuals of similar canopy size were chosen as target plants. The density of seeds in the top 5 cm soil depth around shrubs was measured using transects aligned to the four main wind directions and at different distances from the shrub base on both the windward and leeward sides. The effects of shrub presence on seed distribution of four co-occurring grasses were examined by linking seed distribution to seed traits. Of the four species, Setaris viridis and Eragrostis pilosa had small but similar seed mass, while Chloris virgata and Aristida adscensionis had large but similar seed mass. The species were grouped into two cohorts: small-seeded vs. large-seeded cohorts, and shrub presence effects on seed distribution of both cohorts were examined. We found marked difference in the seed distribution pattern among species, especially between the small-seeded and large-seeded cohorts. The small-seeded cohort had significantly higher seed accumulation on the windward than the leeward sides in the most and least prevailing wind directions and much higher seed accumulation on the leeward than the windward sides in the second and third most prevailing wind directions, while opposite patterns occurred in the large-seeded cohort. Four species also showed marked variation in the seed distribution pattern among transects and between windward and leeward sides of each transect. This study provided further evidence that shrubs embedded in a matrix of herbaceous plants is a key cause of spatial heterogeneity in seed availability of herbaceous species. However, seed distribution responses to the presence of shrubs will vary with species as well as with wind direction, sampling position (windward vs. leeward sides of the shrub) and distance from the shrub.  相似文献   

7.
Communities of post‐dispersal granivores can shape the density and dispersion of exotic plants and invasive weeds, yet plant ecologists have a limited perception of the relative trophic linkages between a seed species and members of its granivore community. Dandelion seeds marked with Rabbit IgG were disseminated into replicated plots in the recipient habitat (South Dakota) and the native range (Czech Republic). Arthropods were collected in pitfall traps, and their guts were searched for the protein marker using enzyme‐linked immunosorbent assay (ELISA). Seed dishes were placed in each plot, and dandelion seed removal rates were measured. The entire experiment was repeated five times over the dandelion flowering period. Gut analysis revealed that approximately 22% of specimens tested positive for the seed marker. A more diverse granivore community had trophic linkages to seeds than has been previously realized under field conditions. This community included taxa such as isopods, millipedes, weevils, rove beetles, and caterpillars, in addition to the traditionally recognized ants, crickets, and carabid beetles. Rarefaction and Chao analysis estimated approximately 16 and 27 species in the granivore communities of the Czech Republic and South Dakota, respectively. Synthesis: Generalist granivore communities are diverse and polyphagous, and are clearly important as a form of biotic resistance to invasive and weedy plants. These granivore communities can be managed to limit population growth of these pests.  相似文献   

8.
Plant invasions have tremendous potential to alter food webs by changing basal resources. Recent studies document how plant invasions may contribute to increased arthropod abundances in detritus-based food webs. An obvious mechanism for this phenomenon—a bottom-up effect resulting from elevated levels of detritus from the invasive plant litter—has not been explicitly studied. We examined the effects of an annual grass invasion on ground arthropod assemblages in the coastal sage scrub (CSS) of southern California. Bottom-up food web theory predicts that the addition of detritus would increase generalist-feeding arthropods at all trophic levels; accordingly, we expected increases in fungi, Collembola, and common predators such as mites and spiders. For the common ant taxa, habitat alteration may also be important for predicting responses. Thus we expected that Forelius mccooki and Pheidole vistana, the most common ant species, would decline because of changes in soil temperature (F. mccooki) and habitat structure (P. vistana) associated with litter. We studied trends observationally and conducted a 3-year experiment in which we manipulated litter quantity. In contrast to other published studies, most detritus-based arthropod taxa declined in areas of high grass invasion, and, within trophic levels, responses often varied idiosyncratically. For the two most common taxa, a native ant (F. mccooki), and predatory mites in the Anystidae, we experimentally linked declines in abundance to increased levels of invasive grass litter. Such declines, especially those exhibited by the most common ant taxa, could have cascading effects on the CSS ecosystem, where ants are numerically dominant and thus may have broad influences on food web and ecosystem properties. Our results highlight that accurately predicting arthropod responses to invasive plant litter requires careful consideration of the structural and food resources provided by detritus to each particular food web.  相似文献   

9.
Deveny AJ  Fox LR 《Oecologia》2006,150(1):69-77
Interactions between herbivores and seed predators may have long-term consequences for plant populations that rely on persistent seed banks for recovery after unpredictable fires. We assessed the effects of browsing by deer and seed predation by rodents, ants and birds on the densities of seeds entering the seed bank of Ceanothus cuneatus var. rigidus, a maritime chaparral shrub in coastal California. Ceanothus produced many more seeds when protected from browsers in long-term experimental exclosures than did browsed plants, but the seed densities in the soil beneath browsed and unbrowsed Ceanothus were the same at the start of an intensive one-year study. The density of seeds in the soil initially increased in both treatments following summer seed drop: while densities returned to pre-drop levels within a few weeks under browsed plants, soil seed densities remained high for 5–8 months beneath unbrowsed plants. Rodent abundance (especially deer mice) was higher near unbrowsed plants than >30 m away, and rodents removed Ceanothus seeds from dishes in the experimental plots. At least in the short term, rodent density and rates of seed removal were inversely related to the intensity of browsing. Our data have management implications for maintaining viable Ceanothus populations by regulating the intensity of browsing and the timing, intensity and frequency of fires.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

10.
The population dynamics of invasive plants are influenced by positive and negative associations formed with members of the fauna present in the introduced range. For example, mutualistic associations formed with pollinators or seed dispersers may facilitate invasion, but reduced fitness from attack by native herbivores can also suppress it. Since population expansion depends on effective seed dispersal, interactions with seed dispersers and predators in a plant species introduced range may be of particular importance. We explored the relative contributions of potential seed dispersers (ants) and vertebrate predators (rodents and birds) to seed removal of two diplochorous (i.e., wind- and ant-dispersed), invasive thistles, Cirsium arvense and Carduus nutans, in Colorado, USA. We also conducted behavior trials to explore the potential of different ant species to disperse seeds, and we quantified which potential ant dispersers were prevalent at our study locations. Both ants and vertebrate predators removed significant amounts of C. arvense and C. nutans seed, with the relative proportion of seed removed by each guild varying by location. The behavior trials revealed clear seed preferences among three ant species as well as differences in the foragers’ abilities to move seeds. In addition, two ant species that acted as potential dispersal agents were dominant at the study locations. Since local conditions in part determined whether dispersers or predators removed more seed, it is possible that some thistle populations benefit from a net dispersal effect, while others suffer proportionally more predation. Additionally, because the effectiveness of potential ant dispersers is taxon-specific, changes in ant community composition could affect the seed-dispersal dynamics of these thistles. Until now, most studies describing dispersal dynamics in C. arvense and C. nutans have focused on primary dispersal by wind or pre-dispersal seed predation by insects. Our findings suggest that animal-mediated dispersal and post-dispersal seed predation deserve further consideration.  相似文献   

11.
Soil seed banks are important to many plant communities and are recognized as an important component of management plans. Understanding seed bank composition and density is especially important when communities have been invaded by exotic species and must be managed to promote desirable species. We examined germinable soil seed banks in southern California coastal sage scrub (CSS) that is heavily invaded by exotic grasses and in adjacent exotic grassland. Soils from both communities had similar seed banks, dominated by high densities of exotic grass and forb species. Up to 4,000 exotic grass seeds and at least 400 exotic forb seeds/m2 were found in most soils, regardless of aboveground vegetation type. Native forbs averaged 400 seeds/m2 in grass-dominated areas and about 800 in shrub-dominated soils. Shrub seed density was <1 and <10 seeds/m2 in grass- and shrub-dominated areas, respectively, indicating that the shrub seed bank is not persistent compared to annuals. We also compared pre- and post-burn soil seed banks from one location that burned in October 2003. Late-season burning in both grass- and CSS-dominated areas disproportionately reduced exotic grass seed densities relative to native seed densities. The similarity of the seed banks in adjacent grass and shrub communities suggests that without intervention, areas currently dominated by CSS may become more similar to grass-dominated areas in terms of aboveground vegetation. In such areas, the first growing season following a wildfire is a window of opportunity for increasing native diversity at a time when density of exotic grass seeds is low. At time of research, Robert D. Cox was graduate student.  相似文献   

12.
Dry forests are among the most endangered natural communities in the Hawaiian Islands. Most have been reduced to isolated trees and small forest fragments in which native tree species reproduce poorly. The replacement of native birds by introduced generalists may be contributing to dry forest decline through modification of seed dispersal patterns. To document seed dispersal by introduced birds, we conducted foraging observations on fleshy-fruited trees and measured seed rain under trees and in adjacent open areas for 1 year in a dry forest dominated by native trees. Although trees covered only 15.2 percent of the study area, 96.9 percent of the bird-dispersed seeds were deposited beneath them. The Japanese white-eye (Zosterops japonicus) was the principal dispersal agent. Among bird-dispersed seeds, those of the invasive tree Bocconia frutescens accounted for 75 percent of all seeds collected beneath trees (14.8 seeds/m2/yr) and the invasive shrub Lantana camara accounted for 17 percent. Although nearly 60 percent of the reserve's native woody species possess fleshy fruits, introduced birds rarely disperse their seeds. Native trees accounted for <8 percent of all bird-dispersed seeds and are consequently experiencing dispersal failure by falling directly under parent trees. Smaller-seeded non-native plants, in contrast, may be benefiting from dispersal by introduced birds. Current dispersal patterns suggest that these readily disseminated non-native plants may eventually replace the remaining native flora.  相似文献   

13.
S. Luke Flory  Keith Clay 《Oecologia》2010,164(4):1029-1038
Multiple factors can affect the process of forest succession including seed dispersal patterns, seedling survival, and environmental heterogeneity. A relatively understudied factor affecting the process of succession is invasions by non-native plants. Invasions can increase competition, alter abiotic conditions, and provide refuge for consumers. Functional traits of trees such as seed size and life history stage may mediate the effects of invasions on succession. We tested the effects of the forest invader Microstegium vimineum on planted and naturally regenerating trees in a multi-year field experiment. We established plots containing nine species of small- and large-seeded tree species planted as seeds or saplings, and experimentally added Microstegium to half of all plots. Over 3 years, Microstegium invasion had an overall negative effect on small-seeded species driven primarily by the effect on sweetgum, the most abundant small-seeded species, but did not affect large-seeded species such as hickory and oak species, which have more stored seed resources. Natural regeneration was over 400% greater in control than invaded plots for box elder, red maple, and spicebush, and box elder seedlings were 58% smaller in invaded plots. In contrast to the effects on tree seedlings, invasion did not affect tree sapling survival or growth. Microstegium may be directly reducing tree regeneration through competition. Invaded plots had greater overall herbaceous biomass in 2006 and 2008 and reduced light availability late in the growing season. Indirect effects may also be important. Invaded plots had 120% more thatch biomass, a physical barrier to seedling establishment, and significantly greater vole damage to tree saplings during 2006 and 2007. Our results show that two tree functional traits, seed size and life history stage, determined the effects of Microstegium on tree regeneration. Suppression of tree regeneration by Microstegium invasions may slow the rate of forest succession and alter tree species composition.  相似文献   

14.
Deserts shrubs are well known to facilitate vegetation aggregation, mostly through seed trapping, and stress amelioration during and after plant establishment. Because vegetation aggregation effects are a by‐product of shrub presence, beneficiary species may not only be native, but also exotic. However, despite the high risk that exotic invasive species pose to ecosystem services, little is known of the role of desert shrubs on plant invasions. We assessed the influence of two shrub species on the non‐dormant soil seed bank (i.e. the number of seeds that readily germinate with sufficient water availability) of an invasive annual grass (Schismus barbatus) and of coexisting native species in a central‐northern Monte Desert (Argentina). Soil samples were collected beneath the canopies of two dominant shrub species (Bulnesia retama and Larrea divaricata) and in open spaces (i.e. intercanopies) in May 2001. Overall, the density of germinated seedlings of Schismus and that of the native species were negatively associated across microsite types. Schismus density was similar to that of all native species pooled together (mostly annuals), and was highest in Larrea samples (with no significant differences between Bulnesia and intercanopies). On the contrary, the density of all native species pooled together was highest in Bulnesia samples. Our results suggest that shrubs may contribute to plant invasions in our study system but, most importantly, they further illustrate that this influence can be species specific. Further research is needed to assess the relative importance of in situ seed production (and survival) and seed redistribution on soil seed bank spatial patterns.  相似文献   

15.
Summary We conducted a greenhouse study of the effects of initial seed mass on seedling characteristics in a Panamanian population of Virola surinamensis, a canopy tree in which mean seed mass of different individuals ranges from 1.34 to 4.04g. The system is of particular interest because birds preferentially eat fruits of small-seeded plants, leaving seedlings of large-seeded individuals under conditions of potentially severe sibling competition (Howe and Vande Kerckhove 1980).Effects of differences of mean seed mass between trees are explored using an analysis of variance, while effects of seed-mass variation within crops are demonstrated with a regression analysis. A two-way analysis of variance decisively shows effects of parental source and light condition on seedling height, leaf length, and dry shoot mass (all P<0.0001). A posteriori tests show that differences in seedling characteristics reflect differences in initial seed mass, with especially strong differences apparent in shoot mass. Regression of seedling characteristics on initial seed mass shows that variation of seed size within a crop is sufficient to influence shoot mass at 15 weeks (P<0.0001).Effects of size differences of seeds that land adjacent to each other, either under the parent or in monkey droppings, are documented with growth of pairs of seedlings in pots. Differences in shoot height and mass at 15 weeks are evident when seeds of average size differ by only 0.2 g, and dramatic differences are evident when paired seeds differ by an average of 1.5 g. Seedlings grow more when isolated than when planted with conspecifics.These experimental results offer indirect support for the hypothesis that small-seeded Virola parents secure an advantage in reproduction through differential dispersal, while large-seeded plants produce more competitive seedlings under their own crowns — an advantage most likely to be of importance when frugivores are scarce.  相似文献   

16.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

17.
The incorporation of an animal-dispersed exotic plant species into the diet of native frugivores can be an important step to that species becoming invasive. We investigated bird dispersal of Lonicera maackii, an Asian shrub invasive in eastern North America. We (i) determined which species of birds disperse viable L. maackii seeds, (ii) tested the effect of gut passage on L. maackii seeds, and (iii) projected the seed shadow based on habitat use by a major disperser. We found that four native and one exotic bird species dispersed viable L. maackii seeds. Gut passage through American robins did not inhibit germination, but gut passage through cedar waxwings did. American robins moved mostly along woodlot edges and fencerows, leading us to project that most viable seeds would be defecated in such habitats, which are very suitable for L. maackii. We conclude that L. maackii has been successfully incorporated into the diets of native and exotic birds and that American robins preferentially disperse seeds to suitable habitat.  相似文献   

18.
Carney SE  Byerley MB  Holway DA 《Oecologia》2003,135(4):576-582
We investigated the indirect effects of Argentine ant (Linepithema humile) invasions on patterns of seed dispersal and predation in the myrmecochorous tree poppy Dendromecon rigida in coastal San Diego County, California. Significantly more seeds were removed from ant-accessible seed stations at sites numerically dominated by a common harvester ant (Pogonomyrmex subnitidus), a native disperser of these seeds and a species sensitive to displacement by L. humile, than from those stations at sites where L. humile was in the majority. Predation of seeds was high, but variable, across sites, suggesting that reduced dispersal could result in increased seed predation in some habitats. Removal of elaiosomes did not affect the frequency with which predators removed seeds, but ants removed significantly more seeds with elaiosomes than without. In behavior trials, only P. subnitidus was able to carry seeds of Dendromecon rigida effectively. L. humile and a small native ant species, Dorymyrmex insanus, while displaying interest in the diaspores, were seldom able to carry whole seeds and, when they did, only carried them a few centimeters. Displacement of native harvester ants by L. humile appears to decrease the dispersal of Dendromecon rigida seeds and may be increasing loss of seeds due to predation.  相似文献   

19.
When populations of native predators are subsidized by numerically dominant introduced species, the structure of food webs can be greatly altered. Surprisingly little is known, however, about the general factors that influence whether or not native predators consume introduced species. To learn more about this issue, we examined how native pit-building ant lions (Myrmeleon) are affected by Argentine ant (Linepithema humile) invasions in coastal southern California. Compared to areas without L. humile, invaded areas contained few native ant species and were deficient in medium-sized and large bodied native ants. Based on these differences, we predicted that Argentine ants would negatively affect ant lion larvae. Contrary to this expectation, observational surveys and laboratory growth rate experiments revealed that Myrmeleon were heavier, had longer mandibles, and grew more quickly when their main ant prey were Argentine ants rather than native ants. Moreover, a field transplant experiment indicated that growth rates and pupal weights were not statistically different for larval ant lions reared in invaded areas compared to those reared in uninvaded areas. Argentine ants were also highly susceptible to capture by larval Myrmeleon. The species-level traits that presumably make Argentine ant workers susceptible to capture by larval ant lions—small size and high activity levels—appear to be the same characteristics that make them unsuitable prey for vertebrate predators, such as horned lizards. These results underscore the difficulties in predicting whether or not numerically dominant introduced species serve as prey for native predators.  相似文献   

20.
Soil seedbanks play a key role in forest plant communities, contributing to regeneration and acting as a refuge from seed predators. This study provides evidence that seeds entering the soil seedbank are vulnerable to granivory by invasive earthworms in temperate forests. Overall, 73 % of seeds of 6 ecologically important forest species were removed from the soil surface over 2 weeks in a Lumbricus terrestris microcosm experiment; 30 % vanished entirely, and presumably were destroyed. The invasive garlic mustard, Alliaria petiolata, was subject to the highest rates of removal. In contrast, results from a field exclosure experiment using 23 species of seed indicate that while seed predation by worms is still detectable, predation by rodents often may mask impacts of earthworms under natural conditions. Worms and rodents preferred different sizes of seeds: while seed predation by rodents was high in mid- to large-seeded species, earthworms tended to prefer smaller seeds. These findings suggest that although rodents are the main driver of seed predation, invasive earthworms may act as an additional ecological filter, and potentially may further influence the species composition of forest plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号