首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Within the vertebrate nervous system, the presence of many different lineages of neurons and glia complicates the molecular characterization of single neuronal populations. In order to elucidate molecular mechanisms underlying the specification and development of corticospinal motor neurons (CSMN), we purified CSMN at distinct stages of development in vivo and compared their gene expression to two other pure populations of cortical projection neurons: callosal projection neurons and corticotectal projection neurons. We found genes that are potentially instructive for CSMN development, as well as genes that are excluded from CSMN and are restricted to other populations of neurons, even within the same cortical layer. Loss-of-function experiments in null mutant mice for Ctip2 (also known as Bcl11b), one of the newly characterized genes, demonstrate that it plays a critical role in the development of CSMN axonal projections to the spinal cord in vivo, confirming that we identified central genetic determinants of the CSMN population.  相似文献   

2.
Neuronal subtype specification in the cerebral cortex   总被引:6,自引:0,他引:6  
In recent years, tremendous progress has been made in understanding the mechanisms underlying the specification of projection neurons within the mammalian neocortex. New experimental approaches have made it possible to identify progenitors and study the lineage relationships of different neocortical projection neurons. An expanding set of genes with layer and neuronal subtype specificity have been identified within the neocortex, and their function during projection neuron development is starting to be elucidated. Here, we assess recent data regarding the nature of neocortical progenitors, review the roles of individual genes in projection neuron specification and discuss the implications for progenitor plasticity.  相似文献   

3.
4.
5.
In zebra finches, only males sing, and the neural regions controlling song exhibit prominent, hormone-induced sex differences in neuron number. In order to understand how sexual differentiation regulates neuron number within one song nucleus, the lateral magnocellular nucleus of the anterior neostriatum (IMAN), we studied the development of sex differences among IMAN neurons that project to the robust nucleus of the archistriatum (RA). The IMAN is implicated in song learning, and previous ontogenetic studies have indicated that males lose over 50% of their IMAN neurons during the juvenile song learning period. Based on developmental changes in both the extent of androgen accumulation within the IMAN and its appearance in Nissl-stained tissue, it had been hypothesized that IMAN neuron loss was even greater in young females, resulting in sex differences in neuron number. However, this hypothesis has not been tested directly because the Nissl-stained boundaries of the IMAN sometimes are ambiguous in young animals, and are not evident at all in adult females. To circumvent these problems, we employed the retrograde tracer fast blue to study the development of IMAN neurons defined on the basis of their projections to the RA. We find that the number of these IMAN-RA projection neurons is much greater in adult males than in females, and that this sex difference develops during the juvenile period of sexual differentiation and song learning because a significant number of these neurons are lost in females but not in males. With respect to sexual differentiation, we conclude that masculinization (which is stimulated by the hormone estradiol) promotes the retention of IMAN-RA projection neurons. In addition, our results indicate that any loss of IMAN neurons that may occur in young males does not include cells projecting to the RA.  相似文献   

6.
In zebra finches, only males sing, and the neural regions controlling song exhibit prominent, hormone-induced sex diffences in neuron number. In order to understand how sexual differentiation regulates neuron number within one song nucleus, the lateral magnocellular nucleus of the anterior neostriatum (IMAN), we studied the development of sex differences among IMAN neurons that project to the robust nucleus of the archistriatum (RA). The IMAN is implicated in song learning, and previous ontogenetic studies have indicated that males lose over 50% of their IMAN neurons during the juvenile song learning period. Based on developmental changes in both the extent of androgen accumulation within the IMAN and its appearance in Nissl-stained tissue, it had been hypothesized that IMAN neuron loss was even greater in young females, resulting in sex differences in neuron number. However, this hypothesis has not been tested directly because the Nissl-stained boundaries of the IMAN sometimes are ambiguous in young animals, and are not evident at all in adult females. To circumvent these problems, we employed the retrograde tracer fast blue to study the development of IMAN neurons defined on the basis of their projections to the RA. We find that the number of these IMAN-RA projection neurons is much greater in adult males than in females, and that this sex difference develops during the juvenile period of sexual differentiation and song learning because a significant number of these neurons are lost in females but not in males. With respect to sexual differentiation, we conclude that masculinization (which is stimulated by the hormone estradiol) promotes the retention of IMAN-RA projection neurons. In addition, our results indicate that any loss of IMAN neurons that may occur in young males does not include cells projecting to the RA. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.  相似文献   

8.
9.
10.
Pyramidal neurons are the principal neurons of the neocortex and their excitatory impact on other pyramidal neurons and interneurons is central to neocortical dynamics. A fundamental principal that has emerged which governs pyramidal neuron excitation of other neurons in the local circuitry of neocortical columns is differential anatomical and physiological properties of the synaptic innervation via the same axon depending on the type of neuron targeted. In this study we derive anatomical principles for divergent innervation of pyramidal neurons of the same type within the local microcircuit. We also review data providing circumstantial and direct evidence for differential synaptic transmission via the same axon from neocortical pyramidal neurons and derive some principles for differential synaptic innervation of pyramidal neurons of the same type, of pyramidal neurons and interneurons and of different types of interneurons. We conclude that differential anatomical and physiological differentiation is a fundamental property of glutamatergic axons of pyramidal neurons in the neocortex.  相似文献   

11.
12.
Dendritic morphology is the structural correlate for receiving and processing inputs to a neuron. An interesting question then is what the design principles and the functional consequences of enlarged or shrinked dendritic trees might be. As yet, only a few studies have examined the effects of neuron size changes. Two theoretical scaling modes have been analyzed, conservative (isoelectrotonic) scaling (preserves the passive and active response properties) and isometric scaling (steps up low pass-filtering of inputs). It has been suggested that both scaling modes were verified in neuroanatomical studies. To overcome obvious limitations of these studies like small size of analyzed samples and restricted validity of utilized scaling measures, we considered the scaling problem of neurons on the basis of large sample data and by employing a more general method of scaling analysis. This method consists in computing the morphoelectrotonic transform (MET) of neurons. The MET maps the neuron from anatomical space into electrotonic space using the logarithm of voltage attenuation as the distance metric. The theory underlying this approach is described and then applied to two samples of morphologically reconstructed pyramidal neurons (cells from neocortex of wildtype and synRas transgenic mice) using the NEURON simulator. In a previous study, we could verify a striking increase of dendritic tree size in synRas pyramidal neurons. Surprisingly, in this study the statistical analysis of the sample MET dendrograms revealed that the electrotonic architecture of these neurons scaled roughly in a MET-conserving mode. In conclusion, our results suggest only a minor impact of the Ras protein on dendritic electroanatomy, with non-significant changes of most regions of the corresponding METs.  相似文献   

13.
Allan DW  Park D  St Pierre SE  Taghert PH  Thor S 《Neuron》2005,45(5):689-700
In the Drosophila ventral nerve cord, a small number of neurons express the LIM-homeodomain gene apterous (ap). These ap neurons can be subdivided based upon axon pathfinding and their expression of neuropeptidergic markers. ap, the zinc finger gene squeeze, the bHLH gene dimmed, and the BMP pathway are all required for proper specification of these cells. Here, using several ap neuron terminal differentiation markers, we have resolved how each of these factors contributes to ap neuron diversity. We find that these factors interact genetically and biochemically in subtype-specific combinatorial codes to determine certain defining aspects of ap neuron subtype identity. However, we also find that ap, dimmed, and squeeze additionally act independently of one another to specify certain other defining aspects of ap neuron subtype identity. Therefore, within single neurons, we show that single regulators acting in numerous molecular contexts differentially specify multiple subtype-specific traits.  相似文献   

14.
Y Shi  P Kirwan  FJ Livesey 《Nature protocols》2012,7(10):1836-1846
Efficient derivation of human cerebral neocortical neural stem cells (NSCs) and functional neurons from pluripotent stem cells (PSCs) facilitates functional studies of human cerebral cortex development, disease modeling and drug discovery. Here we provide a detailed protocol for directing the differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to all classes of cortical projection neurons. We demonstrate an 80-d, three-stage process that recapitulates cortical development, in which human PSCs (hPSCs) first differentiate to cortical stem and progenitor cells that then generate cortical projection neurons in a stereotypical temporal order before maturing to actively fire action potentials, undergo synaptogenesis and form neural circuits in vitro. Methods to characterize cortical neuron identity and synapse formation are described.  相似文献   

15.
During corticogenesis, late-born callosal projection neurons (CPNs) acquire their laminar position through glia-guided radial migration and then undergo final differentiation. However, the mechanisms controlling radial migration and final morphology of CPNs are poorly defined. Here, we show that in COUP-TFI mutant mice CPNs are correctly specified, but are delayed in reaching the cortical plate and have morphological defects during migration. Interestingly, we observed that the rate of neuronal migration to the cortical plate normally follows a low-rostral to high-caudal gradient, similar to that described for COUP-TFI. This gradient is strongly impaired in COUP-TFI(-/-) brains. Moreover, the expression of the Rho-GTPase Rnd2, a modulator of radial migration, is complementary to both these gradients and strongly increases in the absence of COUP-TFI function. We show that COUP-TFI directly represses Rnd2 expression at the post-mitotic level along the rostrocaudal axis of the neocortex. Restoring correct Rnd2 levels in COUP-TFI(-/-) brains cell-autonomously rescues neuron radial migration and morphological transitions. We also observed impairments in axonal elongation and dendritic arborization of COUP-TFI-deficient CPNs, which were rescued by lowering Rnd2 expression levels. Thus, our data demonstrate that COUP-TFI modulates late-born neuron migration and favours proper differentiation of CPNs by finely regulating Rnd2 expression levels.  相似文献   

16.
The molecular mechanisms controlling the differentiation of neural progenitors into distinct subtypes of neurons during neocortical development are unknown. Here, we report that Fezl is required for the specification of corticospinal motor neurons and other subcerebral projection neurons, which are absent from Fezl null mutant neocortex. There is neither an increase in cell death in Fezl(-/-) cortex nor abnormalities in migration, indicating that the absence of subcerebral projection neurons is due to a failure in fate specification. In striking contrast, other neuronal populations in the same and other cortical layers are born normally. Overexpression of Fezl results in excess production of subcerebral projection neurons and arrested migration of these neurons in the germinal zone. These data indicate that Fezl plays a central role in the specification of corticospinal motor neurons and other subcerebral projection neurons, controlling early decisions regarding lineage-specific differentiation from neural progenitors.  相似文献   

17.
18.
In the mammalian cerebral cortex, the developmental events governing the integration of excitatory projection neurons and inhibitory interneurons into balanced local circuitry are poorly understood. We report that different subtypes of projection neurons uniquely and differentially determine the laminar distribution of cortical interneurons. We find that in Fezf2?/? cortex, the exclusive absence of subcerebral projection neurons and their replacement by callosal projection neurons cause distinctly abnormal lamination of interneurons and altered GABAergic inhibition. In addition, experimental generation of either corticofugal neurons or callosal neurons below the cortex is sufficient to recruit cortical interneurons to these ectopic locations. Strikingly, the identity of the projection neurons generated, rather than strictly their birthdate, determines the specific types of interneurons recruited. These data demonstrate that in the neocortex individual populations of projection neurons cell-extrinsically control the laminar fate of interneurons and the assembly of local inhibitory circuitry.  相似文献   

19.
In the Drosophila ventral nerve cord, the three pairs of Capability neuropeptide-expressing Va neurons are exclusively found in the second, third and fourth abdominal segments (A2–A4). To address the underlying mechanisms behind such segment-specific cell specification, we followed the developmental specification of these neurons. We find that Va neurons are initially generated in all ventral nerve cord segments and progress along a common differentiation path. However, their terminal differentiation only manifests itself in A2–A4, due to two distinct mechanisms: segment-specific programmed cell death (PCD) in posterior segments, and differentiation to an alternative identity in segments anterior to A2. Genetic analyses reveal that the Hox homeotic genes are involved in the segment-specific appearance of Va neurons. In posterior segments, the Hox gene Abdominal-B exerts a pro-apoptotic role on Va neurons, which involves the function of several RHG genes. Strikingly, this role of Abd-B is completely opposite to its role in the segment-specific apoptosis of other classes of neuropeptide neurons, the dMP2 and MP1 neurons, where Abd-B acts in an anti-apoptotic manner. In segments A2–A4 we find that abdominal A is important for the terminal differentiation of Va cell fate. In the A1 segment, Ultrabithorax acts to specify an alternate Va neuron fate. In contrast, in thoracic segments, Antennapedia suppresses the Va cell fate. Thus, Hox genes act in a multi-faceted manner to control the segment-specific appearance of the Va neuropeptide neurons in the ventral nerve cord.  相似文献   

20.
The cerebral cortex is a brain structure unique to mammals and highly adapted to process complex information. Through multiple developmental steps, the cerebral cortex is assembled as a huge diversity of neurons comprising a complex laminar structure, and with both local and long-distance connectivity within the nervous system. Key processes must take place during its construction, including: (i) regulation of the correct number of neurons produced by progenitor cells, (ii) temporal and spatial generation of neuronal diversity, and (iii) control of neuron migration and laminar positioning as well as terminal differentiation within the mature cortex. Here, we seek to highlight recent cellular and molecular findings underlying these sequential steps of neurogenesis, cell fate specification and migration during cortical development, with particular emphasis on cortical projection neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号