首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Diauxic growth in Azotobacter vinelandii.   总被引:9,自引:5,他引:4       下载免费PDF全文
Azotobacter vinelandii exhibited diauxie when grown in a medium containing both acetate and glucose as carbon sources. Acetate was used as the primary carbon source during the acetate-glucose diauxie. Uptake of acetate was constitutively expressed during both diauxic phases of growth. Induction of the glucose uptake system was inhibited in the presence of acetate. Acetate was also the preferred growth substrate for A. vinelandii grown in a medium containing either fructose, maltose, xylitol, or mannitol. The tricarboxylic acid cycle intermediates citrate, isocitrate, and 2-oxoglutarate inhibited glucose utilization in cells grown in glucose medium containing these substrates, and diauxic growth was observed under these growth conditions. Temporal expression of isocitrate-lyase, ATPase, and nitrogenase was exhibited during acetate-glucose diauxie.  相似文献   

2.
Triggering of glutamate excretion by penicillin is thought to occur by increasing cell permeability. It seemed odd that glucose-grown resting cells, after penicillin treatment, would not convert citrate to extracellular glutamate especially since citrate had been reported to be a substrate for the glutamate fermentation. Citrate was not even taken up by such cells. Upon addition of at least 2 percent glucose, citrate was converted to extracellular glutamate. Both glucose and citrate were used simultaneously and citrate metabolism continued even after sugar was exhausted. It was suspected that glucose was required as energy source for induction of a citrate-transport system. Resting cells pregrown in glucose plus citrate, were indeed found to take up citrate and convert it to extracellular glutamate even in the absence of sugar. In line with the induction hypothesis, chloramphenicol inhibited the metabolism of citrate by glucose-grown resting cells but had no such effect on the citrate-adapted cells. The antibiotic did not inhibit glucose utilization by citrate-adapted or unadapted resting cells.  相似文献   

3.
Citrate utilization by several homo- and heterofermentative lactobacilli was determined in Kempler and McKay and in calcium citrate media. The last medium with glucose permitted best to distinguish citrate-fermenting lactobacilli. Lactobacillus rhamnosus ATCC 11443, Lactobacillus zeae ATCC 15820 and Lactobacillus plantarum ATCC 8014 used citrate as sole energy source, whereas in the other strains, glucose and citrate were cometabolized. Some lactobacilli strains produced aroma compounds from citrate. Citrate transport experiments suggested that all strains studied presented a citrate transport system inducible by citrate. The levels of induction were variable between several strains. Dot blot experiment showed that lactobacilli do not present an equivalent plasmid coding for citrate permease.  相似文献   

4.
Bowles, Jean A. (University of Colorado School of Medicine, Denver), and William Segal. Kinetics of utilization of organic compounds in the growth of Mycobacterium tuberculosis. J. Bacteriol. 90:157-163. 1965.-To obtain a workable system for a study of the kinetics of nutrient utilization (based on specific quantitative assay) by Mycobacterium tuberculosis, several cultural refinements were introduced: the use of shake culture, a 40-fold increase in the size of inoculum, substitution of glutamate for asparagine as nitrogen source, and elimination of glucose from the medium with glycerol remaining as carbon source. These modifications resulted in reduction to a tenth of the lag phase of glycerol utilization (from 40 to 4 days), and in a greatly increased rate of growth. Both coordinate and sequential patterns of nutrient utilization were in evidence, except in the case of citrate, which was never utilized under a variety of conditions of culture. The coordinate pattern of glucose-glutamate and glucose-glycerol utilization would appear to rule out catabolite repression by glucose. However, elimination of glucose from the medium resulted in elimination of the 4-day lag period before glutamate utilization was initiated, leaving open to question the role of glucose in this system. Evidence is presented for the hypothesis that the sequential pattern of glutamate-glycerol utilization is a function of glutamate repression of glycerol oxidation in the growth of M. tuberculosis, although no diauxie effect is apparent. In a determination of which nutrient-utilization systems were regulated by induction, only in the case of glycerol was evidence obtained for an inducible system. The enzymatic mechanisms underlying these patterns of nutrient utilization are presently being investigated.  相似文献   

5.
The synthesis of ribonucleic acid (RNA) and of protein in Escherichia coli during glucose-lactose diauxie lag have been examined. The rate of RNA synthesis is about 7%, of the corresponding rate during exponential growth and the rate of protein synthesis 10 to 15%. Inhibition of RNA synthesis occurs to the same extent in both rel and rel(+) strains. The RNA which accumulates during 20 min in diauxie lag is composed of about 50% ribosomal and transfer RNA species and about 50% of a fraction which resembles messenger RNA (mRNA) in its heterogeneous sedimentation properties. Decay of the heterogeneous fraction occurs in the presence of glucose and actinomycin D with a half-life of 3 min, the same as that of pulse-labeled mRNA; however, during the diauxie lag, the half-life of this RNA is about 25 min. Accumulation of the heterogeneous RNA is further increased when protein synthesis is blocked by chloramphenicol. The data suggest that the disproportionate accumulation of mRNA during diauxie lag and energy source shift-down may be attributed at least in part to increased stability of mRNA, but do not rule out a preferential synthesis of mRNA.  相似文献   

6.
Conditions required for citrate utilization by Lactobacillus casei ATCC334 were identified. Citrate was utilized by this microorganism in modified Chemically Defined Media (mCDM) as an energy source, solely in the presence of limiting concentrations of galactose. The presence of glucose inhibited citrate utilization by this microorganism even when added in limiting concentrations. Utilization of citrate occurred at pH 6.0 +/- 0.2 and 5.1 +/- 0.2. Together these observations suggest that citrate is an energy source for L. casei in ripening cheese only when the residual levels of carbohydrate post-fermentation are limiting (<2.5 mM), and lactose or glucose are absent. However, citrate utilization by this organism was observed in Cheddar cheese extract (CCE), which naturally contains both lactose and galactose, at the beginning of late-logarithmic phase and regardless of the galactose concentration present in the media.  相似文献   

7.
Spontaneous mutants of Azotobacter vinelandii defective for glucose utilization were selected as resistant to 5-thio-D-glucose. Mutant strains AM2, AM38, and AM39 exhibited longer generation times than the wild type when grown on glucose. Mutant strain AM2 also exhibited an altered Km and Vmax for glucose uptake. During acetate-glucose diauxie, glucose utilization in the 5-thio-D-glucose-resistant mutants was subject to severe inhibition by acetate. These mutants did not exhibit the normal glucose phase of diauxie. Transport studies during diauxie indicated that glucose uptake was not induced in mutant strain AM2. However, increasing the glucose concentration from 25 to 200 mM relieved the severe acetate inhibition, and under these conditions the mutant strain AM2 exhibited normal diauxie. Revertants of mutant strain AM2 exhibited normal glucose and diauxie growth. The results are discussed in terms of a model for acetate regulation of glucose utilization in A. vinelandii.  相似文献   

8.
Synthesis of penicillinamidohydrolase (penicillin acylase, EC 3.5.1.11) in Escherichia coli is subjected to the absolute catabolite repression by glucose and partial repression by acetate. Both types of catabolite repression of synthesis of the enzyme in Escherichia coli are substantially influenced by cyclic 3',5'-adenosinemonophosphate (cAMP). Growth diauxie in a mixed medium containing glucose and phenylacetic acid serving as carbon and energy sources is overcome by cAMP. cAMP does not influence the basal rate of the enzyme synthesis (without the inducer). Derepression of synthesis of penicillinamidohydrolase by cAMP in a medium with glucose and inducer (phenylacetic acid) is associated with utilization of the inducer, due probably to derepression of other enzymes responsible for degradation of phenylacetic acid. Lactate can serve as a "catabolically neutral" source of carbon suitable for the maximum production of penicillinamidohydrolase. The gratuitous induction of the enzyme synthesis in a medium with lactate as the carbon and energy source and with phenylacetic acid is not influenced by cAMP; however, cAMP overcomes completely the absolute catabolite repression of the enzyme synthesis by glucose.  相似文献   

9.
Chloramphenicol production was studied in cultures of Streptomyces venezuelae growing in a simple buffered medium with ammonia as the nitrogen source and glucose, lactose, or a glucose-lactose mixture as the sole source of carbon. With each carbon source the antibiotic was formed during growth. In the glucose-lactose medium, the production pattern was biphasic; a marked decrease in the rate of synthesis was associated with depletion of glucose from the medium and a corresponding diauxie pause in growth. Cells of S. venezuelae contained an inducible beta-galactosidase. Induction by lactose was suppressed by glucose. Measurement of the concentration of intracellular adenosine 3',5'-cyclic monophosphate during growth of cultures with glucose or a glucose-lactose mixture as the source of carbon showed no appreciable changes coinciding with depletion of glucose or the onset of chloramphenicol biosynthesis. It is concluded that the cyclic nucleotide does not mediate selective nutrient utilization or control antibiotic biosynthesis in this organism.  相似文献   

10.
Information on the factors influencing citrate metabolism in lactobacilli is limited and could be useful in understanding the growth of lactobacilli in ripening cheese. Citrate was not used as an energy source by either Lactobacillus casei ATCC 393 or Lact. plantarum 1919 and did not affect the growth rate when co-metabolized with glucose or galactose. In growing cells, metabolism of citrate was minimal at pH 6 but significant at pH 4·5 and was greater in cells co-metabolizing galactose than in those co-metabolizing glucose or lactose. In non-growing cells, optimum utilization of citrate also occurred at pH 4·5 and was not increased substantially by the presence of fermentable sugars. In both growing and non-growing cells, acetate and acetoin were the major products of citrate metabolism; pyruvate was also produced by non-growing cells and was transformed to acetoin once the citrate was exhausted. Citrate was metabolized more rapidly than sugar by non-growing cells; the reverse was true of growing cells. Citrate metabolism by Lact. plantarum 1919 and Lact. casei ATCC 393 increased six- and 22-fold, respectively, when the cells were pre-grown on galactose plus citrate than when pre-grown on galactose only. This was probably due to induction of citrate lyase by growth on citrate plus sugar. These results imply that lactobacilli, if present in large enough numbers, can metabolize citrate in ripening cheese in the absence of an energy source.  相似文献   

11.
Citrate metabolism by Enterococcus faecium ET C9 and Enterococcus durans Ov 421 was studied as sole energy source and in presence of glucose or lactose. Both strains utilized citrate as the sole energy source. Enterococcus faecium ET C9 showed diauxic growth in the presence of a limiting concentration of glucose. Neither strain used citrate until glucose was fully metabolized. The strains showed co-metabolism of citrate and lactose. Lactate, acetate, formate, and flavour compounds (diacetyl, acetoin, and 2,3-butanediol) were detected in both strains. The highest production of flavour compounds was detected during growth of E. durans Ov 421 in media supplemented with citrate-glucose and citrate-lactose. Citrate lyase was inducible in both strains. Acetate kinase activities presented the highest values in LAPTc medium, with E. faecium ET C9 displaying a specific activity 2.4-fold higher than E. durans. The highest levels of alpha-acetolactate synthase specific activity were detected in E. durans grown in LAPTc+g, in accordance with the maximum production of flavour compounds detected in this medium. Diacetyl and acetoinreductases displayed lower specific activity values in the presence of citrate. Enterococcus faecium and E. durans displayed citrate lyase, acetate kinase, alpha-acetolactate synthase, and diacetyl and acetoin reductase activities. These enzymes are necessary for conversion of citrate to flavour compounds that are important in fermented dairy products.  相似文献   

12.
Citrate metabolism by Enterococcus faecium FAIR-E 198, an isolate from Greek Feta cheese, was studied in modified MRS (mMRS) medium under different pH conditions and glucose and citrate concentrations. In the absence of glucose, this strain was able to metabolize citrate in a pH range from constant pH 5.0 to 7.0. At a constant pH 8.0, no citrate was metabolized, although growth took place. The main end products of citrate metabolism were acetate, formate, acetoin, and carbon dioxide, whereas ethanol and diacetyl were present in smaller amounts. In the presence of glucose, citrate was cometabolized, but it did not contribute to growth. Also, more acetate and less acetoin were formed compared to growth in mMRS medium and in the absence of glucose. Most of the citrate was consumed during the stationary phase, indicating that energy generated by citrate metabolism was used for maintenance. Experiments with cell-free fermented mMRS medium indicated that E. faecium FAIR-E 198 was able to metabolize another energy source present in the medium.  相似文献   

13.
14.
The mediated transport of citrate in Aerobacter aerogenes was studied. According to data obtained by examining the distribution of radioactive citrate at room temperature and at 0 C, a carrier system appears to be located on the membrane. The carrier system is inducible and very specific, not acting on the related compounds isocitrate and cis-aconitate. Induction required synthesis of both ribonucleic acid and protein as determined by starving auxotrophic mutants and by using specific inhibitors of protein synthesis. Citrate transport was inhibited by N-ethyl maleimide, dinitrofluorobenzene, and uranyl nitrate. A kinetic study of uranyl nitrate inhibition revealed that the inhibition of citrate transport was different from that of glucose penetration. Cyanide also discriminated citrate from glucose penetration inhibiting only the former. These last results suggested that energy is required for citrate penetration.  相似文献   

15.
Citrate has been identified as a major tricarboxylic acid (TCA) cycle constituent preferentially released by astrocytes. We undertook the present study to examine further the nature of metabolic compartmentation in central nervous system tissues using 13C-labeled glucose and to provide new information on the influence of aluminum on the metabolic interaction between neurons and astrocytes. Metabolites released into the culture medium from astrocytes and neuron-astrocyte coculture, as well as the perchloric acid extracts of the cells were analyzed using 2D 1H and 13C NMR spectroscopy. Astrocytes released citrate into the culture medium and the released citrate was consumed by neurons in coculture. Citrate release by astrocytes was blocked in the presence of aluminum, with progressive accumulation of citrate within the cells. We propose citrate supply is a more efficient energy source than lactate for neurons to produce ATP, especially in the hypoglycemic state on account of it being a direct component of the TCA cycle. Astrocytes may be the cellular compartment for aluminum accumulation as a citrate complex in the brain.  相似文献   

16.
The role of inducer exclusion in diauxic growth of Escherichia coli on glucose and melibiose was investigated. The amounts of glucose and melibiose in the culture medium were determined during the diauxie. Glucose was consumed during the first growth cycle of the diauxie, and melibiose was consumed during the second cycle. The addition of adenosine 3',5'-cyclic monophosphate to the culture medium released both transient and catabolite repressions on the melibiose operon by glucose. Biphasic growth without a transient lag phase was observed in the presence of adenosine 3',5'-cyclic monophosphate. Preferential utilization of glucose over melibiose was observed even under such conditions. Thus, it is clear that inducer exclusion alone is sufficient to ensure the preferential utilization of glucose over melibiose. Similar results were obtained from a glucose-lactose diauxie. Inducer exclusion itself was not affected by adenosine 3',5'-cyclic monophosphate.  相似文献   

17.
Chromosomal mutation for citrate utilization by Escherichia coli K-12.   总被引:15,自引:10,他引:5       下载免费PDF全文
A mutant strain of Escherichia coli K-12 that utilizes citrate as a sole source of carbon and energy was isolated. Citrate utilization arose as the consequence of two mutations in genes citA and citB, which are linked to the gal operon. The mutant strain expresses a semiconstitutive citrate transport system, and it utilizes both citrate and isocitrate as carbon and energy sources. It is capable of utilizing cis- and trans-aconitate, but only if it is preinduced by growth on citrate.  相似文献   

18.
19.
Growth, substrate utilization and product formation from glucose, citrate and a mixture of both substrates were studied in four strains of Leuconostoc spp. Citrate was not used as an energy source but was rapidly metabolized when glucose was present. The predictable amounts of D-lactate and ethanol were produced from glucose, although strains X2 and 7–1 gave lower yields of ethanol. In strains NCW1, S3 and X2, co-metabolism of both glucose and citrate resulted in stimulation of growth, decreased uptake of glucose, increased acetate and D-lactate production and lack of ethanol production compared with that obtained with glucose alone. Strain 7–1 showed only growth stimulation and increased acetate production. Diacetyl, acetoin or 2, 3-butylene glycol were not detected. In strain NCW1 citrate had a slightly inhibitory effect on the enzymes of the 'ethanol' leg of glucose metabolism. Except for strain 7–1, these observations are consistent with a switch in glucose metabolism from ethanol to acetate production.  相似文献   

20.
Glucose-lactose diauxie in Escherichia coli   总被引:10,自引:3,他引:7  
Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号