首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Experimental studies have shown that toxicant responsive genes, cytochrome P450s (CYPs) and glutathione S-transferases (GSTs) play a critical role in pesticide-induced toxicity. CYPs play pro-oxidant role and GSTs offer protection in maneb (MB) and paraquat (PQ)-induced brain and lung toxicities. The present study aimed to investigate the effect of repeated exposures of MB and/or PQ on lipid peroxidation (LPO), glutathione content (GSH) and toxicant responsive genes, i.e., CYP1A1, 1A2, 2E1, GSTA4-4, GSTA1-1 and GSTA3-3 in the liver and to correlate the same with polymorphonuclear leukocytes (PMNs). A significant augmentation in LPO and reduction in GSH content was observed in a time of exposure dependent manner in the liver and PMNs of MB and/or PQ treated animals. The expression and catalytic activity of CYP2E1 and GSTA4-4 were significantly increased following MB and/or PQ exposure both in the liver and PMNs. Although the expression of GSTA3-3 was increased, the expression of GSTA1-1 was unaltered after MB and/or PQ treatment in both the liver and PMNs. MB augmented the expression and catalytic activity of CYP1A1 in the liver, however, CYP1A2 was unaffected. PQ, on the other hand, significantly increased hepatic CYP1A2 expression and catalytic activity. MB and/or PQ did not produce any significant changes in CYP1A1 and CYP1A2 in PMNs. The results of the study thus demonstrate that MB and PQ differentially regulate hepatic CYP1A1 and CYP1A2 while LPO, GSH, CYP2E1, GSTA4-4 and GSTA3-3 are modulated in the similar fashions both in the liver and PMNs.  相似文献   

2.
A strong association between polymorphisms of the cytochrome P450 (CYP/Cyp) 2D6 gene and risk to Parkinson's disease (PD) is well established. The present study investigated the neuroprotective potential of Cyp2d22, a mouse ortholog of human CYP2D6, in maneb- and paraquat-induced parkinsonism and the mechanisms involved therein along with the effects of resveratrol on various parameters associated with Cyp2d22-mediated neuroprotection. The animals were treated intraperitoneally with resveratrol (10mg/kg, daily) and paraquat (10mg/kg) alone or in combination with maneb (30 mg/kg), twice a week, for 9 weeks, along with their respective controls. The subsets of animals were also treated intraperitoneally with a Cyp2d22 inhibitor, ketoconazole (100mg/kg, daily). Maneb and paraquat reduced Cyp2d22 and vesicular monoamine transporter type 2 (VMAT-2) expressions, the number of tyrosine hydroxylase-positive cells, and dopamine content and increased paraquat accumulation in the nigrostriatal tissues, oxidative stress, microglial activation, neuroinflammation, and apoptosis. Cyp2d22 inhibitor significantly exacerbated all these neurodegenerative indexes. Resveratrol cotreatment, partially but significantly, ameliorated the neurodegenerative changes by altering Cyp2d22 expression and paraquat accumulation. The results obtained in the study demonstrate that Cyp2d22 offers neuroprotection in maneb- and paraquat-induced dopaminergic neurodegeneration and resveratrol enhances its neuroprotective credentials by influencing Cyp2d22 expression and paraquat accumulation.  相似文献   

3.
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress.  相似文献   

4.
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors NG-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress.  相似文献   

5.
Maneb (MB) and paraquat (PQ) provoke oxidative stress-mediated cell damage. Role of xanthine oxidase (XO) in oxidative stress and its association with nitric oxide (NO)/NO synthase (NOS) have been widely reported. While inducible NOS (iNOS) is implicated in MB+PQ-induced toxicity in rat polymorphonuclear leukocytes (PMNs), role of XO and its alliance with iNOS have not yet been established. The study investigated the role of XO in MB+PQ-induced oxidative stress in rat PMNs and its regulation by iNOS and inflammatory cytokines. MB+PQ-augmented reactive oxygen species (ROS), superoxide, nitro-tyrosine, lipid peroxidation (LPO), and nitrite levels along with the catalytic activity of iNOS, superoxide dismutase (SOD), and XO. XO inhibitor, allopurinol (AP), alleviated MB+PQ-induced changes except nitrite content and iNOS activity. Conversely, an iNOS inhibitor, aminoguanidine, mitigated MB+PQ-induced LPO, nitrite, iNOS, and nitro-tyrosine levels; however, no change was observed in ROS, SOD, and XO. Nuclear factor-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), tumor necrosis factor-alpha (TNF-α) inhibitor, pentoxyfylline, and an anti-inflammatory agent, dexamethasone, attenuated MB+PQ-induced increase in XO, superoxide, and ROS with parallel reduction in the expression of interferon-gamma (IFN-γ), TNF-α, and interleukin-1β (IL-1β) in rat PMNs. Exogenous IFN-γ, TNF-α, and IL-1β enhanced superoxide, ROS, and XO in the PMNs of control and MB+PQ-treated rats; however, IFN- γ was found to be the most potent inducer. Moreover, AP ameliorated cytokine-induced free radical generation and restored XO activity towards normalcy. The results thus demonstrate that XO mediates oxidative stress in MB+PQ-treated rat PMNs via iNOS-independent but cytokine (predominantly IFN-γ)-dependent mechanism.  相似文献   

6.
Mitochondrial dysfunction is the foremost perpetrator of the nigrostriatal dopaminergic neurodegeneration leading to Parkinson's disease (PD). However, the roles played by majority of the mitochondrial proteins in PD pathogenesis have not yet been deciphered. The present study investigated the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and combined maneb and paraquat on the mitochondrial proteome of the nigrostriatal tissues in the presence or absence of minocycline, levodopa and manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP). The differentially expressed proteins were identified and proteome profiles were correlated with the pathological and biochemical anomalies induced by MPTP and maneb and paraquat. MPTP altered the expression of twelve while combined maneb and paraquat altered the expression of fourteen proteins. Minocycline, levodopa and MnTMPyP, respectively, restored the expression of three, seven and eight proteins in MPTP and seven, eight and eight proteins in maneb- and paraquat-treated groups. Although levodopa and MnTMPyP rescued from MPTP- and maneb- and paraquat-mediated increase in the microglial activation and decrease in manganese-superoxide dismutase expression and complex I activity, dopamine content and number of dopaminergic neurons, minocycline defended mainly against maneb- and paraquat-mediated alterations. The results demonstrate that MPTP and combined maneb and paraquat induce mitochondrial dysfunction and microglial activation and alter the expression of a bunch of mitochondrial proteins leading to the nigrostriatal dopaminergic neurodegeneration and minocycline, levodopa or MnTMPyP variably offset scores of such changes.  相似文献   

7.
The present study was undertaken to investigate the involvement of nitric oxide in the augmentation of benzo(a)pyrene induced cellular injury in polymorphonuclear leukocytes (PMNs). Polymorphs were isolated from the blood collected from Wistar rats treated with and without benzo(a)pyrene (50mg/kg, i.p.) through cardiac puncture. Catalase, superoxide dismutase (SOD), glutathione-s-transferase (GST), myeloperoxidase (MPO) and nitrite content were estimated in PMNs using standard procedures. Inducible nitric oxide synthase (iNOS) and cytochrome P-4501A1 (CYP1A1) expression in PMNs were also analyzed in presence or absence of nitric oxide synthase (NOS) inhibitors, aminoguanidine (AG, 5mM) and L-NG nitro L-arginine methyl ester (L-NAME, 1mM). A significant augmentation was observed in the nitrite content, activities of superoxide dismutase, MPO and GST and the expressions of iNOS and CYP1A1, however, catalase activity was attenuated in PMNs of benzo(a)pyrene treated rats as compared with their respective controls. AG and L-NAME resulted in a significant attenuation in nitrite content, MPO activity and iNOS expression; however, no significant alteration was observed in CYP1A1 expression. CYP1A1 inhibitor alpha-naphthoflavone inhibited the expression of iNOS in PMNs of benzo(a)pyrene treated animals significantly. The results obtained thus suggest that CYP1A1 induces iNOS expression leading to the generation of endogenous nitric oxide (NO) that could be responsible for the augmentation of myeloperoxidase-mediated benzo(a)pyrene-induced injury in PMNs.  相似文献   

8.
9.
《Free radical research》2013,47(12):1416-1424
Abstract

Long-term exposure to cypermethrin induces the nigrostriatal dopaminergic neurodegeneration in adult rats and its pre-exposure in the critical periods of brain development enhances the susceptibility during adulthood. Monoamine transporters, xenobiotic metabolizing enzymes and oxidative stress play critical roles in the nigrostriatal dopaminergic neurodegeneration. The study was undertaken to investigate the effects of cypermethrin on DAT, VMAT 2, CYP2E1, GST Ya, GST Yc and GSTA4-4 expressions, CYP2E1 and GST activities and lipid peroxidation in the nigrostriatal system of adult rats with/without post-natal exposure to cypermethrin. Cypermethrin reduced VMAT 2 and increased CYP2E1 expressions without causing significant change in DAT. Although GSTA4-4 mRNA expression and lipid peroxidation were increased, no significant changes were observed in GST Ya and GST Yc expressions and total GST activity. The results obtained demonstrate that long-term exposure to cypermethrin modulates VMAT 2, CYP2E1, GSTA4-4 expressions and lipid peroxidation, which could contribute to the nigrostriatal dopaminergic neurodegeneration.  相似文献   

10.
11.
Typically, chemopreventive agents involve either induction of phase II detoxifying enzymes and/or inhibition of cytochrome P450 enzymes (CYPs) that are required for the activation of procarcinogens. In this study, we investigated the protective effects of phloretin against aflatoxin B1 (AFB1) activation to the ultimate carcinogenic intermediate, AFB(1)-8, 9-epoxide (AFBO), and its subsequent detoxification. Phloretin markedly inhibited formation of the epoxide with human liver microsomes in a dose-dependent manner. Phloretin also inhibited the activities of nifedipine oxidation and ethoxyresorufin O-deethylase (EROD) in human liver microsomes. These data show that phloretin strongly inhibits CYP1A2 and CYP3A4 activities, which are involved in the activation of AFB1. Phloretin increased glutathione S-transferase (GST) activity of alpha mouse liver 12 (AML 12) cells in a dose-dependent manner. GST activity toward AFBO in cell lysates treated with 20 μM phloretin was 23-fold that of untreated control cell lysates. The expression of GSTA3, GSTA4, GSTM1, GSTP1 and GSTT1 was induced by phloretin in a dose-dependent manner in AML 12 cells. GSTP1, GSTM1, and GSTT1 were able to significantly increase the conjugation of AFBO with glutathione. Concurrently, induction of the GST isozyme genes was partially associated with the Nrf2/ARE pathway. Taken together, the results demonstrate that phloretin has a strong chemopreventive effect against AFB1 through its inhibitory effect on CYP1A2, CYP3A4, and its inductive effect on GST activity.  相似文献   

12.
Nitric oxide (NO) and the lipid peroxidation (LPO) product 4-hydroxynonenal (HNE) are considered to be key mediators of cartilage destruction in osteoarthritis (OA). NO is also known to be an important intermediary in LPO initiation through peroxynitrite formation. The aim of the present study was to assess the ability of the inducible NO synthase (iNOS) inhibitor N-iminoethyl-L-lysine (L-NIL) to prevent HNE generation via NO suppression in human OA chondrocytes and cartilage explants. Human OA chondrocytes and cartilage explants were treated with L-NIL and thereafter with or without interleukin-1beta (IL-1β) or HNE at cytotoxic or non-cytotoxic concentrations. Parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. L-NIL stifled IL-1β-induced NO release, iNOS activity, nitrated proteins, and HNE generation in a dose-dependent manner. It also blocked IL-1β-induced inactivation of the HNE-metabolizing glutathione-s-transferase (GST). L-NIL restored both HNE and GSTA4-4 levels in OA cartilage explants. Interestingly, it also abolished IL-1β-evoked reactive oxygen species (ROS) generation and p47 NADPH oxidase activation. Furthermore, L-NIL significantly attenuated cell death and markers of apoptosis elicited by exposure to a cytotoxic dose of HNE as well as the release of prostaglandin E(2) and metalloproteinase-13 induced by a non-cytotoxic dose of HNE. Altogether, our findings support a beneficial effect of L-NIL in OA by (i) preventing the LPO process and ROS production via NO-dependent and/or independent mechanisms and (ii) attenuating HNE-induced cell death and different mediators of cartilage damage.  相似文献   

13.
14.
15.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modulation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.  相似文献   

16.
17.
18.
We evaluated the effect of "weak" CYP2E1 binders (ethanol, acetone and glycerol) "tight" CYP2E1 binders (4-methylpyrazole, imidazole, isoniazid and pyridine) and CCl4 (suicide substrate of CYP2E1) on the NADPH-dependent production of microsomal reactive oxygen species (ROS), lipid peroxidation (LPO), and subsequent modification of microsomal and CYP2E1 proteins. The oxidation of 2',7'-dichlorofluorescin diacetate (DCFHDA) was used as an index of formation of microsomal ROS and LPO-derived reactive species. Microsomal LPO was determined by malondialdehyde (MDA) HPLC measurement. Addition of NADPH to rat liver microsomes initiated DCFHDA oxidation and MDA formation, leading to further selective modification of microsomal proteins and proteases-independent degradation of CYP2E1 protein. Iron chelators prevented these processes whereas hydroxyl radical scavengers showed weak effects, suggesting an important role of LPO. Among the tested CYP2E1 binders, only isoniazid strongly inhibited NADPH-dependent DCFHDA oxidation, LPO and modification of microsomal proteins. Other CYP2E1 binders showed weak inhibitory effects of these processes. Concerning NADPH-dependent modification of CYP2E1 protein, all of the tested CYP2E1 binders, except glycerol, prevented this process with a different potency (isoniazid > 4-methylpyrazole = imidazole = pyridine 3 > acetone > ethanol). "Tight" binders were more effective than "weak" binders. The CCl4 stimulated the DCFHDA oxidation, LPO and CYP2E1 protein modification. Among the tested CYP2E1 binders, only isoniazid effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. In microsomes isolated from CYP2E1 transfected HepG2 cells, isoniazid inhibited the CYP2E1-dependent DCFHDA oxidation whereas other CYP2E1 binders did not inhibit this reaction although these compounds strongly inhibited CYP2E1 activity. The present study demonstrates that CYP2E1 binders and isoniazid differentially inhibit LPO-catalyzed oxidative modification of CYP2E1 protein in NADPH-dependent microsomal reactions. It seems that CYP2E1 binders protect CYP2E1 from the oxidative modification mainly by binding to the active site of the enzyme, rather than by blocking the reactive species production. The strong protective effect of isoniazid can be attributed to its ability to scavenge free radicals. These effects of CYP2E1 binders are considered to contribute to the regulation of hepatic CYP2E1 protein levels via stabilization of the protein.  相似文献   

19.
Ethyl pyruvate (EP), a simple ester of pyruvic acid, has been shown to act as an anti-inflammatory molecule under various pathological conditions, such as, during cerebral ischemia and sepsis in animal models. Here, the authors investigated the novel molecular mechanism underlying the anti-oxidative effect of EP in primary astrocyte cultures, particularly with respect to nuclear factor E2-related factor 2 (Nrf2) activation and hemeoxygenase 1 (HO-1) induction. EP was found to induce Nrf2 translocation and the inductions of various genes downstream of Nrf2 and these resulted in the amelioration of the oxidative damage of H(2)O(2). Furthermore, EP dose-dependently suppressed H(2)O(2)-induced astrocyte cell death (12h preincubation with 5mM EP increased cell survival after 1h exposure to 100 μM H(2)O(2) from 32.6±0.7% to 63±1.8%). HO-1 was markedly induced (4.9-fold) in EP-treated primary astrocyte cultures and Nrf2 was found to translocate from the cytosol to the nucleus and bind to the antioxidant response element (ARE) located on HO-1 promoter after EP treatment. siRNA-mediated HO-1 or Nrf2 knockdown and zinc protoporphyrin (ZnPP)-mediated inhibition of HO-1 activity showed that Nrf2 activation and HO-1 induction were responsible for the observed cytoprotective effect of EP, which was found to involve the ERK and Akt signaling pathways. Furthermore, EP-conditioned astrocyte culture media was found to have neuroprotective effects on primary neuronal cultures exposed to oxidative or excitotoxic stress, and this seemed to be mediated by glial cell line-derived neurotrophic factor (GDNF) and glutathione (GSH), which accumulated in EP-treated astrocyte culture media. Interestingly, we also found that in addition to HO-1, EP-induced Nrf2 activation increased the expressions of various anti-oxidant genes, including GST, NQO1, and GCLM. The study shows that EP-mediated Nrf2 activation and HO-1 induction in astrocytes act via autocrine and paracrine mechanisms to confer protective effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号