首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
We investigated the effect of subdiaphragmatic vagal deafferentation (SDA) on food intake, body weight gain, and metabolism in obese (fa/fa) and lean (Fa/?) Zucker rats. Before and after recovery from surgery, food intake and body weight gain were recorded, and plasma glucose and insulin were measured in tail-prick blood samples. After implantation of a jugular vein catheter, an intravenous glucose tolerance test (IVGTT) was performed, followed by minimal modeling to estimate the insulin sensitivity index. Food intake relative to metabolic body weight (g/kg(0.75)) and daily body weight gain after surgery were lower (P < 0.05) in SDA than in sham obese but not lean rats. Before surgery, plasma glucose and insulin concentrations were lower (P < 0.05) in lean than in obese rats but did not differ between surgical groups within both genotypes. Four weeks after surgery, plasma glucose and insulin were still similar in SDA and sham lean rats but lower (P < 0.05) in SDA than in sham obese rats. IVGTT revealed a downward shift of the plasma insulin profile by SDA in obese but not lean rats, whereas the plasma glucose profile was unaffected. SDA decreased (P < 0.05) area under the curve for insulin but not glucose in obese rats. The insulin sensitivity index was higher in lean than in obese rats but was not affected by SDA in both genotypes. These results suggest that elimination of vagal afferent signals from the upper gut reduces food intake and body weight gain without affecting the insulin sensitivity index measured by minimal modeling in obese Zucker rats.  相似文献   

2.
J Rouru  R Huupponen  U Pesonen  M Koulu 《Life sciences》1992,50(23):1813-1820
The effect of subchronic metformin treatment on food intake, weight gain and plasma and tissue hormone levels was investigated in genetically obese male Zucker rats and in their lean controls. Metformin hydrochloride (320 mg/kg/day for 14 days in the drinking water) significantly reduced 24 hour food intake both after one and two weeks treatment in obese rats. In contrast, metformin had only a transient effect on food intake in lean animals. The reduced food intake was associated with body weight decrease, particularly in obese rats. Metformin markedly reduced also the hyperinsulinemia of the obese animals without altering their plasma glucose or pancreatic insulin content which may reflect an improved insulin sensitivity after metformin treatment. Metformin did not change plasma corticosterone levels or insulin and somatostatin concentrations in the pancreas. Metformin reduced pyloric region somatostatin content in lean rats. It is concluded that metformin has an anorectic effect and reduces body weight and hyperinsulinemia in genetically obese Zucker rat.  相似文献   

3.
Sucrose polyester, a fat substitute, has shown promise in reducing blood cholesterol and body weight of obese individuals. Effects of this compound in the Zucker rat, a genetic model of obesity, are unknown. Thus, we examined food intake, body weight, body composition, and several metabolic parameters in sera of lean and obese female Zucker rats. Eight-week-old lean and obese animals were given a choice between a control diet (15% corn oil) and fat substitute diet (5% corn oil and 10% sucrose polyester) for 2 days. Next, one-half of the lean and obese groups received control diet; the remaining lean and obese rats received fat substitute diet for 18 days. Cumulative food intake was depressed in fat substitute groups relative to control-fed animals; however, this effect was more predominant in obese animals. Obese rats consuming fat substitute diet (O-FS) gained less weight as compared to obese control-fed animals (O-C). Lean rats given fat substitute (L-FS) did not have significantly different body weights as compared to the L-C group. Fat substitute groups, combined, had lower body fat and higher body water as compared to controls. The O-FS group had lower serum glucose and insulin and higher fatty acid levels compared to the O-C group. There were no differences in serum cholesterol, HDL, or triglyceride levels due to fat substitute diet. These data suggest that the obese Zucker rat is unable to defend its body weight when dietary fat is replaced with sucrose polyester.  相似文献   

4.
AL-BARAZANJI, KAMAL A, ROBIN E BUCKINGHAM, JONATHAN RS ARCH, ANDREA HAYNES, DANUTA E MOSSAKOWSKA, DIANE L McBAY, STEPHEN D HOLMES, MARK T McHALE, XIN-MIN WANG, ISRAEL S GLOGER. Effects of intracerebro-ventricular infusion of leptin in obese Zucker rats. The obese Zucker rat (OZR) exhibits a missense mutation in the cDNA for the leptin receptor, producing a single amino acid substitution in the extracellular domain of the receptor. A mutation in the leptin receptor gene of the db/db mouse prevents the synthesis of the long splice variant of the receptor. The possibility that the OZR, like the db/db mouse, is refractory to the actions of murine leptin was tested by infusing the protein intracerebroventricularly via a minipump for 7 days. Lean Zucker rats (LZR) infused with leptin acted as positive controls, and other groups of OZR and LZR were infused with vehicle. In LZR, leptin reduced body-weight and food intake and increased brown adipose tissue (BAT) temperature. Plasma corticosterone increased (61%) in these rats, and plasma triglycerides fell (78%). Leptin treatment improved tolerance to an oral glucose load (16% reduction in the area under the blood glucose curve) while lowering plasma insulin. In OZR, the actions of leptin were blunted. Food intake was slightly, but not significantly, reduced. Although there was a reduction in the rate of increase in body mass, the effect of leptin was about half that seen in LZR. BAT temperature and glucose tolerance were unchanged. In contrast to the elevated plasma corticosterone seen in LZR, leptin reduced the level of this hormone (27%) in OZR. In OZR and LZR treated with leptin, the plasma leptin levels were increased 24-fold and 47-fold, respectively. The results suggest that leptin retains some efficacy in OZR, although these rats are less responsive than LZR.  相似文献   

5.
Objective: To investigate whether chronic administration of the long‐acting glucagon‐like peptide‐1 receptor agonist exendin‐4 can elicit sustained reductions in food intake and body weight and whether its actions require an intact leptin system. Research Methods and Procedures: Male lean and obese Zucker (fa/fa) rats were infused intracerebroventricularly with exendin‐4 using osmotic minipumps for 8 days. Results: Exendin‐4 reduced body weight in both lean and obese Zucker rats, maximum suppression being reached on Day 5 in obese (8%) and Day 7 in lean (16%) rats. However, epididymal white adipose tissue weight was not reduced, and only in lean rats was there a reduction in plasma leptin concentration. Food intake was maximally suppressed (by 81%) on Day 3 in obese rats but was reduced by only 18% on Day 8. Similarly, in lean rats food intake was maximally reduced (by 93%) on Day 4 of treatment and by 45% on Day 8. Brown adipose tissue temperature was reduced from Days 2 to 4. Plasma corticosterone was elevated by 76% in lean but by only 28% in obese rats. Discussion: Chronic exendin‐4 treatment reduced body weight in both obese and lean Zucker rats by reducing food intake: metabolic rate was apparently suppressed. These effects did not require an intact leptin system. Neither does the absence of an intact leptin system sensitize animals to exendin‐4. Partial tolerance to the anorectic effect of exendin‐4 in lean rats may have been due to elevated plasma corticosterone and depressed plasma leptin levels, but other counter‐regulatory mechanisms seem to play a role in obese Zucker rats.  相似文献   

6.
GDP binding to brown-adipose-tissue mitochondria was decreased in obese Zucker rats. Adrenalectomy restored both GDP binding and serum tri-iodothyronine of obese rats to values observed in lean rats. The effects of adrenalectomy on GDP binding and serum tri-iodothyronine were reversed by corticosterone. Decreasing food intake had no effect on brown-adipose-tissue GDP binding in obese rats. Young (5-week-old) obese rats showed a normal increase in brown-adipose-tissue mitochondrial GDP binding after housing at 4 degrees C for 7 days, but this response was attenuated in 10-week-old obese rats. Overfeeding with sucrose increased brown-adipose-tissue thermogenesis in lean, but not in obese, rats. After adrenalectomy, overfeeding with sucrose enhanced brown-adipose-tissue mitochondrial GDP binding in obese rats.  相似文献   

7.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

8.
1. The populations of alpha 1- and beta-adrenergic receptors in brown adipose tissue (BAT) of genetically obese Zucker rats (fa/fa) were studied with [3H]prazosin and [3H]CGP-12177 respectively. 2. The density of alpha 1-adrenergic receptors in BAT was significantly lower in obese than in lean Zucker rats, both at 2-4 months of age and at 6 weeks of age. The density of beta-adrenergic receptors was identical in BAT of lean and obese 6-week-old Zucker rats. 3. Cold-acclimation increased the alpha 1-receptor density significantly in BAT of both lean and obese Zucker rats, and the number of beta-receptors was also somewhat increased. 4. Sucrose feeding did not affect the density of alpha 1-receptors in BAT of lean or obese Zucker rats, but it increased beta-receptor density. 5. Adrenalectomy restored the density of alpha 1-adrenergic receptors in BAT of obese Zucker rats to the value observed in lean rats. 6. It is concluded that there is a direct correlation between alpha 1-receptor density and tissue recruitment, and that alpha 1-receptor density is thus positively correlated with sympathetic activity. beta-Receptor density is apparently better correlated with feeding conditions.  相似文献   

9.
Male Zucker rats were exposed to 2 G for 8 wk to test the hypothesis that the leptin regulatory pathway contributes to recovery from effects of 2 G on feeding, growth, and nutrient partitioning. After initial hypophagia, body mass-independent food intake of the lean rats exposed to 2 G surpassed that of the lean rats maintained at 1 G, but food intake of the obese rats exposed to 2 G remained low. After 8 wk at 2 G, body mass and carcass fat were less in both genotypes. Leptin and percent fat were lower in lean rats exposed to 2 G vs. 1 G but did not differ in obese rats exposed to 2 G vs. 1 G. Although exposure to 2 G did not alter uncoupling protein-1 levels, it did elicit white fat pad-specific changes in lipoprotein lipase activity in obese but not lean rats. We conclude that 2 G affects both genotypes but that the lean Zucker rats recover their food intake and growth rate and retain "normal" lipoprotein lipase activity to a greater degree than do the obese rats, emphasizing the importance of a functional leptin regulatory pathway in this acclimation.  相似文献   

10.
The rates of muscle glucose uptake of lean and obese Zucker rats were assessed via hindlimb perfusion under basal conditions (no insulin), in the presence of a maximal insulin concentration (10 mU/ml), and after electrically stimulated muscle contraction in the absence of insulin. The perfusate contained 28 mM glucose and 7.5 microCi/mmol of 2-deoxy-D-[3H-(G)]glucose. Glucose uptake rates in the soleus (slow-twitch oxidative fibers), red gastrocnemius (fast-twitch oxidative-glycolytic fibers), and white gastrocnemius (fast-twitch glycolytic fibers) under basal conditions and after electrically stimulated muscle contraction were not significantly different between the lean and obese rats. However, the rate of glucose uptake during insulin stimulation was significantly lower for obese than for lean rats in all three fiber types. Significant correlations were found for insulin-stimulated glucose uptake and glucose transporter protein isoform (GLUT-4) content of soleus, red gastrocnemius, and white gastrocnemius of lean (r = 0.79) and obese (r = 0.65) rats. In contrast, the relationships between contraction-stimulated glucose uptake and muscle GLUT-4 content of lean and obese rats were negligible because of inordinately low contraction-stimulated glucose uptakes by the solei. These results suggest that maximal skeletal muscle glucose uptake of obese Zucker rats is resistant to stimulation by insulin but not to contractile activity. In addition, the relationship between contraction-stimulated glucose uptake and GLUT-4 content appears to be fiber-type specific.  相似文献   

11.
In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-term effects of high-fat diets with different carbohydrate/protein ratios on energy balance and fuel homeostasis in obese (fa/fa) Zucker and lean Wistar rats. Animals were fed high-carbohydrate (HC), high-fat (HsF), or low-carbohydrate, high-fat, high-protein (LC-HsF-HP) diets for 60 days. Both lines fed the LC-HsF-HP diet displayed reduced energy intake compared with those fed the HsF diet (Zucker, -3.7%) or the HC diet (Wistar rats, -12.4%). This was not associated with lower weight gain relative to HC fed rats, because of increased food efficiencies in each line fed HsF and particularly LC-HsF-HP food. Zucker rats were less glucose tolerant than Wistar rats. Lowest glucose tolerances were found in HsF and particularly in LC-HsF-HP-fed animals irrespective of line, but this paralleled reduced plasma adiponectin levels, elevated plasma resistin levels, higher retroperitoneal fat masses, and reduced insulin sensitivity (indexed by insulin-induced hypoglycemia) only in Wistar rats. In Zucker rats, however, improved insulin responses during glucose tolerance testing and tendency toward increased insulin sensitivities were observed with HsF or LC-HsF-HP feeding relative to HC feeding. Thus, despite adverse consequences of LC-HsF diets on blood glucose homeostasis, principal differences exist in the underlying hormonal regulatory mechanisms, which could have benefits for B-cell functioning and insulin action in the obese state but not in the lean state.  相似文献   

12.
The relationship between insulin resistance and mitochondrial function is of increasing interest. Studies looking for such interactions are usually made in muscle and only a few studies have been done in liver, which is known to be a crucial partner in whole body insulin action. Recent studies have revealed a similar mechanism to that of muscle for fat-induced insulin resistance in liver. However, the exact mechanism of lipid metabolites accumulation in liver leading to insulin resistance is far from being elucidated. One of the hypothetical mechanisms for liver steatosis development is an impairment of mitochondrial function. We examined mitochondrial function in fatty liver and insulin resistance state using isolated mitochondria from obese Zucker rats. We determined the relationship between ATP synthesis and oxygen consumption as well as the relationship between mitochondrial membrane potential and oxygen consumption. In order to evaluate the quantity of mitochondria and the oxidative capacity we measured citrate synthase and cytochrome c oxidase activities. Results showed that despite significant fatty liver and hyperinsulinemia, isolated liver mitochondria from obese Zucker rats display no difference in oxygen consumption, ATP synthesis, and membrane potential compared with lean Zucker rats. There was no difference in citrate synthase and cytochrome c oxidase activities between obese and lean Zucker rats in isolated mitochondria as well as in liver homogenate, indicating a similar relative amount of hepatic mitochondria and a similar oxidative capacity. Adiponectin, which is involved in bioenergetic homeostasis, was increased two-fold in obese Zucker rats despite insulin resistance. In conclusion, isolated liver mitochondria from lean and obese insulin-resistant Zucker rats showed strictly the same mitochondrial function. It remains to be elucidated whether adiponectin increase is involved in these results.  相似文献   

13.
Corticosterone-binding (CB) capacity was determined in periovarian and subcutaneous white adipose tissue (WAT), as well as in plasma of lean and obese Zucker rats. In lean rats, plasma CB was twice the level of obese rats. In lean rat WAT, dexamethasone binding accounted for only 0.05-0.09% of corticosterone binding, and aldosterone bound even less; in the obese rats, dexamethasone accounted for 0.2 - 0.3 % of corticosterone binding. Scatchard plots showed that KD for corticosterone was 3.1 nM (WAT) or 3.4 nM (plasma) in lean rats and 1.8 nM (WAT) or 1.5 nM (plasma) in obese rats. The total CB capacity in WAT was lower in the obese than in lean rats (47-50%). Plasma non-esterified fatty acid levels were higher in obese rats. The results suggest that CBG may limit the access of glucocorticoids to adipocytes more weakly in obese rats because of the lower CBG. Fatty acids may increase the affinity of CBG for corticosterone, which would make WAT cells less accessible to circulating glucocorticoids. The modulation of CBG by fatty acids may protect fat reserves by decreasing the sensitivity of WAT to glucocorticoids.  相似文献   

14.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

15.
Adenylate cyclase activity was determined in membranes of liver, muscle, white adipose tissue, and brown adipose tissue (BAT) of lean (Fa/) and obese (fa/fa) Zucker rats. Responses were monitored following beta-adrenergic receptor stimulation and addition of GTP, GTP gamma S, or forskolin. beta-Adrenergic responses in liver, white adipose tissue, and BAT were lower in obese than in lean animals. No such difference was observed in muscle membranes. Production of cAMP after addition of guanine nucleotides was lower in liver and white adipose tissue membranes from obese rats compared with their lean littermates. Synthesis of cAMP in muscle membranes of obese animals after addition of GTP was either not different, or slightly higher, than that observed in muscle membranes from lean animals. Furthermore, production of cAMP after forskolin addition to muscle membranes of obese rats was significantly higher than that observed from lean rats under the same conditions. Interestingly, BAT membranes of obese rats were significantly more sensitive to guanine nucleotide activation than those of lean animals. The results confirm recent findings indicating inferior function of G proteins in liver plasma membranes of obese Zucker rats, and extend this observation to adipose tissue. The present results further suggest that the "nonreceptor" components (e.g., G proteins) responsible for the activation of adenylate cyclase in BAT membranes of obese rats are more responsive to stimulation than those of lean animals. Such sensitivity may be related to and perhaps compensate for the reduced thermogenic activity in the obese Zucker rat during the development of obesity.  相似文献   

16.
Plasma concentrations of insulin, corticosterone, T3, T4 and glucose were measured at 6 hour intervals throughout 24 hours in undisturbed, 34-day-old lean (Fa/?) and genetically obese (fa/fa) Zucker rats. fa/fa rats had higher plasma concentrations of insulin at all sampling times and higher plasma concentrations of corticosterone at 0300 and 0900 hours. Neither T3 nor T4 levels differed between phenotypes at any sampling time. Fasting for 24 hours at 34 days abolished the hyperinsulinaemia of fa/fa rats and raised the plasma corticosterone concentrations of both phenotypes. Before weaning there were no phenotypic differences in the plasma insulin or corticosterone concentrations measured at two sampling times in undisturbed rats. Following an intra-gastric glucose load however, fa/fa rats became hyper-insulinaemic compared with similarly treated Fa/? animals. Pancreatic insulin contents were higher in fa/fa rats at 34 days of age, but not before weaning. Somatostatin contents of the pancreas, hypothalamus and cerebral cortex did not differ between phenotypes at either 18 or 34 days of age. In conclusion, the elevated plasma concentrations of insulin and corticosterone in young fa/fa rats may contribute to their greater lipid deposition and lower protein deposition.  相似文献   

17.
1. The effect of insulin (0.5, 10 and 50 munits/ml of perfusate) on glucose uptake and disposal in skeletal muscle was studied in the isolated perfused hindquarter of obese (fa/fa) and lean (Fa/Fa) Zucker rats and Osborne-Mendel rats. 2. A concentration of 0.5 munit of insulin/ml induced a significant increase in glucose uptake (approx. 2.5 mumol/min per 30 g of muscle) in lean Zucker rats and in Osborne-Mendel rats, and 10 munits of insulin/ml caused a further increase to approx. 6 mumol/min per 30 g of muscle; but 50 munits of insulin/ml had no additional stimulatory effect. In contrast, in obese Zucker rats only 10 and 50 munits of insulin/ml had a stimulatory effect on glucose uptake, the magnitude of which was decreased by 50-70% when compared with either lean control group. Since under no experimental condition tested was an accumulation of free glucose in muscle-cell water observed, the data suggest an impairment of insulin-stimulated glucose transport across the muscle-cell membrane in obese Zucker rats. 3. The intracellular disposal of glucose in skeletal muscle of obese Zucker rats was also insulin-insensitive: even at insulin concentrations that clearly stimulated glucose uptake, no effect of insulin on lactate oxidation (nor an inhibitory effect on alanine release) was observed; [14C]glucose incorporation into skeletal-muscle lipids was stimulated by 50 munits of insulin/ml, but the rate was still only 10% of that observed in lean Zucker rats. 4. The data indicate that the skeletal muscle of obese Zucker rats is insulin-resistant with respect to both glucose-transport mechanisms and intracellular pathways of glucose metabolism, such as lactate oxidation. The excessive degree of insulin-insensitivity in skeletal muscle of obese Zucker rats may represent a causal factor in the development of the glucose intolerance in this species.  相似文献   

18.
Objective: This study examined the effects of topiramate (TPM), a novel neurotherapeutic agent reported to reduce body weight in humans, on the components of energy balance in female Zucker rats. Research Methods and Procedures: A 2 × 3 factorial experiment was performed in which two cohorts of Zucker rats differing in their phenotype (phenotype: lean, Fa/?; obese, fa/fa) were each divided into three groups defined by the dose of TPM administered (dose: TPM 0, vehicle; TPM 15, 15 mg/kg; TPM 60, 60 mg/kg). Results: The reduction in body weight gain induced by TPM in both lean and obese rats reflected a decrease in total body energy gain, which was more evident in obese than in lean rats. Whereas TPM administration did not influence the intake of digestible energy in lean rats, it induced a reduction in food intake in obese animals. In lean, but not in obese rats, apparent energy expenditure (as calculated by the difference between energy intake and energy gain) was higher in rats treated with TPM than in animals administered the vehicle. The low dose of TPM decreased fat gain (with emphasis on subcutaneous fat) without affecting protein gain, whereas the high dose of the drug induced a reduction in both fat and protein gains. The effects of TPM on muscle and fat depot weights were representative of the global effects of TPM on whole body fat and protein gains. The calculated energetic efficiency (energy gain/energy intake) was decreased in both lean and obese rats after TPM treatment. TPM dose independently reduced hyperinsulinemia of obese rats, but it did not alter insulinemia of lean animals. Discussion: The present results provide sound evidence for the ability of TPM to reduce fat and energy gains through reducing energetic efficiency in both lean and obese Zucker rats.  相似文献   

19.
The obese Zucker rat has a genetically flawed leptin system and is a model of hyperphagia, obesity, hyperlipidemia, and markedly elevated leptin levels. Dehydroepiandrosterone (DHEA) administration reduces hyperphagia, hyperlipidemia, and obesity in Zucker rats. Since serum leptin levels are associated with body fat, we wondered what the effects of fat pad weight reduction from DHEA administration would have on leptin levels. This experiment investigated the effects of DHEA on intra-abdominal fat pads, serum lipids, and peripheral leptin in male lean and obese Zucker rats that were administered DHEA in their food from 4 weeks of age to 20 weeks. Lean and obese rats received plain chow or chow containing DHEA. Additional chow-fed groups of lean and obese weight-matched controls and obese pair-fed rats helped to control for the reduced body weight, food intake, and fat pad weights seen with DHEA administration. DHEA administration to lean Zucker rats reduced body weight and fat pad weights, but leptin levels showed a lower trend. Among obese rats, both DHEA treatment and pair-feeding reduced body weight and fat pad weights, but only DHEA lowered leptin levels. The weight-matched controls had reductions in fat pad weights similar to the DHEA-treated group, but with increased leptin levels. Thus, DHEA may exert a small, independent effect on leptin levels in this animal model, but the reduction is less than what would be expected.  相似文献   

20.
The obese Zucker (fa/fa) rat is characterized by hyperphagia, hyperinsulinemia, an increase in fat deposition, and a hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis in fa/fa rats is hypersensitive to stressful experimental conditions. Food deprivation even leads to a stress reaction in obese fa/fa rats. The present study was conducted to investigate the role of corticosterone in obese rats on the basal, fasting, and postprandial metabolic rate as well as on the central expression of the thyrotropin-releasing hormone (TRH) in these conditions. In addition, the study was aimed at clarifying whether the high levels of corticosterone in obese rats are responsible for the induction of the stress reaction to food deprivation in these animals. The present results demonstrate that whole body fat oxidation and postprandial metabolic responses in obese Zucker rats were improved by adrenalectomy (ADX). At the level of the central nervous system, ADX reversed a decrease in TRH mRNA expression in the paraventricular hypothalamus (PVH) detected in fasting animals. Considering all feeding conditions, the obese rats demonstrated lower TRH mRNA levels compared with lean animals. ADX resulted in an enhanced postprandial activation of the parvocellular PVH. In contrast, the magnocellular part of the PVH was less responsive to refeeding in ADX animals. Finally, ADX failed to prevent the stress response of obese rats to food deprivation. The present results provide evidence that the removal of adrenals resolve some of the metabolic defects encountered in obese Zucker rats. They also demonstrate that not all the abnormalities of the obese Zucker rats are attributable to the hyperactivity of the HPA axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号