首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J R Arthur  R Boyne 《Life sciences》1985,36(16):1569-1575
Oxygen consumption and the activities of the selenoenzyme glutathione peroxidase, and of the hexose monophosphate shunt were lower than normal in neutrophils from Se deficient cattle. However, these activities and the activity of Cu/zinc superoxide dismutase were unaffected in neutrophils from Cu deficient cattle. These results are discussed with reference to impaired neutrophil microbicidal activity previously demonstrated to result from Se or Cu deficiency in cattle.  相似文献   

2.
V S Faustov 《Ontogenez》1977,8(4):361-369
The activity of the enzymes of glycolysis (phosphofructokinase, aldolase, pyruvate kinase, lactate dehydrogenase) and hexose monophosphate shunt (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) was determined in the eye tissues of the rabbit at different stages of ontogenesis. The activity of these enzymes in the retina was shown to be higher than in other eye tissues. In the uveal tract (iris, ciliary bodies, uvea) the activity of glycolytic enzymes changes with the age. The greatest changes in the activity of enzymes were found during the period of the opening of eyelids. The activity of the enzymes of hexose monophosphate shunt in the eye tissues increases with the age. The relative activity of dehydrogenases of the hexose monophosphate shunt after the establishment of visual function is, however, not high and does not exceed that of phosphofructokinase and pyruvate kinase in the eye tissues of the rabbit.  相似文献   

3.
Aldosterone stimulates Na+ transport in toad bladder and, simultaneously with a coincident dose-response relationship, inhibits the hexose monophosphate shunt pathway. Amiloride, an acylguanidine diuretic, inhibits sodium transport when applied to the apical surface of the bladder. In this study amiloride was found to partially reverse the inhibitory effect of aldosterone on the hexose monophosphate shunt pathway. The amiloride effect upon glucose metabolism was detected when it was applied to both surfaces of the bladder simultaneously, in flask experiments, and when it was applied to the apical surface. No effect of amiloride on the shunt pathway was detected when it was applied to the serosal surface only, even at very high concentrations. It may be, but has not been proven, that the effects of aldosterone and amiloride on the hexose monophosphate shunt pathway are mediated by a common site at the apical membrane.  相似文献   

4.
The regulation of the hexose monophosphate shunt of human erythrocytes under conditions of oxidative stress has been investigated by monitoring the reduction of oxidised glutathione (GSSG) to reduced glutathione (GSH) in erythrocytes containing high levels of GSSG; 1H NMR and a biochemical assay were used to measure the changes. A reconstituted metabolic system prepared with the purified erythrocyte enzymes was used in conjunction with studies of intact cells and haemolysates to determine the dependence of the rate of GSH production on the activities of hexokinase and glucose-6-phosphate dehydrogenase. Both of these enzymes have previously been claimed to be the rate-limiting step of oxidatively stimulated flux through the hexose monophosphate shunt. The absence of a kinetic isotope effect on the rate of GSH production in these systems, when [1-2H]glucose replaced glucose as the source of reducing equivalents, showed that glucose-6-phosphate dehydrogenase activity was not a strong determinant of the flux. The dependence of the rate of GSH production on the concentration of the hexokinase inhibitors glucose 1,6-bisphosphate and glycerate 2,3-bisphosphate showed that, under conditions of oxidative stress, hexokinase was the principal determinant of flux through the shunt. Glucose 1,6-bisphosphate at the concentration present in vivo appears to be more important in limiting hexokinase activity, and thus the rate of glucose utilisation, than was previously assumed. A detailed computer model of the system was developed based on the reported kinetic parameters of the enzymes involved. A sensitivity analysis of this model predicted that the hexokinase reaction would have a sensitivity coefficient of 0.995 with respect to the maximal rate of GSH production.  相似文献   

5.
The effective fall in cytosolic reduced glutathione levels in intact red cells exposed to exogenous oxidant stress in the form of Fe2+, H2O2 and ascorbate was caused by H2O2 alone. Relatively high concentrations of Fe2+ had no contributory effect on the oxidizing capacity of H2O2. Ascorbate, at physiological levels, showed no protection whereas glucose was totally protective. Since glucose, via hexose monophosphate shunt, is the only source of reducing equivalent in red cells, the NADPH/NADP+ redox role in the diminution of intracellular reduced glutathione.  相似文献   

6.
A proton nuclear magnetic resonance technique is demonstrated for ascertaining the real-time contribution of the hexose monophosphate shunt to glucose metabolism in the intact incubated rabbit lens. This measurement requires incubation of the tissue in medium supplemented with [1-13C]glucose, and depends on the presence of the 13C label in the methyl position of lactate which creates satellite resonances by way of 13C - 1H spin-spin scalar coupling. The assumptions required to make the measurement are presented. For lenses maintained under control conditions, a basal level corresponding to 5% hexose monophosphate shunt activity was determined. An eight-fold increase in activity was observed under conditions known to stimulate the shunt.  相似文献   

7.
The metabolic activity of the red cell glycolytic pathway hexose monophosphate shunt (HMP) with dependent glutathione system was studied in patients with hyperthyroidism (n = 10), hyperlipoproteinemia (n = 16), hypoglycemia (n = 25) and hyperglycemia (n = 23). In uncontrolled diabetics and patients with hyperthyroidism the mean value of glucose phosphate isomerase (GPI), glucose-6-phosphate dehydrogenase (G-6-PD), glutathione reductase (GR) was increased, whereas these enzyme activities were reduced in patients with hypoglycemia. Apart from a few values of hexokinase (HK) which were lower than normal the results in hyperlipoproteinemia patients remained essentially unchanged, including the intermediates such as 2,3-diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP) and reduced glutathione (GSH). While increased rates of 2,3-DPG and ATP in hypoglycemia patients were obtained, these substrates were markedly reduced in diabetics.  相似文献   

8.
The role of sulfhydryls in the protection of human polymorphonuclear neutrophils against extracellular oxidant attack was investigated by simultaneously exposing polymorphonuclear neutrophils to the thiol-oxidizing agent diamide and the oxidant-generating system xanthine-xanthine oxidase. Neither diamide nor the oxidants generated by the xanthine-xanthine oxidase system alone impaired the burst in chemiluminescence, hexose monophosphate shunt activity or formate oxidation normally seen during polymorphonuclear neutrophil phagocytosis. Incubation of the polymorphonuclear neutrophils simultaneously with diamide and xanthine-xanthine oxidase markedly impaired polymorphonuclear neutrophil phagocytosis, hexose monophosphate shunt activity, chemiluminescence and formate oxidation. Although the polymorphonuclear neutrophils exposed to diamide and xanthine-xanthine oxidase did not respond to a variety of phagocytizable stimuli, trypan blue exclusion was normal and hexose monophosphate shunt activity could be stimulated by diamide. The damaging effect of the diamide xanthine-xanthine oxidase system could be blocked by the addition of superoxide dismutase or catalase, but not by hydroxyl radical or singlet oxygen scavengers. We hypothesize that an unidentified population of thiols may play a role in protecting the polymorphonuclear neutrophil from endogenously derived oxidants.  相似文献   

9.
Abstract: Homogenates of perfused rat brain generated oxidized glutathione from reduced glutathione during incubation with dopamine or serotonin. This activity was blocked by pargyline. a monoamine oxidase inhibitor, or by catalase, a scavenger of hydrogen peroxide. These results demonstrate formation of hydrogen peroxide by monoamine oxidase and the coupling of the peroxide to glutathione peroxidase activity. Oxidized glutathione was measured fluorometrically via the oxidation of NADPH by glutathione reductase. In the absence of added dopamine or serotonin, a much smaller amount of reduced glutathione was oxidized: this activity was blocked by catalase, but not by pargyline. Therefore, endogenous production of hydrogen peroxide, not linked to monoamine oxidase activity, was present. These results indicate that glutathione peroxidase (linked to hexose monophosphate shunt activity) can function to eliminate hydrogen peroxide generated by monoamine oxidase and other endogenous sources in aminergic neurons.  相似文献   

10.
The effect of arachidonic acid on the metabolic activity and chemiluminesence of canine neutrophils was investigated to gain further insight into its role in the neutrophil metabolic burst. Arachidonic acid was found to stimulate metabolic activity and luminol-augmented chemiluminescence. The increased metabolic activity was detected by both oxygen uptake measurements and assays of hexose monophosphate shunt activity. An inhibitor of lipoxygenase and cyclooxygenase,5, 8, 11, 14-eicosatetraynoic acid prevented the hexose monophosphate shunt response to arachidonic acid. Aspirin or indomethacin, blockers of cyclooxygenase, inhibited chemiluminescence but failed to block the metabolic response to arachidonic acid. Since superoxide dismutase and 2-deoxyglucose, a blocker of glucose metabolism, inhibited the chemiluminescent response of neutrophils to arachidonic acid, it is likely that oxygen radicals produced via the hexose monophosphate shunt are required for the chemiluminescent reaction. In addition it was found that inhibition of cyclooxygenase activity blocked chemiluminescence but not the metabolic stimulation induced by sodium fluoride, suggesting that the chemiluminescence stimulated by sodium fluoride is associated with endogenous fatty acid stores. From these studies it can be concluded that arachidonic acid products of the cyclooxygenase pathway do not play a significant role in the metabolic response of neutrophils when arachidonic acid or sodium fluoride is the stimulant while the lipoxygenase pathway appears to be involved. The metabolic response is not linked to the chemical reaction that causes neutrophil, chemiluminesence, although the chemiluminescent response depends on hexose monophosphate shunt activity and presumably the oxygen radicals that ultimately result from that process.  相似文献   

11.
The role of sulfhydryls in the protection of human polymorphonuclear neutrophils against extracellular oxidant attack was investigated by simultaneously exposing polymorphonuclear neutrophils to the thiol-oxidizing agent diamide and the oxidant-generating system xanthine-xanthine oxidase. Neither diamide nor the oxidants generated by the xanthine-xanthine oxidase system alone impaired the burst in chemiluminescence, hexose monophosphate shunt activity or formate oxidation normally seen during polymorphonuclear neutrophil phagocytosis. Incubation of the polymorphonuclear neutrophils simultaneously with diamide and xanthine-xanthine oxidase markedly impaired polymorphonuclear neutrophil phagocytosis, hexose monophosphate shunt activity, chemiluminescence and formate oxidation. Although the polymorphonuclear neutrophils exposed to diamide and xanthine-xanthine oxidase did not respond to a variety of phagocytizable stimuli, trypan blue exclusion was normal and hexose monophosphate shunt activity could be stimulated by diamide. The damaging effect of the diamide xanthine-xamthine oxidase system could be blocked by the addition of superoxide dismutase or catalase, but not by hydroxyl radical or singlet oxygen scavengers. We hypothesize that an unidentified population of thiols may play a role in protecting the polymorphonuclear neutrophil from endogenously derived oxidants.  相似文献   

12.
Summary In uniformly labeled logarithmic-phase cells of Thraustochytrium roseum grown in isotopic glucose, 85% of the respiratory CO2 was derived from endogenous reserves and only 15% was contributed by exogenous glucose. Experiments with asymetrically labeled glucose showed that the main portion of metabolic CO2 came from carbon 1 of the glucose molecule, suggesting that the hexose monophosphate shunt is a major pathway for glucose dissimilation in the fungus. The presence of several enzymes of the hexose monophosphate shunt, the Embden-Meyerhof and glyoxylate pathways, and the tricarboxylic acid cycle were demonstrated.  相似文献   

13.
The treatment of rats for 4 h with 6-aminonicotinamide (60 mg kg-1) resulted in an 180-fold increase in the concentration of 6-phosphogluconate in their brains; glucose increased 2.6-fold and glucose 6-phosphate, 1.7-fold. Moreover, lactate decreased by 20%, glutamate by 8% and gamma-aminobutyrate by 12%, and aspartate increased by 10%. No significant changes were found in glutamine and citrate. In blood, 6-phosphogluconate increased 5-fold; glucose, 1.4-fold and glucose 6-phosphate, 1.8-fold. The metabolism of glucose in the rat brain, via both the Embden-Meyerhof pathway and the hexose monophosphate shunt, was investigated by injecting [U-14C]glucose or [2-14C]glucose, and that via the hexose monophosphate shunt alone by injecting [3,4-14C]glucose. The total radioactive yield of amino acids in the rat brain was 5.63 mumol at 20 min after injection of [U-14C]glucose, or 5.82 mumol after injection of [2-14C]glucose; by contrast, it was 0.62 mumol after injection of [3,4-14C]glucose. The treatment of rats with 6-aminonicotinamide showed significant decreases in these values, owing to decreases in the radioactive yields of glutamate, glutamine, aspartate, gamma-aminobutyrate, and alanine+glycine+serine. Glutamate isolated from the brain contained approximately 43% of its radioactivity in carbon 1 after injection of [3,4-14C]glucose, in contrast to 13% and 18% after injection of [U-14C]glucose and [2-14C]glucose, respectively, in both the control and treated rats. The calculations based on these findings showed that approximately 69% of the 14C-labelled glutamate was formed from [14C]acetyl coenzyme A (acetyl CoA) and the residual 31% by 14CO2 fixation of pyruvate after injection of [3,4-14C]glucose in both control and treated rats. The results gave direct evidence that glutamate and gamma-aminobutyrate in the brain were formed by metabolism of glucose via the hexose monophosphate shunt as well as via the Embden-Meyerhof pathway. From the radioactive yields of glutamate formed via [14C]acetyl CoA it was estimated that approximately 7.8% of the total glucose utilized was channelled via the hexose monophosphate shunt. Assuming that [14C]glutamate formed by carbon-dioxide fixation of pyruvate was also dependent on the metabolism of glucose through the hexose monophosphate shunt, the estimated value was approximately 9.5% of the total glucose converted into glutamate. The results of the present investigation, taken in conjunction with other findings, suggest that the utilization of glucose via the hexose monophosphate shunt is functionally important in the rat brain.  相似文献   

14.
Cell-free preparations of Chlorella pyrenoidosa Chick, van Niel's strain, were assayed for oxidative enzymes, utilizing isotopic and spectrophotometric techniques. The enzyme activity of heterotrophic and autotrophic cells was compared. The study was divided into categories, one concerned with the spectrophotometric detection of enzymes involved in the initial reactions of glycolysis and the hexose monophosphate shunt, and the other with the direct oxidation of glucose as compared with that oxidized via glycolysis. The reduction of pyridine nucleotides in crude extracts was studied with glucose, glucose-6-phosphate, 6-phosphogluconate, and fructose-1-6-diphosphate as substrates. Enzymes detected in both heterotrophic and autotrophic cells were hexokinase, fructose-diphosphate-aldolase, NAD-linked 3-phosphoglyceraldchyde dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and a NADP-linked 3-phosphoglyceraldchyde dehydrogenase. In addition to isotopic studies designed to make an appraisal of the hexose monophosphate shunt, a comparison of the rate of reduction of NADP by glucose-6-phosphate and 6-phosphogluconate in relation to the reduction of NAD by 3-phosphoglyceraldehyde was made in light- and dark-grown cells. The rate of reduction of NADP appeared to be lowered in the light-grown cells, suggesting, as did also the isotopic studies, that the hexose monophosphate shunt is less active in autotrophic metabolism than in heterotrophic metabolism.  相似文献   

15.
Adriamycin was internalized in canine red blood cells (RBC) by two procedures involving (a) simple diffusion of the drug into cells and (b) hypotonic dialysis followed by isotonic resealing. The two procedures yielded comparable amounts of encapsulated adriamycin, around 35 micrograms/10(9) RBC. Exposure of adriamycin-loaded RBC to 0.16% glutaraldehyde consistently slowed down the rate of efflux of the drug as compared with non-glutaraldehyde-treated cells: after 1 h of incubation at 37 degrees C, greater than 80% of adriamycin was still present inside the glutaraldehyde-treated RBC, while at 24 h it was 66%, compared to 10% and 1%, respectively, in the adriamycin-loaded, non-glutaraldehyde-treated cells. Canine RBC showed a higher rate of transformation of adriamycin than the human cells, the only intracellular metabolite being adriamycinol, which is apparently formed by the NADPH-dependent enzyme aldehyde reductase. Production of adriamycinol was remarkably lower in the glutaraldehyde-treated RBC, as a result of progressive and extensive inactivation of hexose monophosphate shunt activity responsible for NADPH formation. These results, coupled with the known selective targeting of glutaraldehyde-treated RBC to liver, hold promise as to in vivo applications of this drug delivery system in antineoplastic therapy.  相似文献   

16.
Lipid peroxidation and haemoglobin degradation were the two extremes of a spectrum of oxidative damage in red cells exposed to t-butyl hydroperoxide. The exact position in this spectrum depended on the availability of glucose and the ligand state of haemoglobin. In red cells containing oxy- or carbonmono-oxy-haemoglobin, hexose monophosphate-shunt activity was mainly responsible for metabolism of t-butyl hydroperoxide; haem groups were the main scavengers in red cells containing methaemoglobin. Glutathione, via glutathione peroxidase, accounted for nearly all of the hydroperoxide metabolizing activity of the hexose monophosphate shunt. Glucose protection against lipid peroxidation was almost entirely mediated by glutathione, whereas glucose protection of haemoglobin was only partly mediated by glutathione. Physiological concentrations of intracellular or extracellular ascorbate had no effect on consumption of t-butyl hydroperoxide or oxidation of haemoglobin. Ascorbate was mainly involved in scavenging chain-propagating species involved in lipid peroxidation. The protective effect of intracellular ascorbate against lipid peroxidation was about 100% glucose-dependent and about 50% glutathione-dependent. Extracellular ascorbate functioned largely without a requirement for glucose metabolism, although some synergistic effects between extracellular ascorbate and glutathione were observed. Lipid peroxidation was not dependent on the rate or completion of t-butyl hydroperoxide consumption but rather on the route of consumption. Lipid peroxidation appears to depend on the balance between the presence of initiators of lipid peroxidation (oxyhaemoglobin and low concentrations of methaemoglobin) and terminators of lipid peroxidation (glutathione, ascorbate, high concentrations of methaemoglobin).  相似文献   

17.
Rat peritoneal macrophages derive energy differently from other tissues. Resting rat peritoneal macrophages have been taken for the present investigation. Lactate produced by extracellular glycolysis in the peritoneal lavage fluid, is readily converted into pyruvate by resting peritoneal macrophages and is oxidised in mitochondria. Glycolytic enzymes other than phosphoglucoisomerase and lactate dehydrogenase could not be substantially demonstrated. Glucose-6-phosphate dehydrogenase was detected. The presence of glucose-6-phosphate dehydrogenase along with phosphoglucoisomerase indicates the operation of the hexose monophosphate shunt as a pathway supplementary to glycolysis. Resting rat peritoneal macrophages thus appear to utilize extracellular lactate as their main energy source instead of glucose, bypass glycolysis and have active hexose monophosphate shunt.  相似文献   

18.
Mixed function oxidation of hexobarbital and the generation of NADPH by the hexose monophosphate shunt were studied in isolated rat liver parenchymal cells from phenobarbital-pretreated and untreated animals. In cells isolated from untreated rats, a maximal rate of hexobarbital oxidation of 17 μmol·g?1 liver wet weight·(60 min)?1 was observed, while in cells isolated from phenobarbital-pretreated rats a maximal rate of 29 μmol·g?1 liver wet weight·(60 min)?1 has been obtained. On the basis of the specific radioactivity at carbon atom 1 of glucose 6-phosphate, fructose 6-phosphate and 6-phosphogluconate, determined by enzymatic decarboxylation, a ratio between NADPH formation via the hexose monophosphate shunt and NADH utilization for hexobarbital oxidation of 6:1 in untreated and 9.5:1 in pretreated cells has been obtained. With phenazine methosulfate the stimulation of NADPH generation via the hexose monophosphate shunt exceeded that observed in the presence of hexobarbital by 329 and 160%, respectively, indicating that the capacity of this pathway is sufficient to provide more reducing equivalents than are required for maximal rates of mixed function oxidation.  相似文献   

19.
1. The biochemical properties of leucocytes from a myeloperoxidase-deficient subject were compared with those of leucocytes from healthy subjects. 2. Myleoperoxidase-deficient leucocytes responded to phagocytosis of heat-killed bacteria with increased respiration, increased oxidation of glucose through the hexose monophosphate shunt and increased production of H2O2 as normal leucocytes do. 3. The ability of granules isolated from myeloperoxidase-deficient leucocytes to oxidize nicotinamide coenzymes was comparable to that of granules isolated from normal leucocytes. 4. The results argue against the hypothesis that oxidation of NADPH2 in leucocytes is performed by myeloperoxidase.  相似文献   

20.
The effect of experimental cryptorchidism on the level of oxidative stress and antioxidant functions in rat testis was studied. Adult male Sprague-Dawley rats were rendered unilaterally cryptorchid (by suturing one testis to the abdominal wall) and killed 1, 3, or 7 days after the operation. As an indicator of oxidative stress, lipid peroxidation was measured by the diene conjugation method in testis homogenates. The activities of the antioxidant enzymes were determined either in the 10,000 x g supernatant fraction (glutathione [GSH] peroxidase, GSH transferase, hexose monophosphate shunt) or in crude testis homogenates (superoxide dismutase, catalase). An expected reduction (48%) in weight of the abdominal testes was evident by postoperative Day 7. The catalytic activities per testis of superoxide dismutase (Cu/Zn form) and catalase were found to decrease in cryptorchidism. The effect was seen on the first postoperative day and was most profound on Day 7 after surgery. The principal antioxidant enzyme, superoxide dismutase, was most sensitive to cryptorchidism, the activity in the abdominal testes being 74% or 85% (per gram of tissue or per whole testis, respectively; p less than 0.01). After impairment of the reactive oxygen detoxifying capacity, lipid peroxidation was increased in the abdominal testis by 46% (p less than 0.01) on postoperative Day 7. Slight concomitant increases were detected in the activities of GSH-peroxidase (p less than 0.01), GSH-transferase (p less than 0.001), and the hexose monophosphate shunt (p less than 0.001). This effect was seen only when calculated per gram of tissue, not per whole testis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号