首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 20K variant of native (22K) hGH is a full agonist for the growth promoting and lactogenic properties of the hormone in vivo but has been reported to have weak or absent insulin-like properties. To explore if these differences may be explained at the receptor level, we compared the ability of 22K and 20K hGH to inhibit the binding of 125I-22K hGH to receptors in isolated rat adipocytes, a target for the insulin-like effects of the hormone and in IM-9 cultured human lymphocytes, more specific for growth effects. Our data show that while 20K hGH is a potent agonist of native 22K hGH in the IM-9 lymphocyte assay, its potency in the rat adipocyte binding assay is only 3%, even when both cells are incubated together in identical conditions. Thus, the receptors for hGH appear to be different on various target cells, explaining why the 20K variant has different relative biological potencies at different sites of action.  相似文献   

2.
In vitro actions of purified plerocercoid growth factor (PGF) were compared with those of insulin and human growth hormone (hGH) in adipose tissue from normal male rats. Insulin-like effects were measured by the ability of PGF, insulin, or hGH to stimulate oxidation of [U-14C]glucose to 14CO2, to stimulate lipogenesis, and to inhibit epinephrine-induced lipolysis. PGF and insulin stimulated significant increases in glucose oxidation and lipogenesis in adipose tissue that had not been preincubated as well as in tissue that had been preincubated. hGH stimulated insulin-like effects only in tissue that had been preincubated for 3 hr. Insulin, hGH, and PGF inhibited epinephrine-induced lipolysis of preincubated (3 hr) adipose tissue. hGH produced a dramatic lipolytic response in tissue freshly removed from normal rats but no dose of PGF was lipolytic. PGF did not displace 125I-insulin from its receptors on adipocytes but did competitively inhibit 125I-hGH binding to adipocytes. These results suggest that PGF has direct insulin-like actions which are initiated by binding a GH receptor, but PGF had no anti-insulin action and the insulin-like activity of PGF was unaffected by refractoriness of adipose tissue to GH.  相似文献   

3.
Insulin and to a smaller extent, human growth hormone (hGH), both stimulate lipogenesis in isolated rat adipocytes preincubated 4 hours in the absence of hormone. The non-additivity of maximal doses suggested that hGH may share a subset of the metabolic pathways stimulated by insulin. We explored whether kinase C may be involved in the common lipogenic effect of both hormones. The stimulation of lipogenesis by phorbol ester 12-myristate 13-acetate (PMA) (an activator of kinase C) was not additive to the stimulation by either insulin or hGH. Downregulation of kinase C resulted in a marked decrease of the maximal insulin effect (44 +/- 9%) and even more of the hGH effect (64 +/- 14%). These data suggest that kinase C either mediates part of, or modulates, the effect of insulin and hGH on lipogenesis.  相似文献   

4.
Membrane receptors on cultured human lymphocytes (IM-9) have been shown to bind human growth hormone (hGH) in a specific manner. The aim of the present study was to develop an in vitro assay of hGH based on this binding. The assay should fulfil established pharmacopoeial requirements for quantitation of hormones. The binding of [125I]hGH was studied as a function of time, temperature, cell density, tracer concentration and the concentration of unlabelled hGH and other related hormones. Also, the dissociation of bound hGH and the chemical stability of hGH in the incubation medium were studied. From these studies, the conditions for an appropriate radioreceptor assay were determined. Briefly, 1.5-3.0 X 10(7) cells ml-1 were incubated with 5-20 X 10(-12) M [125I]hGH and three different concentrations of unlabelled hGH chosen from the linear part of the [125I]hGH displacement curve. The results were analyzed according to general pharmacopoeial principles. The mean values for growth hormone activity tested by radioreceptor assay were within the fiducial limits (P = 0.05) of the corresponding activity determined by the hypophysectomized rat body-weight gain assay. The in vitro assay was found to be more precise and less resource demanding than the in vivo bioassay of hGH. It is concluded that the in vitro bioassay described here is well suited as a screening method for potency determination of hGH preparations.  相似文献   

5.
When polyclonal insulin antibodies were preincubated with either adipose tissue from hypophysectomized rats or adipocytes from normal rats, human growth hormone failed to stimulate glucose oxidation. Removal of insulin from adipocytes through incubation with pyruvate at pH 7.0, followed by washing three times, also abolished subsequent in vitro insulin-like action of hGH. Administration of the same insulin antibody to hypophysectomized rats 30 minutes prior to injection of hGH did not inhibit the insulin-like activity of the hGH as measured by its ability to decrease serum glucose and non-esterified fatty acid levels. It is concluded that the in vitro promotion of glucose oxidation by hGH requires insulin. Because of the uncertainty of complete removal of insulin in intact animals, such a conclusion cannot be made regarding in vivo insulin-like action of hGH.  相似文献   

6.
Insulin from the Atlantic hagfish, Myxine glutinosa, a primitive vertebrate, was studied with respect to degradation, receptor binding, and stimulation of glucose transport and metabolism in isolated rat adipocytes. The degradation was studied in a concentrated suspension with about 100mul of cells/ml of suspension. 125I-labeled hagfish insulin and 125I-labeled pig insulin were degraded at the same rate when present in concentrations of 0.3nM. Native hagfish insulin inhibited the rate of degradation of 125I-labeled pig insulin half-maximally at a concentration of 12+/-2 nM (S.D., n=6) as compared to 130+/-32 nM (S.D.,n=6) for pig insulin. Native hagfish insulin in a concentration of 130 nM was biologically inactivated at a rate several times slower than pig insulin in the same concentration. The results indicate that the maximal velocity (Vmax) of degradation of hagfish insulin as well as the concentration causing half-maximal velocity (Km) are about 10 times lower for hagfish insulin than for pig insulin. The receptor binding and the biological effects of hagfish insulin were studied in dilute cell suspensions where the degradation of hormone in the medium was negligible. The receptor binding affinity of hagfish insulin was 23+/-7 per cent (S.D., n=10) of that of pig insulin. Hagfish insulin was able to elicit the same maximal stimulation of both 3-o-methylglucose exchange and lipogenesis from glucose as pig insulin. However, the potency of hagfish insulin with respect to activation of lipogenesis was only 4.6+/-0.6 per cent (S.D., n=15) of that of pig insulin. Hagfish insulin thus constitutes the first described insulin which exhibits a discrepancy between relative binding affinity and relative potency. This discrepancy was not due to the methionine residue (B31) at the COOH-terminal end of the B chain of hagfish insulin, since removal of this residue caused no marked change in the binding affinity or the potency. The results indicate that the receptor occupancy must be 5 times higher with hagfish insulin than with pig insulin to cause a particular degree of activation of lipogenesis. Hagfish insulin might therefore be characterized as a "partial antagonist" on the receptors. However, it was not possible to demonstrate antagonistic properties of hagfish insulin on the cells. The effect of hagfish insulin plus pig insulin in submaximally stimulating concentrations was additive. Furthermore, the decay of activation of adipocytes after incubation with hagfish insulin followed the same time course as the decay of activation after incubation with pig insulin in a concentration of equal potency. These phenomena are in agreement with the concept that adipocytes possess a large excess of receptors which can mediate the effect of insulin on lipogenesis from glucose.  相似文献   

7.
The amino-terminal portion of human growth hormone, residues 1-43 (hGH1-43), has insulin-potentiating action, while a hyperglycemic pituitary peptide (HP), which co-purifies with human growth hormone (hGH), is antagonistic to the action of insulin. The effects of hGH, hGH1-43, and HP on glucose metabolism were assessed in young (4-5 weeks) and adult (6-8 months) hypophysectomized yellow Avy/A mice which lacked any interfering endogenous pituitary hormones, and compared with age-matched intact obese yellow Avy/A and lean agouti A/a mice. Treatment with hGH1-43 or HP did not promote body growth in hypophysectomized yellow mice; but after 2 weeks of treatment with hGH, there was a significant increase in body weight (P less than 0.05). Treatment with HP raised blood glucose and lowered insulin concentrations in obese yellow mice, but not in agouti or hypophysectomized yellow mice. The severely impaired glucose tolerance of the hypophysectomized yellow mice was improved by acute (60 min) and chronic (3 days) treatment with hGH1-43 as well as by 2 weeks of treatment with hGH; in contrast, HP had no effect. Glucose oxidation in adipose tissue from obese yellow mice was low and showed essentially no response to stimulation by insulin at doses lower than 1000 microunits/ml. Basal glucose oxidation rates in adipose tissue taken from agouti and hypophysectomized yellow mice were significantly higher (P less than 0.001) than those in tissue from obese yellow mice, and the rates responded significantly (P less than 0.05) to 100 microunits/ml insulin. The insulin binding affinities in liver membranes from agouti mice were higher than those from either obese or hypophysectomized yellow mice. The insulin receptor densities were similar in both agouti and obese yellow mice, but higher in hypophysectomized yellow mice (P less than 0.05). Treatment with hGH1-43 slightly increased, although not significantly, the insulin receptor density in yellow obese mice while hGH showed essentially no change. Therefore, hypophysectomy appeared to increase tissue response and decrease insulin resistance by increasing receptor numbers and lowering the circulating insulin levels. Furthermore, the insulin-like action of hGH was elicited directly in vivo by hGH1-43 in hypophysectomized yellow mice.  相似文献   

8.
Even though 20K human growth hormone (20K-hGH) has 3-10% binding affinity for the rat liver and adipose tissue microsomes as compared to 22K-hGH, it was also reported that 20K-hGH has the same potency as 22K-hGH in the hypophysectomized rat weight gain assay. In order to investigate the reason why such controversial data exist, we have studied 20K- and 22K-hGH using the rat GH receptor extracellular domain (rGHR-ECD) and full-length rGHR. When we examined the complex formation of rGHR-ECD with 20K- and 22K-hGH in gel filtration assay, 20K-hGH formed no complex while 22K-hGH formed a 1:1 complex. Next, rGHR cDNA was introduced into Ba/F3 cells and CHO-K1 cells, and stable transfectants (Ba/F3-rGHR and CHO-rGHR) were established. In the proliferation of Ba/F3-rGHR cells, 20K-hGH had 10-fold lower activity than 22K-hGH, which is consistent with their affinities for rGHR. But surprisingly, in the Spi2.1 gene promoter activation in CHO-rGHR cells, 20K- and 22K-hGH had the same activity, which was found not only in stable CHO-rGHR clones but also in CHO-K1 cells transiently expressing rGHR. In conclusion, these results indicate that cellular activities of 20K- and 22K-hGH do not necessarily correlate with their binding affinities for rGHR.  相似文献   

9.
Proteolytically cleaved human 22 kDa growth hormone (22K hGH) between the amino acid residues 134 and 150 by plasmin or other proteases in vitro has been reported to be most active in growth promoting activity. In this study a deleted mutant hGH lacking amino acid residues from 135 to 146 and having more sensitivity to plasmin digestion was produced using the inverse polymerase chain reaction method and the Escherichia coli expression system. The mutant, hGH delta 135-146, was folded and purified effectively and found to be more sensitive to plasmin cleavage to form the two-chain form in vitro. The biological activities of this plasmin sensitive hGH delta 135-146 were tested by in vitro cell proliferation assays and in vivo growth promoting assay. In Ba/F3-hGHR cells, which express receptors for hGH, hGH delta 135-146 showed 10-20% less growth promoting activity than 22K hGH, but expressed comparable quantities of IGF-I mRNA to that of 22K hGH. In Nb2 rat lymphoma cells, which proliferate in response to hGH via the lactogenic receptors, hGH delta 135-146 showed equivalent activities to those of 22K hGH at lower concentrations. By the body weight gain test using hypophysectomized rats, a lower dose (2.5 nmol kg-1) of hGH delta 135-146 exhibited an equivalent activity to that of wild type 22K hGH, but a higher dose (25 nmol kg-1) of the mutant showed less growth promoting activity than 22K hGH. These results indicated that the plasmin sensitive recombinant hGH delta 135-146 failed to show higher biological activity than the 22K hGH in vivo, suggesting the unsuccessful formation of the active two-chain form in vivo.  相似文献   

10.
Explants of 19- to 20-day fetal rat liver synthesize polypeptides biochemically and immunologically related to the well characterized somatomedin (insulin-like growth factor) BRL-MSA, multiplication-stimulating activity. Fetal MSA was purified from media conditioned by fetal liver explants by chromatography on Sephadex G-75 under acid conditions. Partially purified fetal MSA: 1) inhibited the binding of BRL-MSA to the MSA receptor of rat liver plasma membranes, to somatomedin-binding proteins from rat serum, and to rabbit anti-BRL-MSA serum; 2) had a molecular weight of 4,500 to 12,500 determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; 3) stimulated the incorporation of [3H]thymidine into the DNA of chick embryo fibroblasts and induced cell multiplication; 4) stimulated glucose oxidation in rat adipocytes and weakly inhibited the binding of insulin to the insulin receptors of IM-9 lymphocytes; and 5) stimulated sulfate uptake in costal cartilage from hypophysectomized rats. These activities were associated with the same molecular species in fetal MSA preparations following disc acrylamide electrophoresis and co-migrated with active BRL-MSA peptides.  相似文献   

11.
Plerocercoid larvae of the tapeworm Spirometra mansonoides produce a factor with activities similar to those of growth hormone (GH). Highly selective receptors for GH have been described on cultured human lymphocytes (IM-9 cells) and these cells have been used as a model of binding essentially restricted to human GH (hGH). We compared the displacement of [125I]hGH by hGH and partially purified plerocercoid growth factor (PGF) in assays using rabbit hepatic membranes and IM-9 cells. PGF displaced [125I]hGH from both rabbit hepatic membranes and IM-9 cells in a dose-dependent manner (r greater than 0.98). These results show that PGF specifically binds to hGH receptors on human IM-9 cells and suggest the possibility that PGF will have somatotropic activity in humans.  相似文献   

12.
The acute metabolic effects of 20,000-dalton human growth hormone (hGH20K) in man have not previously been tested. We compared changes in concentrations of free fatty acids (FFA), glucose, and insulin in nine growth hormone deficient children following injection of 22,000-dalton intact human growth hormone (hGH22K) and the smaller variant, hGH20K. There was a significant decline (37%) in the mean FFA concentration from baseline to 1/2 hour post-injection and from baseline to 1 hour post-injection (36%) in the children given hGH22K, but no such decline was seen after injection of hGH20K. No significant differences in mean insulin or glucose concentrations were noted between the two treatment groups, and glucose and insulin concentrations did not acutely change after injection of either hormone. The results of this study indicate that hGH20K has a diminished activity for suppression of FFA as compared to hGH22K. This suggests that GH residues 32-46, missing in hGH20K, constitute all or part of the region of hGH22K producing this response, or that the different primary structures of the two hormones result in tertiary structural differences and altered biological activity.  相似文献   

13.
In continuation of our efforts to study the solution structure and conformational dynamics of insulin by time-resolved fluorescence spectroscopy, we have synthesized and examined the biological activity of five insulin analogues in which selected naturally occurring residues in the A-chain have been replaced with the strongly fluorescent tryptophan residue. The potency of these analogues was evaluated in lipogenesis assays in isolated rat adipocytes, in receptor binding assays using rat liver plasma membranes, and in two cases, in receptor binding assays using adipocytes. [A3 Trp]insulin displays a potency of 3% in receptor binding assays in both liver membranes and in adipocytes, but only 0.06% in lipogenesis assays as compared to porcine insulin. [A10 Trp] insulin displays a potency ofca. 40% andca. 25% in rat liver receptor binding and lipogenesis assays, respectively. [A13 Trp]insulin displays a potency ofca. 39% in rat liver receptor binding assays, but onlyca. 9% in receptor binding in adipocytes; in lipogenesis assays, [A13 Trp] insulin displays a potency ofca. 12%, comparable to its potency in adipocyte receptor binding assays. [A15 Trp]insulin exhibits a potency of 18% and 9% in rat liver receptor binding and lipogenesis assays, respectively. The doubly substituted analogue, [A14 Trp, A19 Trp] insulin, displays a potency ofca. 0.7% in both rat liver receptor binding assays and lipogenesis assays. These data suggest two major conclusions: (1) the A3 and A15 residues lie in sensitive regions in the insulin molecule, and structural modifications at these positions have deleterious effects on biological activity of the hormone; and (2) [A13 Trp]insulin appears to be a unique case in which an insulin analogue exhibits a higher potency when assayed in liver tissue than when assayed in fat cells.  相似文献   

14.
When cultured human lymphocytes of the IM-9 line were exposed to human growth hormone (hGH) at 37 degrees, washed for 2 hours, and incubated with 125I-hGH, the binding of 125I-hGH was reduced. The magnitude of the reduction in binding was dependent on the concentration of growth hormone present as well as the duration of the exposure. As little as 2 X 10(-11) M (0.5 ng/ml) growth hormone had a discernible effect. Growth hormone at 2 X 10(-10) M (5.0 ng/ml), which is a low resting concentration of hormone in vivo and occupies about 20% of the receptors at steady state at 30 degrees, produced a 50% reduction in binding while 20 mg/ml, which occupies about 50% of the receptors under steady state conditions, produced an 80% loss of receptors. Further increases in growth hormone concentration produced little further effect on receptor loss. Thus, the loss of receptors at a given concentration of growth hormone (up to 20 ng/ml) in the preincubation at 37 degrees was greater than the occupancy produced by that concentration of growth hormone receptors under steady state conditions at 30 degrees. Analysis of the data indicated that the decrease in binding of 125I-hGH was due to a loss of receptors per cell without any change in affinity of receptor for hormone or in cell number. The concentration of insulin receptors on these cells was affected by the insulin concentration in the medium, and the concentration of growth hormone receptors was affected by growth hormone, but neither hormone had any effect on the heterologous receptors. Exposure of the cells to cycloheximide (0.1 mM) produced a progressive but smaller loss of growth hormone receptors, and the effect of cycloheximide was additive to the receptor loss induced by growth hormone, suggesting that cycloheximide inhibited synthesis of receptors while growth hormone accelerated loss of receptors. When growth hormone was removed from the medium, receptor concentrations were restored rapidly; half of the loss was restored by 6 to 8 hours and the full complement of receptors was restored by 24 hours following removal of the hormone. If the growth hormone was removed and replaced with cycloheximide, the return of the receptors was delayed until the cycloheximide was removed. Thus restoration of the receptors appeared to require the synthesis of new proteins. These data indicate that in the IM-9 lymphocytes the concentration of growth hormone receptors is very sensitive to regulation by growth hormone and also add further support to the suggestion that hormones in general actively regulate the concentration of their own receptors.  相似文献   

15.
The receptor binding and biological potency of despentapeptide insulin (DPI) was assessed in human adipocytes, rat adipocytes and rat hepatocytes. DPI displayed a lower affinity for binding to both human adipocytes (half-maximum displacement at 0.89 +/- 0.04 and 0.20 +/- 0.02 nmol/l for DPI and insulin respectively; P less than 0.001) and rat adipocytes (half-maximum displacement at 7.12 +/- 1.06 and 1.14 +/- 0.18 nmol/l respectively, P less than 0.05). However, although DPI was less potent than unmodified insulin in stimulating glucose uptake in rat adipocytes (half-maximal stimulation at 2.0 +/- 0.67 and 0.47 +/- 0.18 nmol/l respectively; P less than 0.05), DPI was equipotent with insulin in human adipocytes (half-maximal stimulation at 0.034 +/- 0.001 and 0.027 +/- 0.001 nmol/l respectively; P greater than 0.2). In rat hepatocytes, DPI was twofold less potent in binding displacement activity (half-maximum displacement at 3.8 +/- 0.9 and 1.7 +/- 0.3 nmol/l respectively; P less than 0.01) but appeared to be equivalent in stimulating amino butyric acid uptake (half-maximum stimulation at 0.98 +/- 0.12 and 0.95 +/- 0.26 nmol/l respectively). The difference in affinity of DPI binding to rat liver membranes was less marked (1.3 fold decreased compared with insulin: 5.3 +/- 0.7 and 4.2 +/- 0.6 nmol/l respectively; P less than 0.001). Thus, the decreased receptor affinity of DPI was reflected in decreased biological potency in rat adipocytes, but not in human adipocytes nor rat hepatocytes. These data suggest differences in the binding-action linking in the cells of different tissues and different species.  相似文献   

16.
OBJECTIVE AND METHOD: We studied the effects of human growth hormone (hGH) on leptin production and lipolysis stimulation in the presence or absence of human growth hormone binding protein (hGHBP) using 3T3- L1-hGHR adipocytes which efficiently express human growth hormone receptor. RESULTS AND CONCLUSION: It was clarified that (1) hGH decreases leptin secretion after hGH-induced lipolysis stimulation, and (2) the reduction of leptin production and lipolysis stimulation by 22K hGH was attenuated with hGHBP, whereas that by 20K hGH, which is a naturally occurring isoform of 22K hGH, was not affected with hGHBP.  相似文献   

17.
本文采用DNA重组技术制备了三种重组人生长激素(recombinant human growthhormone,rhGH)突变体,并测定了其受体亲和力及对去垂体大鼠的促体重增加活力。实验结果显示其受体亲和力大小依次为:rhGH-E174A>rhGH-G120R>rhGH>rhGH-G120T。 rhGH-G120R和rhGH-G120T二种突变体相比rhGH来说,对去垂体大鼠促体重增加生物活性明显降低;rhGH-E174A突变体则完全丧失生物活性。由于rhGH-E174A的受体亲和办高于rhGH,表明它是一种较强的hGH拮抗剂,可能成为一种药物,在临床上用于治疗因hGH分泌过多而引起的疾病(例如巨人症,肢端肥大症等)。  相似文献   

18.
A chimeric bovine GH (amino acids Met-Asp-Gln-greater than 1-23) and human GH (hGH) (amino acids 24-191) plasmid was constructed and expressed in Escherichia coli. The purified protein (chimeric GH) exhibited a 2-3 order of magnitude lower affinity toward lactogenic receptors in Nb2 lymphoma cells, microsomal fractions from bovine mammary gland and male rat liver. The affinity towards somatogenic receptors in IM-9 human lymphocytes and male rat liver was decreased to a much lesser degree. This diminished affinity towards lactogenic receptors was accompanied by a parallel decrease in the ability of the chimeric GH to stimulate proliferation of Nb2-11C lymphoma cells and the lipogenesis in bovine mammary gland. This implies that occupation of the respective receptors by either chimeric GH or hGH leads to identical postreceptoral effects. The chimeric GH was also capable of down-regulating the lactogenic receptors in Nb2 lymphoma cells and was recognized by three anti-hGH monoclonal antibodies. These and previously published results indicate that the N-terminal part of hGH is essential for the high affinity binding to lactogenic receptors and subsequent biological effect. Removal or replacement by a corresponding part of bovine GH converts the hormone, respectively to weak antagonist or agonists. Analysis of our data, based on hydropathy index leads us to suggest that the high affinity binding site of the hGH towards lactogenic receptors is mainly confined to amino acids nos. 8-18.  相似文献   

19.
The oxidation of the methionine residues of human growth hormone (hGH) and human chorionic somatomammotropin (hCS) to methionine sulfoxide by hydrogen peroxide has been studied. The kinetics of oxidation of individual methionine residues has been measured by reverse-phase high pressure liquid chromatography tryptic peptide mapping. Met-170 is completely resistant to oxidation in both hormones. The other 3 methionine residues in hCS (Met-64, Met-96, and Met-179) have markedly different reaction rates. Oxidation of the methionine residues does not appear to cause gross conformational changes in either hGH or hCS, as judged by CD and 1H NMR spectroscopy. Oxidation of Met-14 and Met-125 in hGH has little effect on affinity of the hormone for lactogenic receptors or on its potency in the Nb2 rat lymphoma in vitro bioassay for lactogenic hormones. The oxidation of Met-64 and/or Met-179 in hCS reduces profoundly both its affinity for lactogenic receptors and its in vitro biological potency. It is inferred by induction that residues 64 and/or 179 are critical for the binding of both hGH and hCS to lactogenic receptors and the expression of lactogenic biological activity.  相似文献   

20.
J Smal  S Kathuria  P De Meyts 《FEBS letters》1989,244(2):465-468
To determine whether protein kinase C plays a role in the actions of insulin and growth hormone in rat adipocytes, we tested the effect of acridine orange, a potent inhibitor of kinase C, on the lipogenic activity of both hormones. This compound completely inhibited the effects of insulin, growth hormone and phorbol ester 12-myristate 13-acetate, whereas 9-acridine carboxylic acid, an analog of acridine orange which does not inhibit kinase C, had no effect. Acridine orange did not act through inhibition of hormone binding. These data are consistent with the involvement of kinase C in the action of insulin and growth hormone on lipogenesis in rat fat cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号