首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Several staphylococcal plasmids from different incompatibility (inc) groups which replicate by a rolling circle mechanism each specify a replication initiator protein (Rep) which is homologous with that of the inc3 tetracycline resistance plasmid pT181. The rep gene sequences of six pT181-like plasmids are known, each encoding proteins of molecular mass 38 kDa with 62% overall amino acid sequence identity. The initiation of replication in vivo by each of the Rep proteins is plasmid specific, acting in trans only at the cognate replication origin (ori) of the encoding plasmid. Previous studies in vitro of the RepC protein of pT181 demonstrated replication initiator, topoisomerase-like, and DNA binding activities, which appeared to be specific for the origin (oriC) of pT181 when compared with unrelated staphylococcal plasmids. Although RepD, specified by the inc4 chloramphenicol resistance plasmid pC221, has a range of activities similar to those noted previously for RepC, manipulation of in vitro conditions has revealed discrete steps in the overall reaction of RepD with oriD. In addition, factors have been identified which are necessary not only for sequence-dependent discrimination in vitro by Rep proteins for all pT181-like plasmids but also for the absolute specificity of RepD for its cognate pC221 replication origin (oriD), the latter occurring in vivo and a function of the topological state of the ori-containing target DNA. Here we also demonstrate the presence of a covalent phosphoryl-tyrosine linkage between the RepD protein of plasmid pC221 and an oligonucleotide substrate corresponding to its replication origin (oriD). The reactive tyrosine (Tyr-188) was identified from amino acid sequences of 32P-labeled peptide-oligonucleotide fragments. Substitution of Tyr-188 with phenylalanine confirms the importance of the tyrosyl hydroxyl group since the Y188F protein retains the sequence-specific DNA-binding capabilities of wild-type RepD but is unable to attach covalently to the replication origin or participate in the nicking-closing reaction in vitro.  相似文献   

2.
We present data which indicate that (i) the origin of replication of plasmids pT181 and pC221 can also function as termination signals; (ii) termination of replication occurs when a round of replication initiated either by RepC at the pT181 origin or by RepD at the pC221 origin reaches either of these origins, proving that the two plasmids cross-react for termination of replication; and (iii) the replication initiated at the origin of another staphylococcal plasmid, pE194, does not terminate at the origin of pT181 or pC221, indicating the existence of a specific relationship between the initiation and termination of a replication event.  相似文献   

3.
Specificity of RepC protein in plasmid pT181 DNA replication   总被引:6,自引:0,他引:6  
The plasmid pT181 of Staphylococcus aureus consists of 4437 base pairs and encodes resistance to tetracycline. Initiation of pT181 DNA replication specifically requires the plasmid-encoded initiator protein, RepC. The initiator protein binds specifically to a 32-base pair sequence within the pT181 origin of replication. RepC protein also has a nicking-closing activity that is specific for the pT181 origin. Replication of pT181 initiates by covalent extension of the nick and proceeds by a rolling circle mechanism. Two other small, multicopy plasmids pC221 and pS194 belong to the pT181 family and have common structural organization and replication properties. The replication proteins and replication origins of these plasmids have extensive sequence homologies, although they belong to different incompatibility groups. In spite of this homology, the replication proteins and replication origins of these three plasmids do not show any cross-reactivity in vivo. We have carried out a series of in vitro experiments to determine the specificity of pT181-encoded initiator protein, RepC. DNA binding experiments showed that although the binding of RepC to the pT181 origin was very efficient, little or no binding was seen with pC221 and pS194 origins. The nicking-closing activity of RepC was found to be equally efficient with the pC221 and pS194 plasmids. The plasmids pC221 and pS194 replicated efficiently in a RepC-dependent in vitro system. However, replication of these plasmids was greatly reduced in the presence of a competing pT181 origin. The results presented here suggest that nicking-closing by RepC at the origin is not sufficient for maximal replication and that tight binding of RepC to the origin plays an important role in the initiation of DNA replication.  相似文献   

4.
Summary The structure of a 1.5-kb DNA sequence that is necessary and sufficient for the replication of an 8.2-kb cryptic plasmid, pFTB14, isolated from a strain of Bacillus amyloliquefaciens has been characterized. The 1.5-kb DNA sequence contains an open reading frame, rep, stretching for 1017 bp, a promoter region for rep expression, and a possible replication origin for the plasmid upstream of the promoter. The rep product is trans-active and essential for plasmid replication. The predicted rep protein is a basic protein, as are the RepC protein of pT181, RepB of pUB110 and protein A of pC194 (all these found in staphylococci) and the protein of the R6K plasmid of Escherichia coli. The predicted rep protein has highly homologous amino acid sequences with protein A of pC194 and RepC of pUB110 throughout the protein molecule, but not with RepC of pT181, of R6K or protein RepH encoded by and iniating the replication of pC194.  相似文献   

5.
6.
Comparative analysis of five related staphylococcal plasmids   总被引:26,自引:0,他引:26  
The genomic organization of five small multicopy staphylococcal plasmids comprising the pT181 family has been analyzed. In addition to pT181, the family presently includes the streptomycin resistance plasmid pS194 and the chloramphenicol resistance plasmids pC221, pC223, and pUB112. Although they belong to five different incompatibility groups, the five plasmids have similar basic replicons, use the same basic copy control mechanism, and have a common structural organization. It has been demonstrated previously that pT181 and pC221 encode trans-active replication proteins (RepC and RepD, respectively) which specifically recognize the respective plasmid's origin of replication in both cases is initiated by site-specific nicking and 3' extension. The other three plasmids in this family encode similar replication proteins; 63% of the predicted amino acid residues are identical for all five and the least similar pair shows 75% identity at the amino acid level. However, despite this homology, the replication proteins and origins of replication of different members in this family did not show cross complementation in vivo. Outside of the basic replicon, which comprises about one-third of each plasmid's genome, functional organization is also conserved. The resistance determinants are all located in the same position, immediately downstream of the replication protein coding sequence, and all are transcribed in the same direction. The three chloramphenicol resistance determinants encode highly homologous chloramphenicol transacetylases which are unrelated to the tet and str gene products. Three of the five plasmids form relaxation complexes and the involved genome segments are closely related. The other two are not homologous to these three in the corresponding region, but are homologous to each other and encode a site-specific recombinase, Pre. It is suggested that the replication, resistance, and relaxation complex regions of these plasmids can be regarded as conserved segments ("cassettes") assembled in various combinations, but always with the same spatial arrangement.  相似文献   

7.
The replication initiator protein RepD encoded by the Staphylococcus chloramphenicol resistance plasmid pC221 stimulates the helicase activity of the Bacillus stearothermophilus PcrA DNA helicase in vitro. This stimulatory effect seems to be specific for PcrA and differs from the stimulatory effect of the Escherichia coli ribosomal protein L3. Whereas L3 stimulates the PcrA helicase activity by promoting co-operative PcrA binding onto its DNA substrate, RepD stimulates the PcrA helicase activity by increasing the processivity of the enzyme and enables PcrA to displace DNA from a nicked substrate. The implication of these results is that PcrA is the helicase recruited into the replisome by RepD during rolling circle replication of plasmids of the pT181 family.  相似文献   

8.
pT181 and related plasmids of gram-positive bacteria replicate by a rolling-circle mechanism. The replication initiator protein of pT181, RepC, has origin-specific nicking-closing activities. Replication of the plasmid pT181 leading strand initiates by covalent extension of the RepC-generated nick, and the origin of replication contains signals for both initiation and termination of DNA replication. We have investigated the sequence requirements for the initiation and termination steps by using plasmids containing two pT181 origins. In vitro replication experiments showed that 18- and 24-bp synthetic oligonucleotides containing the RepC nick site were active in the termination of replication. However, initiation of replication required a larger region which also includes the RepC binding site. Plasmids containing the 18- and 24-bp region were also found to be nicked by the RepC protein. Our results demonstrate that sequence requirements for initiation and termination of pT181 replication overlap, but while the RepC binding site is required for initiation, it is dispensable for termination.  相似文献   

9.
pSA1.1 is a 9.1-kb multicopy plasmid originally isolated from Streptomyces cyaneus (formerly S. azureus) ATCC 14921. This plasmid accumulates single-stranded DNA in S. lividans and is therefore considered to replicate by a rolling-circle replication. In the present work, the rep gene encoding the replication initiator protein and the replication origin ori of pSA1.1 were determined. The rep and ori are located on separate regions. The Rep protein of pSA1.1 belongs to superfamily I which includes A proteins of phages. Nucleotide sequence of the surrounding putative nicking site of pSA1.1 shows good agreement with those of the pC194 group plasmids and phages. The direction of replication was also determined.  相似文献   

10.
T Hara  S Nagatomo  S Ogata    S Ueda 《Applied microbiology》1991,57(6):1838-1841
The structure of a 2.0-kb BstEII DNA sequence necessary and sufficient for the replication of a 5.7-kb Natto plasmid, pUH1, which is responsible for gamma-polyglutamate production by Bacillus subtilis (natto), has been characterized by using a trimethoprim resistance gene derived from B. subtilis chromosomal DNA as a selective marker. The 2.0-kb DNA sequence contains an open reading frame, rep, stretching for 999 bp; a promoter region for rep expression; and a possible replication origin for the plasmid upstream of the promotor. The predicted Rep protein has highly homologous amino acid sequences with rep14 of pFTB14 in B. amyloliquefaciens, RepB of pUB110, and protein A, which is necessary for pC194 replication in staphylococci throughout the protein molecule, but is not homologous with RepC of staphylococcal plasmid pT181.  相似文献   

11.
The structure of a 2.0-kb BstEII DNA sequence necessary and sufficient for the replication of a 5.7-kb Natto plasmid, pUH1, which is responsible for gamma-polyglutamate production by Bacillus subtilis (natto), has been characterized by using a trimethoprim resistance gene derived from B. subtilis chromosomal DNA as a selective marker. The 2.0-kb DNA sequence contains an open reading frame, rep, stretching for 999 bp; a promoter region for rep expression; and a possible replication origin for the plasmid upstream of the promotor. The predicted Rep protein has highly homologous amino acid sequences with rep14 of pFTB14 in B. amyloliquefaciens, RepB of pUB110, and protein A, which is necessary for pC194 replication in staphylococci throughout the protein molecule, but is not homologous with RepC of staphylococcal plasmid pT181.  相似文献   

12.
The rolling circle plasmids of Staphylococcus aureus regulate their replication by controlling initiator (Rep) protein synthesis. It was demonstrated recently that the pT181 initiator protein RepC is inactivated during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC* (A. Rasooly and R. P. Novick, Science, 262:1048-1050). We establish here that this initiator modification occurs with four other members of the pT181 family and that it occurs in Bacillus subtilis as well as S. aureus. These results suggest that Rep conversion to Rep* is probably universal among plasmids of the pT181 family and is not host dependent.  相似文献   

13.
pT181 is a fully sequenced 4.4-kb 20 copy Tcr plasmid from Staphylococcus aureus. Its replication system involves a unique unidirectional origin embedded in the coding sequence for a plasmid-determined protein, RepC, that is required for initiation. When joined to a 55 copy carrier plasmid, pE194, pT181 excludes autonomous isologous replicons by inhibiting their replication. Two types of spontaneous pT181 copy mutants have been isolated, one that eliminates sensitivity to this inhibition and another that does not. A spontaneous 180-bp deletion, delta 144, eliminates both the inhibitory activity and sensitivity to it. This deletion increases copy number by 50-fold and RepC production by at least 10-fold. It is located directly upstream from the repC coding sequence and the deletion-bearing plasmid supports the replication of inhibitor-sensitive plasmids in cells containing active inhibitor. This effect is probably due to the overproduction of RepC by the delta 144 plasmid. On the basis of these results, it is suggested that RepC synthesis is negatively controlled by an inhibitor that is encoded directly upstream from the repC coding sequence and acts as a tareget set in the same region. It is likely, therefore, that pT181 replication rate is determined by the level of RepC.  相似文献   

14.
RepC is rate limiting for pT181 plasmid replication   总被引:13,自引:0,他引:13  
The effect on pT181 plasmid replication of the concentration of the plasmid-coded initiator protein, RepC, has been analyzed. In one type of experiment, plasmid replication was found to stop immediately after the addition of an inhibitory concentration of chloramphenicol (Cm) to growing cultures. Chromosomal replication showed the slow turnoff that is usual for Cm inhibition. Because plasmid replication rate is determined autogenously, no host factor can be rate limiting, suggesting that the specific factor affected is Rep C. In another type of experiment, we constructed a translational fusion between the repC coding sequence and a translationally inducible Cm-acetylase gene, cat-86, using pUB110 as the carrier replicon. The fusion plasmid showed an eightfold amplification of its own copy number and a similar amplification of a co-resident pT181 plasmid upon Cm induction. The amplified plasmids did not show autocatalytic runaway replication but rather established stable elevated copy numbers, indicating the existence of a secondary level of regulation. These results suggest that RepC is rate limiting for pT181 replication and support the hypothesis that pT181 replication is regulated at the level of RepC synthesis. The nature of the secondary regulation is unknown.  相似文献   

15.
The origin of replication of plasmid pT181 is nicked by the plasmid-encoded RepC protein. The free 3'-hydroxyl end at the nick is presumably used as primer for leading strand DNA synthesis. In vitro replication of pT181 was found to generate single-stranded DNA in addition to the supercoiled, double-stranded DNA. The single-stranded DNA was circular and corresponded to the pT181 leading strand. Recombinant plasmids were constructed that contain two pT181 origins of replication in either direct or inverted orientation. In vitro replication of the plasmid carrying two origins in direct orientation was shown to generate circular, single-stranded DNA that corresponded to initiation of replication at one origin sequence and termination at the other origin. These results demonstrate that the origin of pT181 leading strand DNA replication also serves as the site for termination of replication. Interestingly, the presence of two origins in inverted orientation resulted in initiation of replication at one origin and stalling of the replisome at the other origin. These results suggest that RepC can reinitiate replication at the second origin by nicking partially replicated, relaxed DNA. These data are consistent with the replication of pT181 by a rolling circle mechanism and indicate that single-stranded DNA is an intermediate in pT181 replication.  相似文献   

16.
T Aoki  N Noguchi  M Sasatsu  M Kono 《Gene》1987,51(1):107-111
The complete nucleotide sequence of pTZ12, a chloramphenicol-resistance (CmR) plasmid (2517 bp) derived from Corynebacterium xerosis plasmid pTZ10, has been determined after propagation in Bacillus subtilis. The nucleotide sequence of pTZ12 suggests that a recombination event may have occurred naturally within the open reading frames for the Rep protein of pT181 (or a pT181-like plasmid) and pC221 (or a pC221-like plasmid).  相似文献   

17.
The replication of staphylococcal plasmid pT181 is indirectly controlled at the level of the synthesis of its replication initiator, RepC. As a result, high levels of RepC synthesis per plasmid copy were expected to lead to autocatalytic plasmid replication, which secondarily would affect host physiology. Surprisingly, RepC overexpression was found to lead to a rapid decrease in pT181 copy number and replication rate. These effects depended on the ratio of RepC lo the PT181 replication origin rather than on the absolute amount of RepC in the cell. In a wild-type host, the increase in RepC/plasmid copy also inhibited chromosome replication and cell division. The changes in host physiology did not play any role in the decrease in pT181 replication caused by RepC overexpression since pT181 replication responded in the same way in a host mutant insensitive to the effects of RepC induction. These results suggest that pT181, the prototype of an entire class of plasmids from Gram-positive bacteria, responds to overexpression of its replication initiator by a decrease in plasmid replication.  相似文献   

18.
During replication of the plasmid pT181, the initiator protein RepC is modified by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. Here we show that during in vitro replication, RepC* is radioactively labeled, suggesting that the source of the RepC* oligodeoxynucleotide is the newly synthesized pT181 DNA. The RepC/RepC* heterodimer retains its ability to bind the pT181 double-strand origin and, therefore, it may act as a competitive inhibitor of the RepC homodimer during replication.  相似文献   

19.
To construct shuttle vectors based on an endogenous replicon, we isolated a small cryptic plasmid (pLP1) from Lactobacillus plantarum CCM 1904. The nucleotide sequence (2093 bp, 38.25 GC mol%) revealed one major open reading frame encoding for a 317 amino acid protein (Rep). Comparisons with proteins encoded by other Gram-positive bacteria plasmids strongly suggest that the protein encoded by pLP1 has a replicative role. The presence of a consensus sequence including a tyrosine residue known to be the replication protein binding site to the DNA (in phage φX174) strengthens this hypothesis. The DNA sequence contains also a sequence similar to the pC194 origin nick sequence, which initiates the plasmid replication at the plus origin, characteristic of plasmids which replicate following a rolling circle mechanism via single-stranded DNA intermediates. A set of 13 direct repeats of 17 bp could be involved in the expression of the incompatibility or in the copy number control as in the other plasmids. A promoter sequence located at the rep 5′ region has been identified and is functional in Bacillus subtilis.  相似文献   

20.
An enhancer of DNA replication.   总被引:8,自引:2,他引:6       下载免费PDF全文
cmp, a nucleotide sequence element in the plasmid pT181 of Staphylococcus aureus, acts as an enhancer of DNA replication. When cmp is present on an unrelated vector along with the pT181 origin of replication, it increases the ability of the linked pT181 origin to compete with a coresident pT181 plasmid for the initiator protein RepC. cmp is contained within a 156-base-pair segment, and its deletion from pT181 reduces by twofold the frequency of plasmid replication under derepressed conditions. The enhancer sequence contains a locus of DNA bending, and enhancer activity decreases with distance from the replication origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号