首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In Neurospora, one protein associated with the mitochondrial small ribosomal subunit (S-5, Mr 52,000) is synthesized intramitochondrially and is assumed to be encoded by mtDNA. When mitochondrial protein synthesis is inhibited, either by chloramphenicol or by mutation, cells accumulate incomplete mitochondrial small subunits (CAP-30S and INC-30S particles) that are deficient in S-5 and several other proteins. To gain additional insight into the role of S-5 in mitochondrial ribosome assembly, the structures of Neurospora mitochondrial ribosomal subunits, CAP-30S particles, and INC-30S particles were analyzed by equilibrium centrifugation in CsCl gradients containing different concentrations of Mg+2. The results show (a) that S-5 is tightly associated with small ribosomal subunits, as judged by the fact that it is among the last proteins to be dissociated in CsCl gradients as the Mg+2 concentration is decreased, and (b) that CAP-30S and INC-30S particles, which are deficient in S-5, contain at most 12 proteins that are bound as tightly as in mature small subunits. The CAP-30S particles isolated from sucrose gradients contain a number of proteins that appear to be loosely bound, as judged by dissociation of these proteins in CsCl gradients under conditions in which they remain associated with mature small subunits. The results suggest that S-5 is required for the stable binding of a subset of small subunit ribosomal proteins.  相似文献   

2.
Abstract— The immunological activities of two populations of bovine S-100 proteins with anti-S-100 serum were studied by complement fixation and rocket immunoelectrophoresis. The reactivities of subunits of these two populations were studied by crossed immunoelectrophoresis and rocket immunoelectrophoresis. Although the two populations conformed in all respects to the properties of S-100 protein, the immunological reactivity of one, III-IVa-1, was significantly lower than that of the other, III-IVb-1. The difference was much larger when the S-100 protein fractions were isolated in the absence of aids (mercaptoethanol, EDTA, EGTA, protease inhibitors). With bovine S-100 fractions, the three subunits separated by differences in charge as well as the four subunits separated by differences in molecular weight all reacted with the same antibody molecules in the antiserum. The reactivities of the subunits showed large quantitative differences.
Two populations of S-100 proteins from rat brain also showed differences in reactivity with anti-S-100 serum. The two subunits in each of these fractions reacted with anti-S-100 serum but with quantitative differences, the larger having almost double the activity of the smaller. These results provide firm evidence for the heterogeneity of S-100 proteins based on immunological activity of their subunit components. Different molecular species of S-100 proteins probably differ considerably in their reactivity with antibodies to S-100 protein. Some of the more reactive molecular species also appear to be much more labile, since the reactivity of some S-100 protein fractions was considerably reduced when they were isolated in the absence of aids.  相似文献   

3.
Recent results with Neurospora crassa show that one protein (S-5, mol wt 52,000) associated with the mitochondrial (mit) small ribosomal subunit is translated within the mitochondria (Lambowitz et al. 1976. J. Mol. Biol. 107:223-253). In the present work, Neurospora mit ribosomal proteins were analyzed by two-dimensional gel electrophoresis using a modification of the gel system of Mets and Bogorad. The results show that S-5 is present in near stoichiometric concentrations in high salt (0.5 MKCl)-washed mit small subunits from wild-type strains. S-5 is among the most basic mit ribosomal proteins (pI greater than 10) and has a high affinity for RNA under the conditions of the urea-containing gel buffers. The role of S-5 in mit ribosome assembly was investigated by an indirect method, making use of chloramphenicol to specifically inhibit mit protein synthesis. Chloramphenicol was found to rapidly inhibit the assembly of mit small subunits leading to the formation of CAP-30S particles which sediment slightly behind mature small subunits (LaPolla and Lambowitz. 1977. J. Mol. 116: 189-205). Two-dimensional gel analysis shows that the more slowly sedimentaing CAP-30S particles are deficient in S-5 and in several other proteins, whereas these proteins are present in normal concentrations in mature small subunits from the same cells. Because S-5 is the only mit ribosomal protein whose synthesis is directly inhibited by chloramphenicol, the results tentatively suggest that S-5 plays a role in the assembly of mit small subunits. In addition, the results are consistent with the idea that S-5 stabilizes the binding of several other mit small subunit proteins. Two-dimensional gel electrophoresis was used to examine mit ribosomal proteins from [poky] and six additional extra-nuclear mutants with defects in the assembly of mit small subunits. The electrophoretic mobility of S-5 is not detectably altered in any of the mutants. However, [poky] mit small subunits are deficient in S-5 and also contain several other proteins in abnormally low or high concentrations. These and other results are consistent with a defect in a mit ribosomal constituent in [poky].  相似文献   

4.
Treatment of 30S-5SRNP with 1 M Cs(2)SO(4) at 2 degrees C overnight followed by sucrose density-gradient centrifugation yielded particles smaller than 30S-5SRNP, designated as CsS-particles. CsCl density-gradient centrifugation of CsS-particles showed the homogeneity of the particles containing about half the amount of proteins in 30S-5SRNP particles. The particles contained 18SrRNA, 5SRNP and about half the number of proteins in 30S-5SRNP. The ATPase activity of freshly prepared CsS-particles was about half the original 30S-5SRNP level although it was unstable even at 2 degrees C. Poly(U) slightly enhanced the activity, and phe-tRNA(phe) stimulated it concentration-dependently. EF-1a alone enhanced it, and in combination with poly(U) and phe-tRNA(phe) stimulated it markedly. EF-2 alone markedly increased it. The activity with the full components for elongation described above became very high, being comparable to that of the original 30S-5SRNP and twice that of 40S subunits. A two-dimensional electrophoretogram of the protein in CsS-particles revealed 9 small subunit protein species, in addition to L5, which included proteins interacting with mRNA and two elongation factors. Taken together with the results of our preceding study indicating the participation of ATPase of 80S ribosomes in peptide elongation, the present results indicate CsS-particles may be a part of the ATPase centre of 80S ribosomes.  相似文献   

5.
B Dahlb?ck  E R Podack 《Biochemistry》1985,24(9):2368-2374
S protein, an inhibitor to the membrane attack complex of complement, was purified from human plasma. The procedure involved barium citrate adsorption and fractionation by poly(ethylene glycol) 4000 precipitation, followed by chromatography on DEAE-Sephacel, Blue Sepharose, Sephacryl S-200, and finally anti-albumin-Sepharose. Reduced glutathione was added throughout to inhibit spontaneous formation of disulfide-linked S-protein dimers. The recovery was 7%, resulting in approximately 10 mg of pure S protein from 1 L of starting plasma. S protein is a single-chain molecule; sedimentation equilibrium ultracentrifugation yielded a molecular weight of 83 000; the s020,W value was estimated to be 4.0 S. The purified protein contained a free, reactive thiol group causing spontaneous formation of disulfide-linked S-protein dimers. Alkylated and nonalkylated S proteins were equally active in inhibiting C9 polymerization, catalyzed by the C5b-8 complex. In parallel with the inhibition of C9 polymerization, nonalkylated S protein catalyzed the formation of disulfide-linked C9 dimers, presumably through disulfide interchanges.  相似文献   

6.
Using reverse phase HPLC, we have been able to quantify the protein compositions of reconstituted 30S ribosomal subunits, formed either with the full complement of 30S proteins in the reconstitution mix or with a single protein omitted. We denote particles formed in the latter case as SPORE (single protein omission reconstitution) particles. An important goal in 30S reconstitution studies is the formation of reconstituted subunits having uniform protein composition, preferably corresponding to one copy of each protein per reconstituted particle. Here we describe procedures involving variation of the protein:rRNA ratio that approach this goal. In SPORE particles the omission of one protein often results in the partial loss in uptake of other proteins. We also describe procedures to increase the uptake of such proteins into SPORE particles, thus enhancing the utility of the SPORE approach in defining the role of specific proteins in 30S structure and function. The losses of proteins other than the omitted protein provide a measure of protein:protein interaction within the 30S subunit. Most of these losses are predictable on the basis of other such measures. However, we do find evidence for several long-range protein:protein interactions (S6:S3, S6:S12, S10:S16, and S6:S4) that have not been described previously.  相似文献   

7.
Abstract— Thelevel of the S-100 protein, a brain-specific antigen, wasdetermined by quantitative complement fixation in the brain stem and cerebrum of the rat during postnatal maturation. The content was minimal at birth in the brain stem and rose to its adult value by day 25. Although S-100 protein could not be detected in the cerebrum of the 2-day-old rat, adult values were also present by the 25th day of age. Neither single dose X-irradiation with 750 rd to the head at 2 days of age or single dose X-irradiation at 11 days of age affected the adult level of S-100 protein in the brain stem or cerebrum. Similarly, hypophysectomy at 20 days of age had no effect on the subsequent levels of S-100 protein.  相似文献   

8.
Summary The ribosomal proteins fromE. coli strains B, C, K12 (A19), and MRE600 were extracted and analyzed by two-dimensional polyacrylamide gel electrophoresis. All four strains were found to be indistinguishable in their 50S ribosomal protein components, while there were differences among the 30S proteins. Strains K and B differ in protein S5 and S7. Strain C differs from strain B in protein S5 and from strain K in protein S7. MRE600 appears to be identical to strain C in respect to its ribosomal protein pattern. It was furthermore found that proteins S7 from strain K and B differ extensively in respect to size, charge, amino acid composition and immunological properties. The rather remote relationship between these two analogous proteins is quite remarkable when contrasted with the striking similarity in all but one of the other 30S and 50S proteins of the strains.Dedicated to the 65th birthday of Prof. G. Melchers.  相似文献   

9.
C4b-binding protein was purified from human plasma in high yield by a simple procedure involving barium citrate adsorption and two subsequent chromatographic steps. Approx. 80% of plasma C4b-binding protein was adsorbed on the barium citrate, presumably because of its complex-formation with vitamin K-dependent protein S. The purified C4b-binding protein had a molecular weight of 570 000, as determined by ultracentrifugation, and was composed of about eight subunits (Mr approx. 70 000). Uncomplexed plasma C4b-binding protein was purified from the supernatant after barium citrate adsorption. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis in non-reducing conditions and on agarose-gel electrophoresis it appeared as a doublet, indicating two forms differing slightly from each other in molecular weight and net charge. The protein band with the higher molecular weight in the doublet corresponded to the C4b-binding protein purified from the barium citrate eluate. Complex-formation between protein S and C4b-binding protein was studied in plasma, and in a system with purified components, by an agarose-gel electrophoresis technique. Protein S was found to form a 1:1 complex with the higher-molecular-weight form of C4b-binding protein, whereas the lower-molecular-weight form of C4b-binding protein did not bind protein S. The KD for the C4b-binding protein-protein S interaction in a system with purified components was approx. 0.9 X 10(-7) M. Rates of association and dissociation at 37 degrees C were low, namely about 1 X 10(3) M-1 . S-1 and 1.8 X 10(-4)-4.5 X 10(-4) S-1 respectively. In human plasma free protein S and free higher-molecular-weight C4b-binding protein were in equilibrium with the C4b-binding protein-protein S complex. Approx. 40% of both proteins existed as free proteins. From equilibrium data in plasma a KD of about 0.7 X 10(-7) M was calculated for the C4b-binding protein-protein S interaction.  相似文献   

10.
V Nowotny  K H Nierhaus 《Biochemistry》1988,27(18):7051-7055
A protein which initiates assembly of ribosomes is defined as a protein which binds to the respective rRNA without cooperativity (i.e., without the help of other proteins) during the onset of assembly and is essential for the formation of active ribosomal subunits. The number of proteins binding without cooperativity was determined by monitoring the reconstitution output of active particles at various inputs of 16S rRNA, in the presence of constant amounts of 30S-derived proteins (TP30): This showed that only two of the proteins of the 30S subunit are assembly-initiator proteins. These two proteins are still present on a LiCl core particle comprising 16S rRNA and 12 proteins (including minor proteins). The 12 proteins were isolated, and a series of reconstitution experiments at various levels of rRNA excess demonstrated that S4 and S7 are the initiator proteins. Pulse-chase experiments performed during the early assembly with 14C- and 3H-labeled TP30 and the determination of the 14C/3H ratio of the individual proteins within the assembled particles revealed a bilobal structure of the 30S assembly: A group of six proteins headed by S4 (namely, S4, S20, S16, S15, S6, and S18) resisted the chasing most efficiently (S4 assembly domain). None of the proteins depending on S7 during assembly were found in this group but rather in a second group with intermediate chasing stability [S7 assembly domain; consisting of S7, S9, (S8), S19, and S3]. A number of proteins could be fully chased during the early assembly and therefore represent "late assembly proteins" (S10, S5, S13, S2, S21, S1). These findings fit well with the 30S assembly map.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were identified by two-dimensional gel electrophoresis. Almost identical results were obtained when ribosomal subunits from HeLa or ascites-tumour cells were used. About 50-60% of the total radioactive phosphate incorporated into small-subunit ribosomal proteins by either kinase was associated with protein S6. In 90 min between 0.7 and 1.0 mol of phosphate/mol of protein S6 was incorporated by the catalytic subunit of cyclic AMP-dependent protein kinase. Of the other proteins, S3 and S7 from the small subunit and proteins L6, L18, L19 and L35 from the large subunit were predominantly phosphorylated by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates by either kinase; (3) proteins S7 and L29 were almost exclusively phosphorylated by the cyclic AMP-dependent protein kinase; (4) protein S6 and most of the other proteins were phosphorylated about two or three times faster by the cyclic AMP-dependent than by the cyclic GMP-dependent enzyme.  相似文献   

12.
Abstract An assay, based on complement fixation, was described for the S-100 protein, a protein characteristic of the nervous system. It was found to be distributed in all parts of the nervous system both peripherally and centrally. It was not possible to deduce from the distribution the localization in cell type, but in human brain the concentration in each of twenty-six areas was consistent from brain to brain.  相似文献   

13.
Abstract— —A soluble protein (S-100) which is unique to the nervous system was measured in rabbit tibial nerve at 0, 3, 7, 14, 21, and 28 days of degeneration. Amounts of S-100 in the degenerated peripheral segment of the transected nerve fell progressively during degeneration to 2 per cent of that measured in the corresponding portion of nerve taken from control rabbits 28 days postoperatively. Total soluble proteins increased 42 per cent during this time. Levels of S-100 and total soluble proteins remained unchanged in non-degenerated nerve segments from experimental and control rabbits. Correlations of amounts of S-100 measured in the study reported here with cellular changes demonstrated by other investigators to characterize Wallerian degeneration in peripheral nerve suggest that the S-100 protein is localized primarily in axons rather than in Schwann cells or myelin.  相似文献   

14.
Selective Increase in S-100β Protein by Aging in Rat Cerebral Cortex   总被引:1,自引:0,他引:1  
Changes in the concentrations of nervous tissue-related proteins and their isoproteins, such as S-100 proteins (S-100 alpha and S-100 beta), enolase isozymes (alpha-enolase and gamma-enolase), and GTP-binding proteins (Go alpha, Gi2 alpha, and beta-subunits), were determined in the CNS of male rats of various ages (from 2 to 30 months old) by means of enzyme immunoassay. The weights of brains and the concentrations of soluble proteins in the cerebral cortex, cerebellum, and brainstem were constant during the observation period. The concentration of S-100 beta protein, which is predominantly localized in glial cells, increased gradually in the cerebral cortex with age; levels in the 25-month-old rats increased to approximately 150% of the levels in the young (2-month-old) rats. However, the S-100 beta concentrations in the cerebellum and brainstem were relatively constant, showing similar values in rats 2-30 months old. Levels of other proteins, including both neuronal (gamma-enolase and Go alpha) and glial (alpha-enolase and S-100 alpha) marker proteins, did not change significantly with age in the cerebral cortex, cerebellum, and brainstem. These results suggest that there is a close relation between the age-dependent changes of the CNS function and S-100 beta protein levels in the cerebral cortex.  相似文献   

15.
S-protein, the main inhibitor of the assembly of the membrane attack complex of complement, was isolated from human plasma by a simple purification procedure, which includes barium citrate adsorption, ammonium sulphate precipitation, chromatography on DEAE-Sephacel and Blue Sepharose and gel filtration on Sephacryl S-200. The homogeneous protein (sedimentation coefficient 4.6 S) was obtained in approx. 5% yield relative to its concentration in plasma, which was found to be 0.3-0.5 mg/ml. The final product did not cross-react with antisera against complement proteins or other proteinase inhibitors of human plasma. On polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate, S-protein migrated as a single-chain band with an apparent Mr of 74000 under non-reducing conditions and as a doublet of Mr 78000 and 65000 upon reduction. In plasma or serum S-protein also existed in two forms of corresponding Mr values, as was evidenced by an immunoblot enzyme-linked immunosorbent assay technique. S-protein was found to be an acidic glycoprotein with 10% (W/W) carbohydrate content and several isoelectric points in the range pH 4.75-5.25, and it contained one free thiol group per molecule of protein. The functional properties of S-protein in the complement system were demonstrated by its ability to inhibit complement-dependent cell lysis in a concentration-dependent manner (Ki 0.6 microM) and by its incorporation into the nascent SC5b-7 complex. A new function for S-protein could be revealed in the blood coagulation system. The slow progressive inhibition of thrombin by antithrombin III was not affected by S-protein, whereas the purified protein interfered with the fast inactivation of thrombin clotting as well as amidolytic activity by antithrombin III-heparin complex. The acceleration of this inhibition reaction by heparin was counteracted by S-protein, indicating the ability of S-protein to neutralize heparin activity.  相似文献   

16.
The presence and distribution of S100-like protein in the goldfish (Carassius auratus L.) kidney has been studied by the use of immunohistochemical and histochemical methods. Simple immunohistochemistry (peroxidase anti-peroxidase method) was carried out with a polyclonal antibody against a mixture of both S100alpha and S100beta proteins. In order to confirm the cell-type containing S-100-like immunoreactivity, the colocalization of S-100-like protein immunoreactivity with periodic acid-Schiff (PAS) reaction was investigated by using double staining with indirect immunofluorescence and PAS histochemistry. S100-like immunoreactivity was detected only in juxtaglomerular cells located in the renal arterial branch and never on afferent arterioles. No immunoreactivity was observed in other tracts of the nephron or in the interstitial cells. Double staining confirmed that S-100-like immunoreactivity and PAS reactivity were colocalized in juxtaglomerular cells. These findings are the first regarding the presence and distribution of S100-like protein in the teleost kidney; they add a new member to the list of extra-neural S100-like-containing cell types and confirm that the antigen cannot be regarded as nervous-system-specific. In addition, a concentration of S100-like immunoreactivity in juxtaglomerular cells suggests the presence of S100-like calcium-binding protein-mediated activities in these cell types.  相似文献   

17.
Functional heterogeneity of the 30S ribosomal subunit of E. coli   总被引:4,自引:0,他引:4  
Summary When 30S ribosomal subunits from E. coli are incubated with poly U, two separable components are recovered by zonal centrifugation of the incubation mixture. The faster sedimenting component is an aggregate of 30S subunits and poly U, while the slower one corresponds to the 30S ribosomal subunit. One ribosomal protein, protein 30S-1 is predominantly present in the faster sedimenting aggregate. The amount of poly U-30S subunit complex formed in the incubation mixture is limited by the amount of protein 30S-1 present. Consequently the number of ribosomal binding sites available for Phe-tRNA is limited in a similar fashion by the presence of protein 30S-1. When 30S ribosomal subunits are reconstituted in the absence of protein 30S-1, very little poly U or Phe-tRNA binding capacity is manifest under our assay conditions. We conclude that protein 30S-1 is required for maximum capacity of ribosomes to bind mRNA. Since this protein is present only on a fraction of the ribosome at any one time, it must exchange from one ribosome to another during protein synthesis.Abbreviations Poly U (polyuridylic acid) - t-RNA (transfer ribonucleic acid) - mRNA (messenger ribonucleic acid) - Phe (phenylanine) - A260 unit (unit of material which gives an optical density of 1.0 at 260 nm in a one centimeter optical path)  相似文献   

18.
Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.  相似文献   

19.
Summary Mice were immunised with 30S subunits from E. coli and their spleen cells were fused with myeloma cells. From this fusion two monoclonal antibodies were obtained, one of which was shown to be specific for ribosomal protein S3, the other for ribosomal protein S7. The two monoclonal antibodies formed stable complexes with intact 30S subunits and were therefore used for the three-dimensional localisation of ribosomal proteins S3 and S7 on the surface of the E. coli small subunit by immuno electron microscopy. The antibody binding sites determined with the two monoclonal antibodies were found to lie in the same area as those obtained with conventional antibodies. Both proteins S3 and S7 are located on the head of the 30S subunit, close to the one-third/two-thirds partition. Protein S3 is located just above the small lobe, whereas protein S7 is located on the side of the large lobe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号