首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The incubation of the E coli DNA binding protein HU with relaxed circular SV40 DNA in the presence of pure nicking-closing enzyme introduces up to 18 negative superhelical turns in the DNA molecules as measured by agarose gel electrophoresis. The maximal density of supercoiling is obtained at a HU-DNA mass ratio of 1. Reconstituted DNA-HU complexes prefixed with glutaraldehyde appear as condensed circular structures having an average of 14 "beads" per circular SV40 DNA molecule, with a "bead" diameter of 180 +/- 23 A. The circular SV40 DNA is condensed by a ratio of 2.0-2.5 relative to naked DNA. This is similar to the ratio (2.4) measured for chromatin formed by reassociation of relaxed SV40 DNA with the four core histones.  相似文献   

2.
3.
The heterodimeric HU protein, one of the most abundant DNA binding proteins, plays a pleiotropic role in bacteria. Among others, HU was shown to contribute to the maintenance of DNA superhelical density in Escherichia coli. By its properties HU shares some traits with histones and HMG proteins. More recently, its specific binding to DNA recombination and repair intermediates suggests that HU should be considered as a DNA damage sensor. For all these reasons, it will be of interest to follow the localization of HU within the living bacterial cells. To this end, we constructed HU-GFP fusion proteins and compared by microscopy the GFP green fluorescence with images of the nucleoid after DAPI staining. We show that DAPI and HU-GFP colocalize on the E. coli nucleoid. HU, therefore, can be considered as a natural tracer of DNA in the living bacterial cell.  相似文献   

4.
The heterodimeric HU protein was isolated from Escherichia coli as one of the most abundant DNA binding proteins associated with the bacterial nucleoid. HUalphabeta is composed of two very homologous subunits, but HU can also be present in E. coli under its two homodimeric forms, HUalpha(2) and HUbeta(2). This protein is conserved either in its heterodimeric form or in one of its homodimeric forms in all bacteria, in plant chloroplasts and in some viruses. HU can participate, like the histones, in the maintenance of DNA supercoiling and in DNA condensation. This protein which does not recognize any specific sequence on double-stranded DNA, has been shown to bind specifically to cruciform DNA as does the eukaryotic HMG1 protein and to a series of structures which are found as intermediates of DNA repair, e.g., nick, gap, 3'overhang, etc. The strong binding of HU to these diverse DNA structures could explain, in part at least, its pleiotropic role in the bacterial cell. To understand all the facets of its interactions with nucleic acids, it was necessary to develop a procedure which allowed the purification of the three forms of HU under their native form and without the nuclease activity strongly associated with the protein. We describe here such a procedure as well as demonstrating that the three histidine-tagged HUs we have produced, have conserved the binding characteristics of native HUs. Interestingly, by two complementation tests, we show that the histidine-tagged HUs are fully active in vivo.  相似文献   

5.
All organisms that synthesize their own DNA have evolved mechanisms for maintaining a constant DNA/cell mass ratio independent of growth rate. The DNA/cell mass ratio is a central parameter in the processes controlling the cell cycle. The co-ordination of DNA replication with cell growth involves multiple levels of regulation. DNA synthesis is initiated at specific sites on the chromosome termed origins of replication, and proceeds bidirectionally to elongate and duplicate the chromosome. These two processes, initiation and elongation, therefore determine the total rate of DNA synthesis in the cell. In Escherichia coli, initiation depends on the DnaA protein while elongation depends on a multiprotein replication factory that incorporates deoxyribonucleotides (dNTPs) into the growing DNA chain. The enzyme ribonucleotide reductase (RNR) is universally responsible for synthesizing the necessary dNTPs. In this review we examine the role RNR plays in regulating the total rate of DNA synthesis in E. coli and, hence, in maintaining constant DNA/cell mass ratios during normal growth and under conditions of DNA stress.  相似文献   

6.
Analysis of E.coli chromosomes isolated under conditions similar to those used for isolation of eukaryotic chromatin has shown that: 1) The proteins of highly purified E.coli deoxyribonucleoprotein are mainly in addition to RNA polymerase two specific histone-like proteins of apparent molecular weight of 17,000 and 9,000 (proteins 1 and 2, respectively). 2) Proteins 1 and 2 occur in approximately equal molar amounts in the isolated E.coli chromosome, and their relative content corresponds to one molecule of protein 1 plus one molecule of protein 2 per 150-200 base pairs of DNA. 3) There are no long stretches of naked DNA in the purified E.coli deoxyribonucleoprotein suggesting a fairly uniform distribution of the proteins 1 and 2 along DNA. 4) The protein 2 is apparently identical to the DNA-binding protein HU which was isolated previously /1/ from extracts of E.coli cells. 5) Digestion of the isolated E.coli chromosomes with staphylococcal nuclease proceeds through discrete deoxyribonucleoprotein intermediates (in particular, at approximately 120 base pairs) which contain both proteins 1 and 2. However, since no repeating multimer structure was observed so far in nuclease digests of the E.coli chromosome, it seems premature to draw definite conclusions about possible similarities between the nucleosomal organization of the eukaryotic chromatin and the E.coli chromatin structure.Images  相似文献   

7.
Closely opposed lesions form a unique class of DNA damage that is generated by ionizing radiation. Improper repair of closely opposed lesions could lead to the formation of double strand breaks that can result in increased lethality and mutagenesis. In vitro processing of closely opposed lesions was studied using double-stranded DNA containing a nick in close proximity opposite to a dihydrouracil. In this study we showed that HU protein, an Escherichia coli DNA-binding protein, has a role in the repair of closely opposed lesions. The repair of dihydrouracil is initiated by E. coli endonuclease III and processed via the base excision repair pathway. HU protein was shown to inhibit the rate of removal of dihydrouracil by endonuclease III only when the DNA substrate contained a nick in close proximity opposite to the dihydrouracil. In contrast, HU protein did not inhibit the subsequent steps of the base excision repair pathway, namely the DNA synthesis and ligation reactions catalyzed by E. coli DNA polymerase and E. coli DNA ligase, respectively. The nick-dependent selective inhibition of endonuclease III activity by HU protein suggests that HU could play a role in reducing the formation of double strand breaks in E. coli.  相似文献   

8.
Y Flashner  J D Gralla 《Cell》1988,54(5):713-721
The abundant E. coli "histone-like" protein HU is shown to be a differential effector of DNA recognition by three diverse control proteins. DNA recognition by lac repressor and catabolite activator protein is greatly stimulated, while specific aroH DNA recognition by trp repressor is inhibited. BaCl2, an agent previously shown to promote DNA bending, mimics the HU effect to give the same qualitative differential stimulation spectrum. The HU activation involves cooperativity, further suggesting that the various DNA bends and distortions induced during assembly of higher order HU:DNA structures are important for the HU stimulation. Thus, E. coli chromosomal DNA regulation is likely strongly influenced by HU protein that may promote a variety of alternative DNA structures that either facilitate or inhibit specific recognition by diverse control proteins.  相似文献   

9.
K Muniyappa  J Ramdas  E Mythili  S Galande 《Biochimie》1991,73(2-3):187-190
The ability of E coli recA protein to promote homologous pairing with linear duplex DNA bound to HU protein (Nucleosome cores) was found to be differentially affected. The formation of paranemic joint molecules was not affected whereas the formation of plectomic joint molecules was inhibited from the start of the reaction. The formation of paranemic joint molecules between nucleoprotein filaments of recA protein-circular single stranded DNA and closed circular duplex DNA is believed to generate positive supercoiling in the duplex DNA. We found that the positively superhelical duplex DNA was inert in the formation of joint molecules but could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. These observations initiate an understanding of the structural features of E coli chromosome such as DNA supercoiling and nucleosome-like structures in homologous recombination.  相似文献   

10.
To see if integration of the provirus resulting from RNA tumor virus infection is limited to specific sites in the cell DNA, the variation in the number of copies of virus-specific DNA produced and integrated in chicken embryo fibroblasts after RAV-2 infection with different multiplicities has been determined at short times, long times, and several transfers after infection. The number of copies of viral DNA in cells was determined by initial hybridization kinetics of single-stranded viral complementary DNA with a moderate excess of cell DNA. The approach took into account the different sizes of cell DNA and complementary DNA in the hybridization mixture. It was found that uninfected chicken embryo fibroblasts have approximately seven copies, part haploid genome of DNA sequences homologous to part of the Rous-association virus 2 (RAV-2) genome. Infection with RAV-2 adds additional copies, and different sequences, of RAV -2- specific DNA. By 13 h postinfection, there are 3 to 10 additional copies per haploid genome. This number can not be increased by increasing the multiplicity of infection, and stays relatively constant up to 20 h postinfection, when some of the additional viral DNA is integrated. Between 20 and 40 h postinfection, the cells accumulated up to 100 copies per haploid genome of viral DNA. Most of these are unintegrated. This number decreases with cell transfer, until cells are left with one to three copies of additional viral DNA sequences per haploid genome, of which most are integrated. The finding that viral infection causes the permanent addition of one to three copies of integrated viral DNA, despite the cells being confronted with up to 100 copies per haploid genome after infection, is consistent with a hypothesis that chicken cells contain a limited number of specific integration sites for the oncornavirus genome.  相似文献   

11.
12.
The heterodimeric HU protein associated with the Escherichia coli nucleoid shares some properties with histones and HMG proteins. HU binds DNA junctions and DNA containing a nick much more avidly than double-stranded (ds-) DNA. Cells lacking HU are extremely sensitive to gamma irradiation and we wondered how HU could play a role in maintaining the integrity of the bacterial chromosome. We show that HU binds with high affinity to DNA repair and recombination intermediates, including DNA invasions, DNA overhangs and DNA forks. The DNA structural motif that HU specifically recognizes in all these structures consists of a ds-DNA module joined to a second module containing either ds- or single-stranded (ss-) DNA. The two modules rotate freely relative to one another. Binding specificity results from the simultaneous interaction of HU with these two modules: HU arms bind the ds-DNA module whereas the HU body contacts the 'variable' module containing either ds- or ss-DNA. Both structural motifs are recognized by HU at least 1000-fold more avidly than duplex DNA.  相似文献   

13.
Eukaryotic cells contain a large number of protein Ser/ Thr kinases, which play important roles in signal transduction required for cell proliferation, differentiation, and stress response and adaptation. It is also known that some prokaryotes contain a family of protein Ser/Thr kinases. A major challenge in the characterization of these kinases is how to identify their specific substrates. Here we developed such a method using a protein Ser/Thr kinase, Pkn2 from Myxococcus xanthus, a Gram-negative soil bacterium. When Pkn2 is inducibly expressed in E. coli, cells are unable to form colonies on agar plates. This lethal effect of Pkn2 was eliminated in an inactive Pkn2 mutant in which the highly conserved Lys residue was changed to Asn, indicating that phosphorylation of a cellular protein(s) in E. coli resulted in growth arrest. Several clones from an E. coli genomic library were found to suppress the lethal effect when co-expressed with pkn2. Four out of seven multi-copy suppressors were identified to encode HU, (3 for HUalpha and 1 for HUB) a histone-like DNA binding protein. Purified HUalpha was found to be specifically phosphorylated by Pkn2 at Thr-59, and the phosphorylated HUalpha became unable to bind to DNA, suggesting that the phosphorylation of endogenous HU proteins by Pkn2 contributed at least in part to the lethal effect in E. coli. The present method termed the STEK method (Suppressors of Toxic Effects of Kinases) may be widely used for the substrate identification not only for prokaryotic protein Ser/Thr kinases but also for eukaryotic kinases.  相似文献   

14.
Hydroxyurea (HU) inhibits increase in cell number in cultures of Crithidia fasciculata. Complete inhibition is produced by 8 mM and higher concentrations. If HU is not removed, population growth resumes in 45-50 h; if HU is removed, partially synchronous growth occurs through 2 cycles. During HU inhibition, the rate of DNA synthesis is reduced to 1% of that in exponentially growing cultures; protein and RNA syntheses continue at slightly reduced rates. Mean cell size and protein and RNA contents per cell increase; rate of oxygen consumption per mg cell protein remains constant. The behavior of a culture upon addition of HU and upon its removal agrees with predictions based on the hypothesis that the only direct effect of HU is to block DNA synthesis. The synchrony produced by HU is judged satisfactory for investigations of kinetoplast and nuclear replication but not for biochemical characterization of other aspects of the cell cycle.  相似文献   

15.
SYNOPSIS Hydroxyurea (HU) inhibits increase in cell number in cultures of Crithidia fasciculata. Complete inhibition is produced by 8 mM and higher concentrations. If HU is not removed, population growth resumes in 45–50 h: if HU is removed, partially synchronous growth occurs through 2 cycles. During HU inhibition, the rate of DNA synthesis is reduced to 1% of that in exponentially growing cultures; protein and RNA syntheses continue at slightly reduced rates. Mean cell size and protein and RNA contents per cell increase; rate of oxygen consumption per mg cell protein remains constant. The behavior of a culture upon addition of HU and upon its removal agrees with predictions based on the hypothesis that the only direct effect of HU is to block DNA synthesis. The synchrony produced by HU is judged satisfactory for investigations of kinetoplast and nuclear replication but not for biochemical characterization of other aspects of the cell cycle.  相似文献   

16.
17.
Nucleoid‐associated protein HU, a conserved protein across eubacteria is necessary for maintaining the nucleoid organization and global regulation of gene expression. Mycobacterium tuberculosis HU (MtHU) is distinct from the other orthologues having 114 amino acid long carboxyl terminal extensions with a high degree of sequence similarity to eukaryotic histones. In this study, we demonstrate that the DNA binding property of MtHU is regulated by posttranslational modifications akin to eukaryotic histones. MtHU purified from M. tuberculosis cells is found to be acetylated on multiple lysine residues unlike the E. coli expressed recombinant protein. Using coimmunoprecipitation assay, we identified Eis as one of the acetyl transferases that interacts with MtHU and modifies it. Although Eis is known to acetylate aminoglycosides, the kinetics of acetylation showed that its protein acetylation activity on MtHU is robust. In vitro Eis modified MtHU at various lysine residues, primarily those located at the carboxyl terminal domain. Acetylation of MtHU caused reduced DNA interaction and alteration in DNA compaction ability of the NAP. Over‐expression of the Eis leads to hyperacetylation of HU and decompaction of genome. These results provide first insights into the modulation of the nucleoid structure by lysine acetylation in bacteria.  相似文献   

18.
A computer simulation routine has been made to calculate the DNA distributions of exponentially growing cultures of Escherichia coli. Calculations were based on a previously published model (S. Cooper and C.E. Helmstetter, J. Mol. Biol. 31:519-540, 1968). Simulated distributions were compared with experimental DNA distributions (histograms) recorded by flow cytometry. Cell cycle parameters were determined by varying the parameters to find the best fit of theoretical to experimental histograms. A culture of E. coli B/r A with a doubling time of 27 min was found to have a DNA replication period (C) of 43 min and an average postreplication period (D) of 22 to 23 min. Similar cell cycle parameters were found for a 60-min B/r A culture. Initiations of DNA replication at multiple origins in one and the same cell were shown to be essentially synchronous. A slowly growing B/r A culture (doubling time, 5.5 h) had an average prereplication period (B) of 2.3 h; C = 2.4 h and D = 0.8 h. It was concluded the the C period has a constant duration of 43 min (at 37 degrees C) at fast growth rates (doubling times, less than 1 h) but increases at slow growth rates. Thus, our results obtained with unperturbed exponential cultures in steady state support the model of Cooper and Helmstetter which was based on data obtained with synchronized cells.  相似文献   

19.
R Barra  B Beres  M R Koch  M A Lea 《Cytobios》1976,17(66):123-136
The effects of exogenous proteins on the incorporation of [3H]-thymidine into DNA was studied in Novikoff hepatoma ascites cells incubated in Eagle's minimal essential medium. A liver cytosol fraction (8 mg protein/ml) caused approximately 80% inhibition of isotope incorporation. The inhibitory activity of cytosol fractions from Morris hepatomas 9618A2, 5123C, and 20 were inversely related to their growth rate. Under conditions in which there appeared to be a density dependent inhibition of growth, a mean 10-20% stimulation of isotope incorporation was observed after addition of total calf thymus histones and individual fractions in the concentration range of 100-400 microgram/ml. In experiments with lower cell concentrations, a 60% or greater increase in [3H]-thymidine incorporation could be obtained with total calf thymus histone and with F1 and arginine-rich histones from rat liver. At concentrations of 1-2 mg/ml, histones inhibited DNA synthesis. Bovine serum albumin had little effect on DNA synthesis. Polylysine caused an 80-90% inhibition at a concentration of 1 mg/ml, but stimulatory effects were detected under certain conditions at 10 microgram/ml. The results suggest critical dependence on the ratio of cell and exogenous protein concentration in the action of proteins on DNA synthesis.  相似文献   

20.
DNA-DNA interstrand cross-links are the cytotoxic lesions for many chemotherapeutic agents. A plasmid with a single nitrogen mustard (HN2) interstrand cross-link (inter-HN2-pTZSV28) was constructed and transformed into Escherichia coli, and its replication efficiency (RE = [number of transformants from inter-HN2-pTZSV28]/[number of transformants from control]) was determined to be approximately 0.6. Previous work showed that RE was high because the cross-link was repaired by a pathway involving nucleotide excision repair (NER) but not recombination. (In fact, recombination was precluded because the cells do not receive lesion-free homologous DNA.) Herein, DNA polymerase II is shown to be in this new pathway, since the replication efficiency (RE) is higher in a polB+ ( approximately 0. 6) than in a DeltapolB (approximately 0.1) strain. Complementation with a polB+-containing plasmid restores RE to wild-type levels, which corroborates this conclusion. In separate experiments, E. coli was treated with HN2, and the relative sensitivity to killing was found to be as follows: wild type < polB < recA < polB recA approximately uvrA. Because cells deficient in either recombination (recA) or DNA polymerase II (polB) are hypersensitive to nitrogen mustard killing, E. coli appears to have two pathways for cross-link repair: an NER/recombination pathway (which is possible when the cross-links are formed in cells where recombination can occur because there are multiple copies of the genome) and an NER/DNA polymerase II pathway. Furthermore, these results show that some cross-links are uniquely repaired by each pathway. This represents one of the first clearly defined pathway in which DNA polymerase II plays a role in E. coli. It remains to be determined why this new pathway prefers DNA polymerase II and why there are two pathways to repair cross-links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号