首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The chromatographic chiral resolution of two new series of racemic 4‐substituted‐1,4‐dihydropyridine derivatives was studied on a commercial Chiralpak AD‐H column. Analytes without 5,5‐dimethyl substituents ( 1–15 ) are more efficiently resolved than analytes with 5,5‐dimethyl groups ( 16–30 ). The AD‐H column discriminated between enantiomers through both hydrogen bonding attractions and π–π interactions. This interpretation is in accord with plots of the logarithm of separation factors, log(α), versus σ (Hammett–Swain substituent parameter) and σ+ (Brown substituent constant) plots. By elucidating the effects of the remote substituents on these chiral separations, it was shown that the influence of π–π interaction forces increase when steric bulk effects act to decrease the hydrogen bonding attractive forces on the AD‐H column. Chirality 24:854–859, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Chiral resolutions of trifluoroacetyl‐derivatized 1‐phenylalkylamines with different type and position of substituent were investigated by capillary gas chromatography by using heptakis(2,3‐di‐O‐methyl‐6‐Otert‐butyldimethylsilyl)‐β‐cyclodextrin diluted in OV‐1701 as a chiral stationary phase. The influence of column temperature on retention and enantioselectivity was examined. All enantiomers of meta‐substituted analytes as well as fluoro‐substituted analytes could be resolved. Temperature had a favorable influence on enantioselectivity for small amines with substituents at the ortho‐position. The type of substituent at the stereogenic center of amines also had a crucial effect as the ethyl group led to poor enantioseparation. Among all analytes studied, trifluoroacetyl‐derivatized 1‐(2′‐fluorophenyl)ethylamine exhibited baseline resolution with the shortest analysis time.  相似文献   

3.
The enantiomers of four unusual isoxazoline‐fused 2‐aminocyclopentanecarboxylic acids were directly separated on chiral stationary phases containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The nature of the alcoholic modifier (MeOH, EtOH, IPA) exerted a great effect on the retention, whereas the selectivity and resolution did not change substantially. Two types of dependence of retention on alcohol content were detected: k1 increased continuously with increasing alcohol content or a U‐shaped retention curve was observed. A comparison of the chromatographic data obtained with HCOOH, AcOH, TFA, HClO4, H2SO4, or H3PO4 as acidic modifier at a constant concentration demonstrated that in most cases, larger k values were obtained on the application of AcOH or HCOOH, and an increase of the acid content resulted in a decrease of retention. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes and selector. The sequence of elution of the enantiomers was determined in all cases. Chirality 24:817‐824, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
A direct chiral liquid chromatography–circular dichroism (LC‐CD) method was developed for the simple and rapid identification of N‐octylnortadalafil [(6R, 12aR)‐6‐(1,3‐benzodioxol‐5‐yl)‐2‐octyl‐2,3,6,7,12,12a‐hexahydropyrazino[1’,2’:1,6]pyrido[3,4‐b]indole‐1,4‐dione; RR‐OTDF] and its stereoisomers in dietary supplements. Samples were extracted with methanol. Compounds were then separated by chiral LC‐CD using Chiralcel OD‐RH (4.6 × 1 50 mm, 5 µm) with 5 mM ammonium formate (pH 3)/0.1% formic acid in acetonitrile (95:5, v/v) mixture solution (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). The isocratic elution used was mobile phase A / mobile phase B (3:7, v/v) at a flow rate of 1 ml/min. The column temperature was held at 30°C. RR‐OTDF and its stereoisomers were separated within 20 min with the resolution factors being over 2.0. Using this method, RR‐OTDF and (6R, 12aS)‐6‐(1,3‐benzodioxol‐5‐yl)‐2‐octyl‐2,3,6,7,12,12a‐hexahydropyrazino[1’,2’:1,6]pyrido[3,4‐b]indole‐1,4‐dione were detected in a dietary supplement. Chirality 28:204–208, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Paola Peluso  Sergio Cossu 《Chirality》2013,25(11):709-718
With the aim to define a combined computational/chromatographic empirical approach useful for the high‐performance liquid chromatography (HPLC) method development of new chiral compounds, 36 racemic aromatic compounds with different chemical structures were used as test probes on four polysaccharide‐based chiral stationary phases (CSPs) of the Lux series, namely Lux Cellulose‐1, Lux Cellulose‐2, Lux Cellulose‐4, and Lux Amylose‐2, using classical n‐hexane/2‐propanol mixtures as mobile phase. Electrostatic potential surfaces (EPSs) determined using Density Functional Theory (DFT) calculations were used to derive size, shape, and electronic properties of each analyte. Then a comparative HPLC screening was carried out in order to evaluate the impact of substituents, shapes, and electronic properties of the analytes on the chromatographic behavior as the column changes. The four CSPs showed good complementary recognition ability. The elution sequence was determined in 30 cases out of 36. The success rate to afford baseline separations (Rs ≥ 1.5) was estimated: 29 compounds out of 36 showed baseline enantioseparation on at least one of the four selected CSPs. The combined computational‐chromatographic screening furnished useful collective structure‐chromatographic behavior relationships and a map of the chiral discrimination abilities of the considered CSPs towards the analytes. On this basis, the chromatographic behavior of new analytes on a set of polysaccharide‐based CSPs can be mapped through the qualitative correlation of chromatographic parameters (k, α, Rs) to computed molecular properties of the analytes. Chirality 25:709–718, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
《Chirality》2017,29(6):247-256
The enantioresolution and determination of the enantiomeric purity of 32 new xanthone derivatives, synthesized in enantiomerically pure form, were investigated on (S ,S )‐Whelk‐O1 chiral stationary phase (CSP). Enantioselectivity and resolution (α and RS) with values ranging from 1.41–6.25 and from 1.29–17.20, respectively, were achieved. The elution was in polar organic mode with acetonitrile/methanol (50:50 v/v ) as mobile phase and, generally, the (R )‐enantiomer was the first to elute. The enantiomeric excess (ee ) for all synthesized xanthone derivatives was higher than 99%. All the enantiomeric pairs were enantioseparated, even those without an aromatic moiety linked to the stereogenic center. Computational studies for molecular docking were carried out to perform a qualitative analysis of the enantioresolution and to explore the chiral recognition mechanisms. The in silico results were consistent with the chromatographic parameters and elution orders. The interactions between the CSP and the xanthone derivatives involved in the chromatographic enantioseparation were elucidated.  相似文献   

7.
A chiral ligand‐exchange high‐performance liquid chromatography method was developed for the enantioseparation of ofloxacin and its six related substances termed impurities A, B, C, D, E, and F. The separation was performed on a conventional C18 column. Different organic modifiers, copper salts, amino acids, the ratio of Cu2+ to amino acid, pH of aqueous phase, and column temperature were optimized. The optimal mobile phase conditions were methanol‐water systems consisting of 5 mmol/L copper sulfate and 10 mmol/L L‐isoleucine (L‐Ile). Under such conditions, good enantioseparation of ofloxacin and impurities A, C, E, and F could be observed with resolutions (RS) of 3.54, 1.97, 3.21, 3.50, and 2.12, respectively. On the relationship between the thermodynamic parameters and structures of analytes, the mechanism of chiral recognition was investigated. It was concluded that ofloxacin and impurities A, C, E, and F were all enthalpically driven enantioseparation and that low column temperature was beneficial to enantioseparation. Furthermore, the structure–separation relationship of these analytes is also discussed. Chirality 27:843–849, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Four groups of organophosphonate derivatives enantiomers were separated on N‐(3,5‐dinitrobenzoyl)‐S‐leucine chiral stationary phase. The three‐dimensional structures of the complexes between the single enantiotopic chiral compounds and chiral stationary phase have been studied using molecular model and molecular dynamics simulation. Detailed results regarding the conformation, auto‐docking, and thermodynamic estimation are presented. The elution order of the enantiomer could be determined from the energy. The predicted chiral discrimination was obtained by computational results. Chirality 25:101–106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

10.
《Chirality》2017,29(2):80-88
A simple and efficient high‐performance thin‐layer chromatographic method was developed for chiral separation of rac ‐bupropion (BUP) and its active metabolite rac ‐hydroxybupropion (HBUP). Design of experiment (DoE)‐based optimization was adopted instead of a conventional trial‐and‐error approach. The Box–Behnken design surface response model was used and the operating variables were optimized based on 17 trials design. The optimized method involved impregnation of chiral reagent, L(+)‐tartaric acid, in the stationary phase with simultaneous addition in the mobile phase, which consisted of acetonitrile : methanol : dichloromethane : 0.50% L‐tartaric acid (6.75:1.0:1.0:0.25, v /v /v /v ). Under the optimized conditions, the resolution factor between the enantiomers of BUP and HBUP was 6.30 and 9.26, respectively. The limit of detection and limit of quantitation for (R)‐BUP, (S)‐BUP, (R,R)‐HBUP, and (S,S)‐HBUP were 9.23 and 30.78 ng spot−1, 10.32 and 34.40 ng spot−1, 12.19 and 40.65 ng spot−1, and 14.26 and 47.53 ng spot−1, respectively. The interaction of L‐tartaric acid with analytes and their retention behavior was thermodynamically investigated using van't Hoff's plots. The developed method was validated as per the International Conference on Harmonization guidelines. Finally, the method was successfully applied to resolve and quantify the enantiomeric content from marketed tablets as well as spiked plasma samples.  相似文献   

11.
An easy‐to‐prepare chiral CE method for the enantiomeric separation of 13 new amphetamine‐like designer drugs, using CDs as chiral selectors, was developed. Sulfated‐β‐CD was found to be the best chiral selector among the three used (sulfated‐β‐CD, caroboxymethyl‐β‐CD, dimethyl‐β‐CD). The separation of the analytes was achieved in a fused‐silica gel capillary at 20 °C using an applied voltage of +25 kV. The optimized background electrolyte consisted of 63.5 mM H3PO4 and 46.9 mM NaOH in water. Several electrophoretic parameters such as CD type, CD concentration (1 ? 40 mg/mL), buffer pH (2.6, 3.6, 5.0, 6.0), length of the capillary (70 ? 40 cm total length), amount of the organic solvent (methanol and acetonitrile) were investigated and optimized. Chirality 25:617–621, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The effects of temperature on the chiral recognition of cyclic β‐amino acid enantiomers on zwitterionic [Chiralpak ZWIX(+) and ZWIX(–)] chiral stationary phases were investigated. Experiments were performed at different mobile phase compositions and under 10°C column temperature increments in the temperature range 10–50°C. Apparent thermodynamic parameters and Tiso values were calculated from plots of ln k and ln α versus 1/T, respectively. Unusual temperature behavior was observed, especially on the ZWIX(–) column, where the application of MeOH/MeCN (50/50 v/v) containing 25 mM triethylamine and 50 mM formic acid as mobile phase led to nonlinear van't Hoff plots and increasing retention time with increasing temperature. On both columns, both enthalpically and entropically driven separations were observed. Chirality 26:385–393, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
A new and accurate HPLC method using β‐cyclodextrin chemically bonded to spherical silica particles as chiral stationary phase (CSP) was developed and validated for determination of S‐clopidogrel and its impurities R‐enantiomer and S‐acid as a hydrolytic product. The effects of acetonitrile and methanol content in the mobile phase and temperature on the resolution and retention of enantiomers were investigated. A satisfactory resolution of S‐clopidogrel active form and its impurities was achieved on ChiraDex® column (5 μm, 4 × 250 mm) at a flow rate of 1.0 ml/min and 17°C using acetonitrile, methanol and 0.01 M potassium dihydrogen phosphate solution (15:5:80 v/v/v) as mobile phase. The detection wavelength was set at 220 nm. The method was validated in terms of accuracy, precision, linearity, and robustness. The limit of detection for R‐enantiomer and S‐acid were 0.75 and 0.09 μg/ml, respectively, injection volume being 20 μl. Finally, the molecular modeling of the inclusion complexes between the analytes and β‐cyclodextrin was performed to investigate the mechanism of the enantiorecognition and to study the quantitative structure–retention relationships. Chirality, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Chiral functionalization of 2,4,5,6‐tetrachloro‐1,3‐dicyanobenzene (1) by regioselective nucleophilic substitution of one or two chlorine atoms by optically pure (R)‐(+)‐1‐naphthylethylamine (NEA), or by a glycine unit as a spacer to (R)‐NEA, enables the preparation of brush‐type chiral selectors (2, 3, 9, 13). By the introduction of the 3‐aminopropyltriethoxysilyl (APTES) group, reactive intermediates 4a/b, 5, 10a/b, and 14a/b are obtained ( a/b indicate a mixture of regioisomers with APTES in 6‐ and 2‐position). Binding of these to silica gel afforded four novel chiral stationary phases (CSPs) 6, 7, 15, and 16. HPLC columns containing CSPs with (R)‐NEA directly linked to polysubstituted aromatic ring (6, 7) are not very effective in resolution of most of the 23 racemic analytes, whereas the columns with distant π‐basic subunits (15, 16) exhibited higher resolving efficacy, in particular towards the isopropyl esters of racemic N‐3,5‐dinitrobenzoyl‐α‐amino acids. Effective resolution of test racemates reveals the importance of the presence of the hydrogen bond donor amido group and the distance between the persubstituted benzene ring in 1 and the π‐basic naphthalene ring of (R)‐NEA. Chirality 11:722–730, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
Myung Ho Hyun 《Chirality》2015,27(9):576-588
Crown ether‐based chiral stationary phases (CSPs) have been known to be useful for the resolution of racemic primary amino compounds. In particular, CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid have been reported to be useful for the resolution of secondary amino compounds as well as primary amino compounds. In this article, the process of developing various CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid to improve the chiral recognition efficiency and/or the stability of the CSPs and their applications to the resolution of various primary and nonprimary amino compounds are reviewed. Chirality 27:576588, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
A novel method was developed for the simultaneous determination of guaifenesin (GUA) and ketorolac tromethamine (KET) enantiomers in plasma samples. Since GUA probably increases the absorption of coadministered drugs (e.g., KET), it would be extremely important to monitor KET plasma levels for the purpose of dose adjustment with a subsequent decrease in the side effects. Enantiomeric resolution was achieved on a polysaccharide‐based chiral stationary phase, amylose‐2, as a chiral selector under the normal phase (NP) mode and using ornidazole (ORN) as internal standard. This innovative method has the advantage of the ease and reliability of sample preparation for plasma samples. Sample clean‐up was based on simply using methanol for protein precipitation followed by direct extraction of drug residues using ethanol. Both GUA and KET enantiomers were separated using an isocratic mobile phase composed of hexane/isopropanol/trifluoroacetic acid, 85:15:0.05 v/v/v. Peak area ratios were linear over the range 0.05–20 µg/mL for the four enantiomers S (+) GUA, R (–) GUA, R (+) KET, and S (–) KET. The method was fully validated according to the International Conference on Harmonization (ICH) guidelines in terms of system suitability, specificity, accuracy, precision, robustness, and solution stability. Finally, this procedure was innovative to apply the rationale of developing a chiral high‐performance liquid chromatography (HPLC) procedure for the simultaneous quantitative analysis of drug isomers in clinical samples. Chirality 26:629–639, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
《Chirality》2017,29(1):38-47
High‐performance liquid chromatography (HPLC) is a powerful method in the area of chiral separation. In this study, a method of HPLC using carboxymethyl‐β‐cyclodextrin (CM‐β‐CD) as chiral selector was developed for enantioseparation of nine indanone and tetralone derivatives. The separation was performed on a conventional C18 column. The optimal mobile phase was a mixture of methanol and 0.05 mol/L phosphate buffer at pH 1.8 (55:45, v /v) containing 22.9 mmol/L CM‐β‐CD. Under such conditions, the resolutions of all analytes were over 1.8 except for Compound F. The results of the study indicate the presence of a complex with 1:1 stoichiometry of the inclusion complex. In addition, it can be inferred from thermodynamic analysis that the behavior of formation of the inclusion complex and enantioseparation occurred simultaneously, while they were driven by different forces. The effect of analyte structure is also discussed.  相似文献   

18.
Liquid chromatographic enantiomer separation of several N‐benzyloxycarbonyl (CBZ) and Ntert‐butoxycarbonyl (BOC) α‐amino acids and their corresponding ethyl esters was performed on covalently immobilized chiral stationary phases (CSPs) (Chiralpak IA and Chiralpak IB) and coated‐type CSPs (Chiralpak AD and Chiralcel OD) based on polysaccharide derivatives. The solvent versatility of the covalently immobilized CSPs in enantiomer separation of N‐CBZ and BOC‐α‐amino acids and their ester derivatives was shown and the chromatographic parameters of their enantioselectivities and resolution factors were greatly influenced by the nature of the mobile phase. In general, standard mobile phases using 2‐propanol and hexane on Chiralpak IA showed fairly good enantioselectivities for resolution of N‐CBZ and BOC‐α‐amino acids and their esters. However, 50% MTBE/hexane (v/v) for resolution of N‐CBZ‐α‐amino acids ethyl esters and 20% THF/hexane (v/v) for resolution of N‐BOC‐α‐amino acids ethyl esters afforded the greatest enantioselectivities on Chiralpak IA. Also, liquid chromatographic comparisons of the enantiomer resolution of these analytes were made on amylose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IA and Chiralpak AD) and cellulose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IB and Chiralcel OD). Chiralpak AD and/or Chiralcel OD showed the highest enantioselectivities for resolution of N‐CBZ‐α‐amino acids and esters, while Chiralpak AD or Chiralpak IA showed the highest resolution of N‐BOC‐α‐amino acids and esters. Chirality 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
The gas chromatographic separation of enantiomers of 2‐Br carboxylic acid derivatives was studied on four different 6‐TBDMS‐2,3‐di‐O‐alkyl‐ β‐ and ‐γ‐CD stationary phases. The differences in thermodynamic data {ΔH and –ΔS} for the 15 structurally related racemates were evaluated. The influence of structure differences in the alkyl substituents covalently attached to the stereogenic carbon atom, as well as in the ester group of the homologous analytes, and the selectivity of modified β‐ and γ‐ cyclodextrin derivatives was studied in detail. The cyclodextrin cavity size, as well as elongation of alkyl substituents in positions 2 and 3 of 6‐TBDMS‐β‐CD, also affected their selectivity. The quality of enantiomeric separations is influenced mainly by alkyl chains of the ester group of the molecule and this appears to be independent of the CD stationary phase used. In some cases the separations occur as the result of external adsorption rather than inclusion complexations with the chiral selector. It was found that the temperature dependencies of the selectivity factor were nonlinear. Chirality 26:279–285, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The resolution of seven enantiomeric pairs of chiral derivatives of xanthones (CDXs) on (S,S)‐Whelk‐O1 and l ‐phenylglycine chiral stationary phases (CSPs) was systematically investigated using multimodal elution conditions (normal‐phase, polar‐organic, and reversed‐phase). The (S,S)‐Whelk‐O1 CSP, under polar‐organic conditions, demonstrated a very good power of resolution for the CDXs possessing an aromatic moiety linked to the stereogenic center with separation factor and resolution factor ranging from 1.91 to 7.55 and from 6.71 to 24.16, respectively. The chiral recognition mechanisms were also investigated for (S,S)‐Whelk‐O1 CSP by molecular docking technique. Data regarding the CSP–CDX molecular conformations and interactions were retrieved. These results were in accordance with the experimental chromatographic parameters regarding enantioselectivity and enantiomer elution order. The results of the present study fulfilled the initial objectives of enantioselective studies of CDXs and elucidation of intermolecular CSP–CDX interactions. Chirality 25:89–100, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号