首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The affinity of photosynthesis for CO2 is calculated here as the initial slope of net-photosynthetic rate against concentration of CO2. The affinity for CO2 for pairs of freshwater macrophytes with similar leaf morphology but able or unable to use HCO3 as a carbon source was compared.
2. Species restricted to CO2 had a higher affinity for CO2 than species that were also able to use HCO3 when rates were expressed on the basis of area, dry mass and content of chlorophyll a .
3. Published values for the affinity for CO2 and the concentration of CO2 which half-saturated rate of photosynthesis were compiled and compared. Despite a large range of values, affinity for CO2 was greater for species restricted to CO2 than for those also able to use HCO3 and statistically different when the slope was expressed on the basis of dry mass and chlorophyll a content.
4. The difference in affinity is consistent with predicted benefits of a high permeability to CO2 for species relying on passive diffusion of CO2 and a lower permeability for species able to use HCO3 in order to reduce efflux of CO2 from a high internal concentration generated by active transport.
5. The implications of the different affinities are discussed in terms of species distribution.  相似文献   

2.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

3.
The effect of drought on CO2 assimilation and leaf conductance was studied in three northern hardwood species: Quercus rubra L., Acer rubrum L. and Populus grandidentata Michx. Leaf gas exchange characteristics at two CO2 levels (320 and 620 μl I−1) and temperatures from 20 to 35°C were measured at the end of a dry period and shortly after 10 cm of rainfall. The effects of drought varied with species, temperature and CO2 level. Calculated values of internal CO2 concentration showed little or no decline during drought. Differences in assimilation, before vs after the rains, were most apparent at the higher CO2 level. These latter two observations indicate nonstomatal disruption of CO2 assimilation during the dry period. In P. grandidentata there was a substantial interaction between drought and temperature, with a resultant shift in the temperature for maximum assimilation to lower temperatures during drought. During drought, internal CO2 concentrations increased sharply in all three species under the combined conditions of high temperatures and the higher CO2 level.  相似文献   

4.
Stomatal density (SD) and stomatal conductance ( g s) can be affected by an increase of atmospheric CO2 concentration. This study was conducted on 17 species growing in a naturally enriched CO2 spring and belonging to three plant communities. Stomatal conductance, stomatal density and stomatal index (SI) of plants from the spring, which were assumed to have been exposed for generations to elevated [CO2], and of plants of the same species collected in a nearby control site, were compared. Stomatal conductance was significantly lower in most of the species collected in the CO2 spring and this indicated that CO2 effects on g s are not of a transitory nature but persist in the long term and through plant generations. Such a decrease was, however, not associated with changes in the anatomy of leaves: SD was unaffected in the majority of species (the decrease was only significant in three out of the 17 species examined), and also SI values did not vary between the two sites with the exception of two species that showed increased SI in plants grown in the CO2-enriched area. These results did not support the hypothesis that long-term exposure to elevated [CO2] may cause adaptive modification in stomatal number and in their distribution.  相似文献   

5.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

6.
To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata , which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in p CO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low p CO2. Stomata did not respond to a decreased p CO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal p CO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to p CO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low p CO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.  相似文献   

7.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

8.
We examined how anticipated changes in CO2 concentration and temperature interacted to alter plant growth, harvest characteristics and photosynthesis in two cold-adapted herbaceous perennials, alfalfa ( Medicago sativa L. cv. Arc) and orchard grass ( Dactylis glomerata L. cv. Potomac). Plants were grown at two CO2 concentrations (362 [ambient] and 717 [elevated] μmol mol−1 CO2) and four constant day/night temperatures of 15, 20, 25 and 30°C in controlled environmental chambers. Elevated CO2 significantly increased total plant biomass and protein over a wide range of temperatures in both species. Stimulation of photosynthetic rate, however, was eliminated at the highest growth temperature in M. sativa and relative stimulation of plant biomass and protein at high CO2 declined as temperature increased in both species. Lack of a synergistic effect between temperature and CO2 was unexpected since elevated CO2 reduces the amount of carbon lost via photorespiration and photorespiration increases with temperature. Differences between anticipated stimulatory effects of CO2 and temperature and whole plant single and leaf measurements are discussed. Data from this study suggest that stimulatory effects of atmospheric CO2 on growth and photosynthesis may decline with anticipated increases in global temperature, limiting the degree of carbon storage in these two perennial species.  相似文献   

9.
We tested the hypothesis that acclimation of foliar dark respiration to CO2 concentration and temperature is associated with adjustments in leaf structure and chemistry. Populus tremuloides Michx. , Betula papyrifera Marsh. , Larix laricina (Du Roi) K. Koch , Pinus banksiana Lamb., and Picea mariana (Mill.) B.S.P. were grown from seed in combined CO2 (370 or 580 μ mol mol–1) and temperature treatments (18/12, 24/18, or 30/24 °C). Temperature and CO2 effects were predominately independent. Specific respiration rates partially acclimated to warmer thermal environments through downward adjustment in the intercept, but not Q 10 of the temperature–response functions. Temperature acclimation of respiration was larger for conifers than broad-leaved species and was associated with pronounced reductions in leaf nitrogen concentrations in conifers at higher growth temperatures. Short-term increases in CO2 concentration did not inhibit respiration. Growth in the elevated CO2 concentration reduced leaf nitrogen and increased non-structural carbohydrate concentrations. However, for a given nitrogen concentration, respiration was higher in leaves grown in the elevated CO2 concentration, as rates increased with increasing carbohydrates. Across species and treatments, respiration rates were a function of both leaf nitrogen and carbohydrate concentrations ( R 2 = 0·71, P < 0·0001). Long-term acclimation of foliar dark respiration to temperature and CO2 concentration is largely associated with changes in nitrogen and carbohydrate concentrations.  相似文献   

10.
Elevated atmospheric CO2 concentration ([CO2]) stimulates seed mass production in many species, but the extent of stimulation shows large variation among species. We examined (1) whether seed production is enhanced more in species with lower seed nitrogen concentrations, and (2) whether seed production is enhanced by elevated [CO2] when the plant uses more N for seed production. We grew 11 annuals in open top chambers that have different [CO2] conditions (ambient: 370 μmol mol−1, elevated: 700 μmol mol−1). Elevated [CO2] significantly increased seed production in six out of 11 species with a large interspecific variation (0.84–2.12, elevated/ambient [CO2]). Seed nitrogen concentration was not correlated with the enhancement of seed production by elevated [CO2]. The enhancement of seed production was strongly correlated with the enhancement of seed nitrogen per plant caused by increased N acquisition during the reproductive period. In particular, legume species tended to acquire more N and produced more seeds at elevated [CO2] than non-nitrogen fixing species. Elevated [CO2] little affected seed [N] in all species. We conclude that seed production is limited primarily by nitrogen availability and will be enhanced by elevated [CO2] only when the plant is able to increase nitrogen acquisition.  相似文献   

11.
Variation in stomatal development and physiology of mature leaves from Alnus glutinosa plants grown under reference (current ambient, 360 μmol mol−1 CO2) and double ambient (720 μmol mol−1 CO2) carbon dioxide (CO2) mole fractions is assessed in terms of relative plant growth, stomatal characters (i.e. stomatal index and density) and leaf photosynthetic characters. This is the first study to consider the effects of elevated CO2 concentration on the distribution of stomata and epidermal cells across the whole leaf and to try to ascertain the cause of intraleaf variation. In general, a doubling of the atmospheric CO2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density. Under elevated CO2 concentration there was a significant decrease in stomatal conductance and an increase in assimilation rate. However, no significant differences were found for the maximum rate of carboxylation ( V cmax) and the light saturated rate of electron transport ( J max) between the control and elevated CO2 treatment.  相似文献   

12.
Soil-buried seeds of barnyardgrass ( Echinochloa crus-galli var. crus-galli ) germinated from April to June in three intermittent flushes. The later two flushes of germination occurred after heavy rainfall. Carbon dioxide concentration in soil air transiently increased to 30 dm3 m–3 after the rainfall, probably due to the increase in soil temperature and water potential. Germination of exhumed seeds was stimulated by exposure to CO2 at 30 dm3 m–3. Fluctuating temperature, light, water, ethylene, and nitrate are known to promote seed germination in many species. However, of these environmental factors, within ranges found in the field, only CO2 was effective in enhancing the germination of barnyardgrass seeds. We conclude that soil CO2 is responsible for causing intermittent flushes of germination. Detection of vegetation gaps may be explained by the responsiveness of buried seeds to CO2.  相似文献   

13.
14CO2 evolution of prelabeled Scenedesmus obliquus Kütz, has been followed in the dark and in the light. In the light, no carbon dioxide is evolved. Addition of unlabeled NaHCO, leads to 14CO2 release attaining 20 to 30% of the dark rate. Double-reciprocal plots of NaHCO3 concentrations vs 14CO2 release results in a straight line, indicative of competition between exogenously supplied bicarbonate and endogenously evolved carbon dioxide. With this method, it is possible to measure CO2 evolved by respiration in the light and to show that true photoinhibition of respiration occurs in Scenedesmus . In the light. DCMU substantially increases 14CO2 evolution; in the presence of the uncoupler carbonyl cyanide- m -chlorophenylhydrazone. 14CO2 evolution is comparable to that in the dark. 14CO2 release and oxygen uptake in the dark are only slightly affected by cyanide, indicative of a cyanide-resistant respiration and/or fermentation as the essential CO2-yielding processes in the presence of cyanide. These results, compared with concurrent ATP levels, lead us to assume that energy charge is not the only factor responsible for photoinhibition of respiration.  相似文献   

14.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

15.
Evidence from 10 studies comparing angiosperm trees and 5 studies comparing conifers of differing shade‐tolerance was analysed. The number of intraphyletic comparisons in which the more shade‐tolerant species showed the greater relative increase of biomass in elevated CO2 was significantly higher than would be expected by chance alone. It is suggested that more shade‐tolerant species are inherently better disposed, in terms of plant architecture and partitioning of biomass and nitrogen, to utilise resources (light, water, nutrients) that are potentially limiting in elevated CO2 and that these traits are responsible for the interaction between shade‐tolerance and CO2 concentration. Compared with less shade‐tolerant angiosperm trees, more shade‐tolerant angiosperm species generally have a lower leaf area ratio in ambient CO2 and show a smaller relative reduction in elevated CO2. Furthermore, leaf nitrogen content is usually lower in more shade‐tolerant angiosperm species and tends to be more strongly reduced by elevated CO2 in those species. Within angiosperm trees, more shade‐tolerant species showed a stronger stimulation of net leaf photosynthetic rate in most experiments, but this trend was not significant.  相似文献   

16.
The global environment is changing with increasing temperature and atmospheric carbon dioxide concentration, [CO2]. Because these two factors are concomitant, and the global [CO2] rise will affect all biomes across the full global range of temperatures, it is essential to review the theory and observations on effects of temperature and [CO2] interactions on plant carbon balance, growth, development, biomass accumulation and yield. Although there are sound theoretical reasons for expecting a larger stimulation of net CO2 assimilation rates by increased [CO2] at higher temperatures, this does not necessarily mean that the pattern of biomass and yield responses to increasing [CO2] and temperature is determined by this response. This paper reviews the interactions between the effects of [CO2] and temperature on plants. There is little unequivocal evidence for large differences in response to [CO2] at different temperatures, as studies are confounded by the different responses of species adapted and acclimated to different temperatures, and the interspecific differences in growth form and development pattern. We conclude by stressing the importance of initiation and expansion of meristems and organs and the balance between assimilate supply and sink activity in determining the growth response to increasing [CO2] and temperature.  相似文献   

17.
We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O2 concentrations in N2 (9–1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O2 concentration and the increase in CO2 concentration as result of leaf respiration were measured by a zirconium cell O2 analyser and infrared-absorption CO2 analyser, respectively. The low O2 concentrations little influenced the rate of CO2 evolution during the 60-s exposure. The initial slope of the O2 uptake curve on the dissolved O2 concentration basis was relatively constant in leaves of a single species, 1.5 mm s−1 in sunflower and 1.8 mm s−1 in aspen. The apparent K 0.5(O2) values ranged from 0.33 to 0.67 μ M in sunflower and from 0.33 to 1.1 μ M in aspen, mainly because of the variation of the maximum rate, V max (leaf temperature 22°C). The initial slope of the O2 response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.  相似文献   

18.
The effects of K+ concentration, light intensity and CO2 levels on the volume of Commelina communis L. guard cell protoplasts were studied. Two degrees of swelling response were observed, both dependent on an external supply of K+, but not necessarily on the supply of a permeant anion. The presence of K+ itself, independent of light or CO2 level, stimulated swelling at a relatively slow rate. When K+, light and low CO2 conditions were supplied together, the swelling was relatively rapid and of high magnitude. The rapid swelling was specific for K+ and Rb+ giving a half maximal effect after 2 h at a KCl concentration of about 18 mmol m−3. The addition of CaCl2 at 1 mol m−3 inhibited K+-dependent swelling under all conditions tested. The response to light and low CO2 levels by Commelina guard cell protoplasts is thought to reflect a high degree of physiological integrity.  相似文献   

19.
The oxygen requirement for stomatal opening in maize plants ( Zea mays L. hybrid INRA 508) was studied at different CO2 concentrations and light intensities. In the absence of CO2, stomatal opening always required O2, but this requirement decreased with increasing light intensity. In darkness, the lowest O2 partial pressure needed to obtain a weak stomatal movement was about 50 Pa. This value was lowered to ca 10 Pa in light (320 μmol m−2 s−1).
On the other hand. in the absence of O2, CO2enabled stomatal opening to occur in the light, presumably due to the evolved photosynthetic O2. Thus, CO2, which generally reduced stomatal aperture, could induce stomatal movement in anoxia and light. The effect of CO2 on stomatal opening was closely dependent on O2 concentration and light intensity. Stomatal aperture appeared CO2-independent at an O2 partial pressure which was dependent on light intensity and was about 25 Pa at 320 umol m−2 s−1.
The presence of a plasmalemma oxidase, in addition to mitochondrial oxidase, might explain the differences in the O2 requirement at various light intensities. The possible involvement of such a system in relation to the effect of CO2 is discussed.  相似文献   

20.
1 In a glasshouse experiment we studied the effect of raised CO2 concentration (720 p.p.m.) on CH4 emission at natural boreal peat temperatures using intact cores of boreal peat with living vascular plants and Sphagnum mosses. After the end of the growing season half of the cores were kept unnaturally warm (17–20 °C). The potential for CH4 production and oxidation was measured at the end of the emission experiment.
2 The vascular cores ('Sedge') consisted of a moss layer with sedges, and the moss cores (' Sphagnum ') of Sphagnum mosses (some sedge seedlings were removed by cutting). Methane efflux was 6–12 times higher from the Sedge cores than from the Sphagnum cores. The release of CH 4 from Sedge cores increased with increasing temperature of the peat and decreased with decreasing temperature. Methane efflux from Sphagnum cores was quite stable independent of the peat temperatures.
3 In both Sedge and Sphagnum samples, CO2 treatment doubled the potential CH4 production but had no effect on the potential CH4 oxidation. A raised concentration of CO2 increased CH4 efflux weakly and only at the highest peat temperatures (17–20 °C).
4 The results suggest that in cool regions, such as boreal wetlands, temperature would restrict decomposition of the extra substrates probably derived from enhanced primary production of mire vegetation under raised CO2 concentrations, and would thus retard any consequent increase in CH4 emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号