共查询到20条相似文献,搜索用时 15 毫秒
1.
环境因素对DNA甲基化的影响 总被引:1,自引:0,他引:1
在哺乳动物中, DNA甲基化是指在DNA 甲基转移酶(DNA-methyl transferase, DNMT)的作用下, 以S-腺苷甲硫氨酸提供甲基供体, 将其甲基转移到脱氧胞嘧啶环第5位碳原子形成甲基化脱氧胞嘧啶的共价修饰。DNA甲基化改变组蛋白和DNA之间的相互作用, 使染色质构象发生改变从而影响基因的表达, 总体来说DNA甲基化水平与基因的表达呈负相关。越来越多的报道证实, 环境因素可以影响表观遗传修饰, 其并没有涉及遗传信息的改变, 所以在一定范围内可以解释表型变化。文章围绕环境因素(温度、营养供给、异常化学因子、早期环境刺激和辐射等)对DNA甲基化产生的影响进行综述, 这些影响包括亲代和子代DNA甲基化的改变及子代行为和表型变化等方面, 以期进一步阐释环境因素与基因互作的关系。 相似文献
2.
3.
DNA甲基化是一种重要的表观遗传调控方式,可在转录前水平调节基因的表达.近年来的研究表明,动脉粥样硬化的发生发展与DNA甲基化密切相关. 对DNA甲基化模式改变在动脉粥样硬化发病的相关机制做深入研究,可能为动脉粥样硬化的诊治提供一种新的途径.本文将从基因组低甲基化、相关基因异常甲基化以及动脉粥样硬化危险因素的DNA甲基化等方面重点阐述DNA甲基化与动脉粥样硬化的关系. 相似文献
4.
Phenotypic variation determines the capacity of plants to adapt to changing environments and to colonize new habitats. Deciphering the mechanisms contributing to plant phenotypic variation and their effects on plant ecological interactions and evolutionary dynamics is thus central to all biological disciplines. In the past few decades, research on plant epigenetics is showing that (1) epigenetic variation is related to phenotypic variation and that some epigenetic marks drive major phenotypic changes in plants; (2) plant epigenomes are highly diverse, dynamic, and can respond rapidly to a variety of biotic and abiotic stimuli; (3) epigenetic variation can respond to selection and therefore play a role in adaptive evolution. Yet, current information in terms of species, geographic ranges, and ecological contexts analyzed so far is too limited to allow for generalizations about the relevance of epigenetic regulation in phenotypic innovation and plant adaptation across taxa. In this report, we contextualize the potential role of the epigenome in plant adaptation to the environment and describe the latest research in this field presented during the symposium “Plant epigenetics: phenotypic and functional diversity beyond the DNA sequence” held within the Botany 2020 conference framework in summer 2020. 相似文献
5.
6.
7.
8.
9.
Yan Wang Huijie Liu Zhongsheng Sun 《Biological reviews of the Cambridge Philosophical Society》2017,92(4):2084-2111
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non‐genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non‐DNA sequence‐based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment‐induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non‐coding RNAs, are also summarized. We particularly focus on evidence that parental environment‐induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex‐specific effects. The thought‐provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome‐wide level and single‐cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment‐induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non‐mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene–environment interactions shape developmental processes and physiological functions, which in turn may have wide‐ranging implications for human health, and understanding biological adaptation and evolution. 相似文献
10.
11.
本文综述了哺乳动物的基因组“印记”的最新研究进展。阐述了基因组“印记”的可能机制及一些最新定位的“印记”基因,并论述了基因组“印记”在发育生物学、遗传学和物种进化研究中的生物学意义。Abstract:This article reviews the recent advance in genome“imprinting”in mammalian.It covers data on mechanisms of gene imprinting,several imprinted genes that were recently identified and the biological significance of genome imprint in development,genetics and Darwinian evolution. 相似文献
13.
Cropley JE Dang TH Martin DI Suter CM 《Proceedings. Biological sciences / The Royal Society》2012,279(1737):2347-2353
Natural selection acts on variation that is typically assumed to be genetic in origin. But epigenetic mechanisms, which are interposed between the genome and its environment, can create diversity independently of genetic variation. Epigenetic states can respond to environmental cues, and can be heritable, thus providing a means by which environmentally responsive phenotypes might be selectable independent of genotype. Here, we have tested the possibility that environment and selection can act together to increase the penetrance of an epigenetically determined phenotype. We used isogenic A(vy) mice, in which the epigenetic state of the A(vy) allele is sensitive to dietary methyl donors. By combining methyl donor supplementation with selection for a silent A(vy) allele, we progressively increased the prevalence of the associated phenotype in the population over five generations. After withdrawal of the dietary supplement, the shift persisted for one generation but was lost in subsequent generations. Our data provide the first demonstration that selection for a purely epigenetic trait can result in cumulative germline effects in mammals. These results present an alternative to the paradigm that natural selection acts only on genetic variation, and suggest that epigenetic changes could underlie rapid adaptation of species in response to natural environmental fluctuations. 相似文献
14.
植物表观遗传与DNA甲基化 总被引:1,自引:0,他引:1
表观遗传在植物生长发育过程中起着极其重要的作用。甲基化是基因组DNA的一种主要表观遗传修饰形式,是调节基因功能的重要手段。介绍了植物体中胞嘧啶甲基化现象,RNA指导的DNA甲基化的信号分子、作用机制,以及与RNA介导的基因沉默机制之间的区别和RNA对转座子的表观控制。 相似文献
15.
16.
Embryonic stem (ES) cells distinct themselves from other cell type populations by their pluripotent ability. The unique features
of ES cells are controlled by both genetic and epigenetic factors. Studies have shown that the methylation status of DNA and
histones in ES cells is quite different from that of differentiated cells and somatic stem cells. Herein, we summarized recent
advances in DNA and histone methylation studies of mammalian ES cells. The methylation status of several key pluripotent regulatory
genes is also discussed. 相似文献
17.
Xi He Jiaojiao Liu Bo Liu Jingshan Shi 《Experimental biology and medicine (Maywood, N.J.)》2021,246(4):436
One of the key characteristics of aging is a progressive loss of physiological integrity, which weakens bodily functions and increases the risk of death. A robust biomarker is important for the assessment of biological age, the rate of aging, and a person''s health status. DNA methylation clocks, novel biomarkers of aging, are composed of a group of cytosine-phosphate-guanine dinucleotides, the DNA methylation status of which can be used to accurately measure subjective age. These clocks are considered accurate biomarkers of chronological age for humans and other vertebrates. Numerous studies have demonstrated these clocks to quantify the rate of biological aging and the effects of longevity and anti-aging interventions. In this review, we describe the purpose and use of DNA methylation clocks in aging research. 相似文献
18.
Simon N. Jarman Andrea M. Polanowski Cassandra E. Faux Jooke Robbins Ricardo De Paoli‐Iseppi Mark Bravington Bruce E. Deagle 《Molecular ecology》2015,24(19):4826-4847
The chronological age of an individual animal predicts many of its biological characteristics, and these in turn influence population‐level ecological processes. Animal age information can therefore be valuable in ecological research, but many species have no external features that allow age to be reliably determined. Molecular age biomarkers provide a potential solution to this problem. Research in this area of molecular ecology has so far focused on a limited range of age biomarkers. The most commonly tested molecular age biomarker is change in average telomere length, which predicts age well in a small number of species and tissues, but performs poorly in many other situations. Epigenetic regulation of gene expression has recently been shown to cause age‐related modifications to DNA and to cause changes in abundance of several RNA types throughout animal lifespans. Age biomarkers based on these epigenetic changes, and other new DNA‐based assays, have already been applied to model organisms, humans and a limited number of wild animals. There is clear potential to apply these marker types more widely in ecological studies. For many species, these new approaches will produce age estimates where this was previously impractical. They will also enable age information to be gathered in cross‐sectional studies and expand the range of demographic characteristics that can be quantified with molecular methods. We describe the range of molecular age biomarkers that have been investigated to date and suggest approaches for developing the newer marker types as age assays in nonmodel animal species. 相似文献
19.
被子植物的种子发育从双受精开始, 产生二倍体的胚和三倍体的胚乳。在种子发育和萌发过程中, 胚乳向胚组织提供营养物质, 因此胚乳对胚和种子的正常生长发育至关重要。开花植物发生基因组印迹的主要器官是胚乳。印迹基因的表达受表观遗传学机制的调控, 包括DNA甲基化和组蛋白H3K27甲基化修饰以及依赖于PolIV的siRNAs (p4-siRNAs)调控。基因组印迹的表观遗传学调控对胚乳的正常发育和种子育性具有不可或缺的重要作用。最新研究显示, 胚乳的整个基因组DNA甲基化水平降低, 而且去甲基化作用可能源于雌配子体的中央细胞。该文综述了种子发育的表观遗传学调控机制, 包括基因组印迹机制以及胚乳基因组DNA甲基化变化研究的最新进展。 相似文献