首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to investigate the effect of two plasticizers, i.e., triethyl citrate (TEC) and polyethylene glycol 6000 (PEG 6000) on the in vitro release kinetics of diclofenac sodium from sustained-release pellets. Ammonio methacrylate copolymer type B (Eudragit RS 30 D) is used as the release-retarding polymer. Both plasticizers were used at 10% and 15% (w/w) of Eudragit RS 30 D. Pellets were prepared by powder layering technology and coated with Eudragit RS 30 D by air suspension technique. Thermal properties of drug and drug-loaded beads were studied using differential scanning calorimeter (DSC). DSC thermogram represented the identity of raw materials and exhibited no interaction or complexation between the active and excipients used in the pelletization process. Dissolution study was performed by using USP apparatus 1. No significant difference was observed among the physical properties of the coated pellets of different batches. When dissolution was performed as pure drug, about 8.22% and 90% drug was dissolved at 2 h in 0.1 N HCl and at 30 min in buffer (pH 6.8), respectively. From all formulations, the release of drug in acid media was very negligible (maximum 1.8 ± 0.08% at 2 h) but in buffer only 12% and 30% drug was released at 10 h from coated pellets containing TEC and PEG 6000, respectively, indicating that Eudragit RS 30 D significantly retards the drug release rate and that drug release was varied according to the type and amount of plasticizers used. The amount of TEC in coating formulation significantly effected drug release (p < 0.001), but the effect of PEG 6000 was not significant. Formulations containing PEG 6000 released more drug (98.35 ± 2.35%) than TEC (68.01 ± 1.04%) after 24 h. Different kinetic models like zero order, first order, and Higuchi were used for fitting drug release pattern. Zero order model fitted best for diclofenac release in all formulations. Drug release mechanism was derived with Korsmeyer equation.  相似文献   

2.
The purpose of this research was to develop the taste-masked microspheres of intensely bitter drug ondansetron hydrochloride (OSH) by spray-drying technique. The bitter taste threshold value of OSH was determined. Three different polymers viz. Chitosan, Methocel E15 LV, and Eudragit E100 were used for microsphere formation, and the effect of different polymers and drug–polymer ratios on the taste masking and release properties of microspheres was investigated. The microspheres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, Drug loading, in vitro bitter taste evaluation, and drug-release properties. The taste masking was absent in methocel microspheres at all the drug–polymer ratios. The Eudragit microspheres depicted taste masking at 1:2 drug–polymer ratio whereas with Chitosan microspheres the taste masking was achieved at 1:1 drug–polymer ratio. The drug release was about 96.85% for eudragit microspheres and 40.07% for Chitosan microspheres in 15 min.  相似文献   

3.
In the present study, an attempt has been made to design controlled release colon-specific formulations of indomethacin by employing pH responsive polymers Eudragit (L100 or S100) in matrix bases comprised of xanthan gum. The prepared tablets were found to be of acceptable quality with low-weight variation and uniform drug content. In vitro release studies indicated rapid swelling and release of significant percentage of drug in the initial period from matrix tablets composed of xanthan gum alone. Addition of pH responsive polymers Eudragit (L100 or S100) to xanthan gum matrix resulted in negligible to very low drug release in the initial period in acidic to weakly acidic medium. Furthermore, with increase in pH of the dissolution medium due to dissolution of Eudragit L100/Eudragit S100 that resulted in the formation of a porous matrix, faster but controlled drug release pattern was observed. Thus, a sigmoidal release pattern was observed from the designed formulations suitable for colonic delivery. Drug release mechanism in all cases was found to be of super case II type, indicating erosion to be the primary cause of drug release. Since the drug release from almost all the matrix bases in the initial phase was negligibly low and followed with controlled release for about 14–16 h, it was concluded that a matrix design of this composition could have potential applications as a colon-specific drug delivery device with additional advantage of easy scale-up and avoidance of all-or-none phenomenon associated with coated colon-specific systems.  相似文献   

4.
The purpose of this research was to design oral controlled release (CR) matrix tablets of zidovudine (AZT) using hydroxypropyl methylcellulose (HPMC), ethyl cellulose (EC) and carbopol-971P (CP) and to study the effect of various formulation factors on in vitro drug release. Release studies were carried out using USP type 1 apparatus in 900 ml of dissolution media. Release kinetics were analyzed using zero-order, Higuchi’s square root and Ritger–Peppas’ empirical equations. Release rate decreased with increase in polymer proportion and compression force. The release rate was lesser in formulations prepared using CP (20%) as compared to HPMC (20%) as compared to EC (20%). No significant difference was observed in the effect of pH of dissolution media on drug release from formulations prepared using HPMC or EC, but significant difference was observed in CP based formulations. Decrease in agitation speed from 100 to 50 rpm decreased release rate from HPMC and CP formulations but no significant difference was observed in EC formulations. Mechanism of release was found to be dependent predominantly on diffusion of drug through the matrix than polymer relaxation incase of HPMC and EC formulations, while polymer relaxation had a dominating influence on drug release than diffusion incase of CP formulations. Designed CR tablets with pH independent drug release characteristics and an initial release of 17–25% in first hour and extending the release up to 16–20 h, can overcome the disadvantages associated with conventional tablets of AZT.  相似文献   

5.
The aim of this work is to study the influence of formulation parameters in the preparation of sustained release enzyme-loaded Eudragit S100 microspheres by emulsion solvent diffusion technique. A 3(2) full factorial experiment was designed to study the effects of the amount of solvent (dichloromethane) and stabilizers (Tween 20, 40, or 80) on the drug content and microsphere size. The results of analysis of variance test for both effects indicated that the test is significant. The effect of amount of stabilizer was found to be higher on both responses (SS(Y1) = 45.60; SS(Y2) = 737.93), whereas solvent concentration comparatively produced significant effect on the size of microspheres (SS(Y1) = 0.81; SS(Y2) = 358.83). Scanning electron microscopy of microspheres with maximum drug content (2.5 mL dichloromethane and 0.1 mL Tween 80) demonstrated smooth surface spherical particles with mean diameter of 56.83 +/- 2.88 microm. The effect of formulation variables on the integrity of enzyme was confirmed by in vitro proteolytic activity. The enteric nature of microspheres was evaluated and results demonstrated ~6% to 7% release of enzyme in acidic medium. The release of enzyme from microspheres followed Higuchi kinetics. In phosphate buffer, microspheres showed an initial burst release of 20.34% +/- 2.35% in 1 hour with additional 58.79% +/- 4.32% release in the next 5 hours. Three dimensional response graphs were presented to visualize the effect of independent variables on the chosen response. Thus, Eudragit S100 microspheres can be successfully prepared for oral delivery of enzymes with desirable characters in terms of maximum loading and diffusion release pattern.  相似文献   

6.
The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.  相似文献   

7.
Characterization of 5-fluorouracil microspheres for colonic delivery   总被引:1,自引:0,他引:1  
The purpose of this investigation was to prepare and evaluate the colon-specific microspheres of 5-fluorouracil for the treatment of colon cancer. Core microspheres of alginate were prepared by the modified emulsification method in liquid paraffin and by cross-linking with calcium chloride. The core microspheres were coated with Eudragit S-100 by the solvent evaporation technique to prevent drug release in the stomach and small intestine. The microspheres were characterized by shape, size, surface morphology, size distribution, incorporation efficiency, and in vitro drug release studies. The outer surfaces of the core and coated microspheres, which were spherical in shape, were rough and smooth, respectively. The size of the core microspheres ranged from 22 to 55 μm, and the size of the coated microspheres ranged from 103 to 185 μm. The core microspheres sustained the drug release for 10 hours. The release studies of coated microspheres were performed in a pH progression medium mimicking the conditions of the gastrointestinal tract. Release was sustained for up to 20 hours in formulations with core microspheres to a Eudragit S-100 coat ratio of 1∶7, and there were no changes in the size, shape, drug content, differential scanning calorimetry thermogram, and in vitro drug release after storage at 40°C/75% relative humidity for 6 months.  相似文献   

8.
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.  相似文献   

9.
Interpolyelectrolyte (IPE) complexation between carrageenan (CG) and Eudragit E (EE) was studied in 0.1 M HCl and was used to develop floating matrix tablets aimed to prolong gastric-residence time and sustain delivery of the loaded drug. The optimum EE/CG IPE complexation weight ratio (0.6) was determined in 0.1 M HCl using apparent viscosity measurements. The IPE complex was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Metronidazole matrix tablets were prepared by direct compression using EE, CG, or hybrid EE/CG with ratio optimal for IPE complexation. Corresponding effervescent tablets were prepared by including Na bicarbonate as an effervescent agent. Tablets were evaluated for in vitro buoyancy and drug release in 0.1 M HCl. Both CG and EE–CG effervescent matrices (1:2 drug to polymer weight ratio, 60 mg Na bicarbonate) achieved fast and prolonged floating with floating lag times less than 30 s and floating duration of more than 10 h. The corresponding EE effervescent matrices showed delayed floating and rapid drug release, and completely dissolved after 3 h of dissolution. CG matrices showed an initial burst drug release (48.3 ± 5.0% at 1 h) followed by slow drug release over 8 h. EE–CG matrices exhibited sustained drug release in almost zero-order manner for 10 h (68.2 ± 6.6%). The dissolution data of these matrices were fitted to different dissolution models. It was found that drug release followed zero-order kinetics and was controlled by the superposition of the diffusion and erosion.  相似文献   

10.
In the present study, an attempt was made to prepare immediate-release enteric-coated pellets of aceclofenac, a poorly soluble nonsteroidal anti-inflammatory drug that has a gastrointestinal intolerance as its serious side effect. Formulation of enteric-coated pellets with improved solubility of aceclofenac could address both of these problems. To achieve these goals, pellets were prepared by extrusion–spheronization method using pelletizing agents that can contribute to the faster disintegration and thereby improve the solubility of the drug. Different disintegrants like β-cyclodextrin, kollidon CL, Ac-Di-Sol, and sodium starch glycolate were tried in order to further improve disintegration time. The pellets were characterized for drug content, particle size distribution, flow properties, infrared spectroscopy, surface morphology, disintegration rate, and dissolution profile. The formulations, which showed best disintegration and dissolution profiles, were coated with Eudragit L100-55, an enteric-coated polymer which does not dissolve at gastric pH but dissolves at intestinal pH, releasing the drug immediately in the dissolution medium. The optimized enteric-coated formulation containing 20% κ-carrageenan, lactose, and sodium starch glycolate as a disintegrant did inhibit the release of the drug for 2 h in 0.1 N HCl, whereas 87% of the drug was released within 45 min. The improvement was substantial when it was compared with solubility of pure drug under the same conditions. Thus, dissolution profiles suggested that combination of κ-carrageenan and sodium starch glycolate resulted into fast-disintegrating, immediate-release pellets, overcoming the bioavailability problem of the poorly soluble drug, aceclofenac, and enteric coating of these pellets avoids the exposure of aceclofenac to ulcer-prone areas of the gastrointestinal tract.  相似文献   

11.
Dissolution studies cannot distinguish phenomena occurring inside the dosage forms when studying formulation with similar dissolution profiles—such formulations can behave differently when considering their physical changes. The application of flow-through dissolution apparatus integrated with magnetic resonance imaging (MRI) system for discriminative evaluation of controlled release dosage forms with similar dissolution profiles was presented. Hydrodynamically balanced systems (HBS) containing l-dopa and various grades hydroxypropyl methylcelluloses were prepared. The dissolution studies of l-dopa were performed at high field (4.7 T) MR system with MR-compatible flow-through cell. MRI was done with 0.14 × 0.14 × 1-mm spatial resolution and temporal resolution of 10 min to record changes of HBS parameters during dissolution in 0.1 M HCl. Structural and geometrical changes were evaluated using the following parameters: total area of HBS cross-section, its Feret’s diameter, perimeter and circularity, area of hydrogel layer, and “dry core” area. While the dissolution profiles of l-dopa were similar, the image analysis revealed differences in the structural and geometrical changes of the HBS. The mechanism of drug release from polymeric matrices is a result of synergy of several different phenomena occurring during dissolution and may differ between formulations, yet giving similar dissolution profiles. A multivariate analysis was performed to create a model taking into account dissolution data, data from MRI, information about chemical structure, and polymer viscosity. It provided a single model for all the formulations which was confirmed to be competent. The presented method has merit as a potential Process Analytical Technology tool.  相似文献   

12.
The main aim of this study is to optimize and evaluate transdermal patch of Carvedilol by the use of different polymer and different permeation enhancers which help to release drug in controlled action and thereby increase the bioavailability of the drug. Main objective was to avoid first pass metabolism of Carvedilol. Transdermal patches were developed by solvent evaporation method. The combination of Eudragit RS-100 as rate controlling polymer and Span 80 as a permeation enhancer was found to be ideal formulation (Formulation F7) with maximum drug release i.e. 100.29 ± 0.44 % within 12 h. Formulation F7 showed maximum bioavailability and showed maximum drop of BP at 6 h. From this study the conclusion was, transdermal patch of Carvedilol which contains Eudragit RS-100 polymer and Span 80 as penetration enhancer produced sustained and continued drug release.  相似文献   

13.
The aim of this study was to investigate the influence of polymer level and type of some hydrophobic polymers, including hydrogenated castor oil (HCO); Eudragit RS100 (E-RS100); Eudragit L100 (E-L100), and some fillers namely mannitol [soluble filler], Dibasic calcium phosphate dihydrate (Emcompress) and anhydrous dibasic calcium phosphate [insoluble fillers] on the release rate and mechanism of baclofen from matrix tablets prepared by a hot-melt granulation process (wax tablets) and wet granulation process (E-RS100 and E-L100 tablets). Statistically significant differences were found among the drug release profile from different classes of polymeric matrices. Higher polymeric content (40%) in the matrix decreased the release rate of drug because of increased tortuosity and decreased porosity. At lower polymeric level (20%), the rate and extent of drug release was elevated. HCO was found to cause the strongest retardation of drug. On the other hand, replacement of Emcompress or anhydrous dibasic calcium phosphate for mannitol significantly retarded the release rate of baclofen, except for E-L100 (pH-dependent polymer). Emcompress surface alkalinity and in-situ increase in pH of the matrix microenvironment enhanced the dissolution and erosion of these matrix tablets. The release kinetics was found to be governed by the type and content of the excipients (polymer or filler). The prepared tablets showed no significant change in drug release rate when stored at ambient room conditions for 6 months.  相似文献   

14.
The purposes of this work were: (1) to comparatively evaluate the effects of hypromellose viscosity grade and content on ketoprofen release from matrix tablets, using Bio-Dis and the paddle apparatuses, (2) to investigate the influence of the pH of the dissolution medium on drug release. Furthermore, since direct compression had not shown to be appropriate to obtain the matrices under study, it was also an objective (3) to evaluate the impact of granulation on drug release process. Six formulations of ketoprofen matrix tablets were obtained by compression, with or without previous granulation, varying the content and viscosity grade of hypromellose. Dissolution tests were carried out at a fixed pH, in each experiment, with the paddle method (pH 4.5, 6.0, 6.8, or 7.2), while a pH gradient was used in Bio-Dis (pH 1.2 to 7.2). The higher the hypromellose viscosity grade and content were, the lower the amount of ketoprofen released was in both apparatuses, the content effect being more expressive. Drug dissolution enhanced with the increase of the pH of the medium due to its pH-dependent solubility. Granulation caused an increase in drug dissolution and modified the mechanism of the release process.Key words: apparatus 3, Bio-Dis, dissolution, hypromellose matrix, ketoprofen  相似文献   

15.
The objectives of this study were to develop and evaluate a novel self-emulsifying floating drug delivery system (SEFDDS) that resulted in improved solubility, dissolution, and controlled release of the poorly water-soluble tetrahydrocurcumin (THC). The formulations of liquid self-emulsifying drug delivery system (SEDDS; mixtures of Labrasol, Cremophor EL, Capryol 90, Labrafac PG) were optimized by solubility assay and pseudo-ternary phase diagram analysis. The liquid SEDDS was mixed with adsorbent (silicon dioxide), glyceryl behenate, pregelatinized starch, sodium starch glycolate, and microcrystalline cellulose and transformed into pellets by the extrusion/spheronization technique. The resulting pellets with 22% liquid SEDDS had a uniform size and good self-emulsification property. The microemulsions in aqueous media of different self-emulsifying floating pellet formulations were in a particle size range of 25.9–32.5 nm. Use of different weight proportions of glyceryl behenate and sodium starch glycolate in pellet formulations had different effects on the floating abilities and in vitro drug release. The optimum formulation (F2) had a floating efficiency of 93% at 6 h and provided a controlled release of THC over an 8-h period. The release rate and extent of release of THC liquid SEDDS (80% within 2 h) and self-emulsifying floating pellet formulation (80% within 8 h) were significantly higher than that of unformulated THC (only 30% within 8 h). The pellet formulation was stable under intermediate and accelerated storage conditions for up to 6 months. Controlled release from this novel SEFDDS can be a useful alternative for the strategic development of oral solid lipid-based formulations.  相似文献   

16.
We studied the pH-sensitive indomethacin (IND) delivery system using pullulan. Hydrophobic pullulan acetate was prepared by chemical modification of hydrophilic pullulan and pullulan acetate microsphere was made by a solvent evaporation method. The size of microspheres was below 5 μm, and the drug loading efficiencies of microspheres were approximately 78 and 65% at the initial amount of drug 40 and 80 mg, respectively. The microsphere showed pH-sensitive swelling behavior in PBS buffer. After 15 hrs, the swelling of the microsphere at pH 7.4 was approximately 20 times greater than that at pH1.2. The pH of the medium significantly influenced on thein vitro release rate. The released amount of drug at pH 7.2 was approximately 90 times greater than that at pH 1.2. The shape of microspheres at pH 1.2 were maintained sphere forms, but at pH 7.4 were disintegrated. The pH-sensitive IND release pattern was due both to the pH-sensitive diffusion of IND from the microspheres and to the release of the drug from the surface which underwent disintegration after swelling, due to the chemical composition of the microspheres and the pH of the release media.  相似文献   

17.
The purpose of this research was to prepare and evaluate sustained release mucoadhesive tablets of Itraconazole. It is practically insoluble in aqueous fluids hence its solid dispersion with Eudragit E100 was prepared by spray drying. This was formulated in matrix of hydrophilic mucoadhesive polymers Carbopol 934P (CP) and Methocel K4M (HPMC). The formulation was optimized using a 32 factorial design. Amounts of CP and HPMC were taken as formulation variables for optimizing response variables i.e. mucoadhesion and dissolution parameters. The optimized mucoadhesive formulation was orally administered to albino rabbits, and blood samples collected were used to determine pharmacokinetic parameters. The solid dispersion markedly enhanced the dissolution rate of itraconazole. The bioadhesive strength of formulation was found to vary linearly with increasing amount of both polymers. Formulations exhibited drug release fitting Peppas model with value of n ranging from 0.61 to 1.18. Optimum combination of polymers was arrived at which provided adequate bioadhesive strength and fairly regulated release profile. The experimental and predicted results for optimum formulations were found to be in close agreement. The formulation showed C max 1898 ± 75.23 ng/ml, t max of the formulation was 2 h and AUC was observed to be 28604.9 ng h/ml  相似文献   

18.
The purpose of the present work was the development and evaluation of stomach-specific controlled release mucoadhesive drug delivery system prepared by ionotropic gelation of gellan beads, containing acid-soluble drug amoxicillin trihydrate, using 32 factorial design with concentration of gellan gum and quantity of drug as variables. The study showed that beads prepared in alkaline cross-linking medium have higher entrapment efficiency than the acidic cross-linking medium. The entrapment efficiency was in the range of 32% to 46% w/w in acidic medium, which increased up to 60% to 90% w/w in alkaline medium. Batches with lowest, medium, and highest drug entrapment were subjected to chitosan coating to form a polyelectrolyte complex film. As polymer concentration increases, entrapment efficiency and particle size increases. Scanning electron microscopy revealed spherical but rough surface due to leaching of drug in acidic cross-linking solution, dense spherical structure in alkaline cross-linking solution, and rough surface of chitosan-coated beads with minor wrinkles. The in vitro drug release up to 7 h in a controlled manner following the Peppas model (r = 0.9998). In vitro and in vivo mucoadhesivity study showed that beads have good mucoadhesivity and more than 85% beads remained adhered to stomach mucosa of albino rat even after 7 h. In vitro growth inhibition study showed complete eradication of Helicobacter pylori. These results indicate that stomach-specific controlled release mucoadhesive system of amoxicillin gellan beads may be useful in H. pylori treatment.  相似文献   

19.
Fluconazole-loaded ethyl cellulose microspheres were prepared by alginate facilitated (water-in-oil)-in-water emulsion technology and the effects of various processing variables on the properties of microspheres were investigated. Scanning electron microscopy revealed spherical nature and smooth surface morphology of the microspheres except those prepared at higher concentration of emulsifiers and higher stirring speeds. The size of microspheres varied between 228 and 592 μm, and as high as 80% drug entrapment efficiency was obtained depending upon the processing variables. When compared up to 2 h, the drug release in pH 1.2 HCl solution was slower than in pH 7.4 phosphate buffer saline solution. However, this trend was reversed at high shear conditions. The microspheres provided extended drug release in alkaline dissolution medium and the drug release was found to be controlled by Fickian-diffusion mechanism. However, the mechanism shifted to anomalous diffusion at high shear rates and emulsifier concentrations. The aging of microspheres did not influence the drug release kinetics. However, the physical interaction between drug and excipients affected the drug dissolution behaviors. X-ray diffractometry (X-RD) and differential scanning calorimetry (DSC) analysis revealed amorphous nature of drug in the microspheres. Fourier transform infrared (FTIR) spectroscopy indicated stable character of fluconazole in the microspheres. The stability testing data also supported the stable nature of fluconazole in the microspheres. The fluconazole extracted from 80% drug-loaded formulation showed good in vitro antifungal activity against Candida albicans. Thus, proper control of the processing variables involved in this modified multiple emulsion technology could allow effective incorporation of slightly water soluble drugs into ethyl cellulose microspheres without affecting drug stability.  相似文献   

20.
The aim of this study was to investigate the effect of Eudragit RS 30D, talc, and verapamil hydrochloride on dissolution and mechanical properties of beads coated with "drug-layered matrices". This was accomplished with the aid of a three-factor multiple-level factorial design using percent drug release in 1 and 2 h, T(50), tensile strength, brittleness, stiffness and toughness as the responses. Beads were coated in a fluidized-bed coating unit. Surface morphology and mechanical properties were evaluated by surface profilometry and texture analysis, respectively. No cracks, flaws and fissures were observed on the surfaces. The mechanical properties were dependent on the talc/polymer ratio. The release of verapamil from the beads was influenced by matrix components. Increasing the level of both talc and Eudragit decreased the percent drug released from 67% to 4.8% and from 80.7% to 6.7% in 1 and 2 h, respectively, and increased T(50) from 0.8 to 25.7 h. It was concluded that beads could be efficiently coated with "drug-layered matrices". The release of drug, however, depends on a balance between the levels of drug, talc, and polymer, whereby desired dissolution and mechanical properties could be controlled by the talc/polymer ratio and the level of drug loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号