首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The pathogenicity of 13 isolates of Metarhizium anisopliae and two isolates of Beauveria bassiana to Ceratitis capitata and Ceratitis var. rosa fasciventris exposed as late third instar larvae in sand was evaluated in the laboratory. All isolates caused a significant reduction in adult emergence and a corresponding large mortality on puparia of both species. All isolates also induced large deferred mortality in emerging adults following treatment as late third instar larvae. On C. capitata , seven isolates ( M. anisopliae ICIPE 18, 20, 32, 60 and 69 and B. bassiana ICIPE 44 and 82) caused significantly higher mortality on puparia than other isolates. With the exception of ICIPE 32, the other four isolates of M. anisopliae above were the most pathogenic against C. r. fasciventris . Dose-response study carried out with these isolates of M. anisopliae on the two species of flies above plus another species, Ceratitis cosyra showed that the dose-mortality regression lines of ICIPE 18 and 20 were steeper with lower LC 50 values when compared with ICIPE 60 and 69 on the three species. When these two isolates were evaluated with regard to their pathogenicity to different pupal age, adult emergence was found to increase with increasing pupal age with a corresponding decrease in mortality in puparia and emerging adults in the three species of fruit flies. M. anisopliae ICIPE 18 and 20 were equally pathogenic to all pupal ages tested in C. capitata and C. cosyra but ICIPE 18 was more pathogenic to older puparia of C. r. fasciventris than ICIPE 20. Our results suggest that soil inoculation with M. anisopliae under mango trees might form an important component of integrated pest management strategies in areas where these three species of fruit fly coexist.  相似文献   

2.
The pathogenicity of two isolates of Beauveria bassiana and 12 of Metarhizium anisopliae towards adult fruit flies, Ceratitis capitata and Ceratitis rosa var. fasciventris was tested in the laboratory. Fruit flies were exposed to dry conidia evenly spread on velvet material covering the inner side of a cylindrical plastic tube. All isolates tested were pathogenic to both species of fruit flies. Mortality ranged from 7 to 100% in C. capitata and from 11.4 to 100% in C. rosa var. fasciventris at 4 days post-inoculation. Six isolates, M. anisopliae ICIPE 18, 20, 32, 40, 41 and 62, were highly pathogenic to both C. capitata and C. rosa var. fasciventris. The LT90 values of the most pathogenic isolates ranged between 3-4 days in both insects. Because of the difficulties in rearing C. cosyra, only the isolates that were highly pathogenic to both C. rosa var. fasciventris and C. capitata were tested against adult C. cosyra. They caused mortality of between 72-78% at 4 days post-inoculation. The LT90 values in all the isolates did not exceed 4 days. One of the most pathogenic isolates, M. anisopliae ICIPE 20, was evaluated against C. capitata and C. rosa var. fasciventris in cage experiments using three autoinoculators (maize cob, cheesecloth and Petri dish) in an autoinoculative device consisting of plastic mineral bottle. Mortality of between 70-93% was observed in flies of both species that were captured from the cages and held under laboratory conditions. These results indicate the possibility of fruit fly suppression with entomopathogenic fungi using an autoinoculative device.  相似文献   

3.
Laboratory experiments were done to measure the pathogenicity of 10 autochthonous isolates of Beauveria bassiana (Balsamo) Vuill. and of five Metarhizium anisopliae (Metsch.) Sorok. toward puparia and adults of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Although all isolates applied via inoculation of the fungal suspensions on the ventral surface of the abdomen were pathogenic to adults, with mortality rates ranging from 30 to 100% and average survival times (ASTs) from 6.5 to 8.6 d, when C. capitata puparia were immersed in the conidial suspensions, only B. bassiana Bb-1333 and EABb 01/103-Su and M. anisopliae EAMa 01/58-Su isolates caused >50% mortality of puparia. In a second series of bioassays conducted on five selected isolates, adults were sprayed with four 10-fold concentrations ranging from 1.0 x 10(5) to 1.0 x 10(8) colony-forming units (cfu)/ml. The median lethal concentrations (LC50) of the four most virulent isolates ranged from 4.9 x 10(5) to 2.0 x 10(6) cfu/ml with estimated time to kill 50% of the insects ranging from 4.6 to 5.3 d. The effect of a sublethal dose (ca. LD50) of either B. bassiana EABb 01/103-Su or M. anisopliae EAMa 01/58-Su isolate was studied by reciprocal crossing. Treatment with B. bassiana reduced fecundity and fertility at 6, 8, and 10 d after treatment, with fecundity and fertility reductions ranging from 20.0 to 71.2% and from 33.6 to 60.0%, respectively. These reductions occurred in pairing combinations of treated females with either treated or nontreated males. M. anisopliae was more effective in reducing fecundity and fertility at 6 d after treatment, with the reduction varying from 58.4 to 72.1% and from 28.6 to 45.9%, respectively. In addition, the first oviposition was significantly delayed for 1 d in females treated by either fungal species. The above-mentioned five selected isolates were assayed against C. capitata puparia treated as late third instars in sterilized soil at 25'C under three moisture conditions (-0.1, -0.01, and -0.0055 MPa). At -0.01 MPa, all isolates were low pathogenic to C. capitata puparia, whereas significant differences in the puparia mortality occurred between isolates at -0.1 and -0.0055 MPa. The highest pupal mortalities ranged from 52.5 to 70.0%, as a function of soil moisture and were caused by EAMa 01/58-Su and Bb-1333 isolates.  相似文献   

4.
The possibility to cross-species amplify microsatellites in fruit flies of the genus Ceratitis was tested with the polymerase chain reaction (PCR) by analysing 23 Ceratitis capitata (Wiedemann) microsatellite markers on the genomic DNA of three other economically important, congeneric species: C. rosa (Karsch), C. fasciventris (Bezzi) and C. cosyra (Walker). Twenty-two primer pairs produced amplification products in at least one of the three species tested. The majority of the products were similar, if not identical in size to those expected in C. capitata. The structures of the repeat motifs and their flanking sequences were examined for a total of 79 alleles from the three species. Sequence analysis revealed the same repeat type as the homologous C. capitata microsatellites in the majority of the loci, suggesting their utility for population analysis across the species range. A total of seven loci were differentially present/absent in C. capitata, C. rosa, C. fasciventris and C. cosyra, suggesting that it may be possible to differentiate these four species using a simple sequence repeat-based PCR assay. It is proposed that medfly-based microsatellite markers could be utilized in the identification and tracing of the geographical origins of colonist pest populations of the four tested species and in the assessment of their risk and invasive potentials; thereby assisting regulatory authorities in implementing quarantine restrictions and other pest control measures.  相似文献   

5.
A set of 10 microsatellite markers was used to survey the levels of genetic variability and to analyse the genetic aspects of the population dynamics of two potentially invasive pest fruit fly species, Ceratitis rosa and C. fasciventris, in Africa. The loci were derived from the closely related species, C. capitata. The degree of microsatellite polymorphism in C. rosa and C. fasciventris was extensive and comparable to that of C. capitata. In C. rosa, the evolution of microsatellite polymorphism in its distribution area reflects the colonization history of this species. The mainland populations are more polymorphic than the island populations. Low levels of differentiation were found within the Africa mainland area, while greater levels of differentiation affect the islands. Ceratitis fasciventris is a central-east African species. The microsatellite data over the Uganda/Kenya spatial scale suggest a recent expansion and possibly continuing gene flow within this area. The microsatellite variability data from C. rosa and C. fasciventris, together with those of C. capitata, support the hypothesis of an east African origin of the Ceratitis spp.  相似文献   

6.
The June beetle, Hoplia philanthus Füessly (Coleoptera: Scarabaeidae), has become a widespread and destructive insect pest of lawns, sport turf, pastures, and horticultural crops in Belgium. The virulence of 34 entomopathogenic fungal isolates from the genera Metarhizium, Beauveria, and Paecilomyces to third-instar H. philanthus was tested in bioassays by dipping larvae in 10(7)conidia/ml suspensions. Two isolates of Metarhizium anisopliae (CLO 53 and CLO 54) caused maximally 90% mortality 10 weeks post-inoculation while other isolates only caused mortalities between 10 and 62%. The virulence of M. anisopliae CLO 53 was further tested by exposing H. philanthus larvae to conidial serial concentrations of 10(4)-10(9)conidia/g sandy soil for up to 11 weeks at 15, 20 or 25 degrees C. Mortality was dependant on the fungal concentration, exposure time, and temperature. Eleven weeks after inoculation, the LC50 values for this isolate ranged from 1.3 to 4.0 x 10(6), 1.0 to 3.2 x 10(5), and 2.5 x 10(4) to 10(5)conidia/g soil at 15, 20, and 25 degrees C, respectively. The LT50 values for this isolate ranged from 3.5 to 21.7, 2.4 to 18.7, and 2.9 to 16.1 weeks at concentrations of 10(9) and 10(4)conidia/g soil at 15, 20, and 25 degrees C, respectively. In glasshouse pot experiment with perennial ryegrass (Lolium perenne L.), the isolate CLO 53 caused mortalities of 50 and 88% of H. philanthus larvae 10 weeks after application of 10(4) and 10(6)conidia/cm(2) soil surface, respectively. The present results suggest that the Belgian isolate CLO 53 has excellent potential for biological control of H. philanthus.  相似文献   

7.
Fruit flies (Diptera: Tephritidae) are the most damaging pests on fruit crops on Réunion Island, near Madagascar. Survival and development of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), the Natal fruit fly, C. rosa Karsch and the Mascarenes fruit fly, C. catoirii Guérin-Mèneville were compared at five constant temperatures spanning 15 to 35 degrees C. Durations of the immature stages of C. capitata, C. rosa and C. catoirii ranged from 14.5-63.8, 18.8-65.7 and 16.8-65.8 days, respectively, at 30-15 degrees C. The lower developmental threshold and thermal constant were calculated using the temperature summation model. The thermal constant for total development of the immature stages of C. capitata, C. rosa and C. catoirii were 260, 405 and 356 DD, respectively. Species differed mainly during the larval stages and ovarian maturation period, with smaller differences in the egg stage. Ceratitis rosa appeared to be better adapted to low temperatures than the two other species as it showed a lower larval developmental threshold of 3.1 degrees C compared to 10.2 degrees C for C. capitata and 8.9 degrees C for C. catoirii. Overall, C. catoirii had a low survival rate within the range of temperatures studied. The different responses of the three Ceratitis species to various temperatures explain to some extent their distribution on the island. The results obtained will be used for optimizing laboratory rearing procedures and for constructing computer simulation models to predict fruit fly population dynamics.  相似文献   

8.
Three species of Ceratitis MacLeay are of economic importance in southern Africa. To learn more about the influence of temperature on the development of these species, the developmental rates of South African populations of Ceratitis (Ceratitis) capitata (Wiedemann), C. (Pterandrus) rosa Karsch, and C. (Ceratalaspis) cosyra (Walker) were compared at constant temperatures of 14, 18, 22, 26, and 30 degrees C. The duration of each life stage and the percentage survival of the immature life stages of each species were determined. One linear and three nonlinear developmental rate models (Briére, Lactin, and Logan-6) were found to fit the data well and were used to generate the minimum, optimum, and maximum developmental thresholds, in addition to the life cycle thermal constants for the three species. These parameter values were 9.6, 28.5, 33.0, and 338 for C. capitata, 9.7, 28.8, 33.2, and 376 for C. cosyra, and 8.6, 27.7, 33.0, and 429 for C. rosa, respectively. The parameters for C. capitata are similar to those found by other researchers for this species in Reunion but the parameters for C. rosa differ substantially from published values for a Reunion population of this species, suggesting that these are different biotypes. The similarities between the developmental parameters for C. capitata and C. cosyra do not support known differences in the distribution of these species so other limiting factors such as relative humidity and the availability of host species may be important. This finding therefore cautions against basing predictions of potential global distributions of species solely on life table or climatic parameter values.  相似文献   

9.
The influence of food sources comprising the natural diet on the reproductive behaviour, fecundity and longevity of three African fruit flies Ceratitis cosyra (Walker), C. fasciventris (Bezzi) and C. capitata (Wiedemann) was investigated. Three natural food sources, varying in protein and sugar content, were evaluated. These included bird droppings (farm chicken), aphid honeydew and guava (Psidium guajava L.) juice. For C. fasciventris and C. capitata, flies fed on a protein-rich diet displayed higher frequency of calling, mating and oviposition than flies fed on a protein-poor diet, whilst for C. cosyra, quality of diet significantly influenced the mating behaviour of the flies, but not the calling and oviposition behaviour. Net fecundity rates were lowest for C. fasciventris and C. capitata when fed only on guava juice (0.1, 2.6 eggs per female, respectively), and higher for those on a diet of honeydew only (9.5, 33.8 eggs per female, respectively) and a combined diet of guava, honeydew and chicken faeces (11.8, 25.8 eggs per female, respectively). For C. cosyra, due to low numbers of eggs collected, no significant differences in fecundity between diets could be detected. All species fed only on a diet of chicken faeces since emergence died within the first three days of adult life without laying eggs, but when carbohydrates were provided by addition of guava juice and honeydew, the longevity of the flies was sustained for more than four weeks after adult emergence. The practical implications of these findings for control purposes are discussed.  相似文献   

10.
Last-instar larvae of the western cherry fruit fly, Rhagoletis indifferens, were subjected to Beauveria bassiana GHA incorporated into sterile sand and non-sterile orchard soil. Mycosis in the pupal stage was observed in >20% of buried R. indifferens pupae and >80% of larvae entering sand treated with either of two B. bassiana isolates. When pre-pupal larvae burrowed into conidium-treated non-sterile cherry orchard soil, the incidence of mycosis, on both the puparia and internally developing pupae, increased with dose. Internal pupal tissues were found to contain B. bassiana. Increasing the soil moisture level from 20% to 35% water holding capacity did not have an effect on the percentage of mycosed pupae. This is the first evidence that the preimaginal stages of R. indifferens are susceptible to infection by B. bassiana.  相似文献   

11.
Ceratitis fasciventris, C. anonae and C. rosa form a complex of economically important fruit fly pests infesting a variety of crops in African countries. Hitherto only adult males of these species can be distinguished easily by morphological characters. Other stages cannot, and for some taxa the taxonomic interpretation and species boundaries remain unclear. In order to clarify phylogenetic relationships and taxonomic status of these species, sequences of mitochondrial (16S, COI, ND6) and nuclear markers (period, ITS1) were analysed in specimens of the three morphospecies throughout the distribution of the complex. Maximum likelihood trees did not recover monophyletic groups corresponding to the morphospecies. Conversely, ND6 and COI divided West African C. fasciventris specimens in two consistent and bootstrap supported clades, involving specimens from Benin and from Mali/Ivory Coast, while the nuclear gene fragments per and ITS1 recovered a well-supported clade corresponding to C. fasciventris from Kenya/Uganda. Hence, the phylogenetic relationships and taxonomic interpretation of the complex appear more intricate than previously hypothesised. The current molecular data do not allow to identify C. fasciventris, C. anonae and C. rosa as distinct phylogenetic species but rather suggest that the morphospecies C. fasciventris is itself a complex of cryptic taxa.  相似文献   

12.
The susceptibility of the boll weevil (BW), Anthonomus grandis Boheman, to Steinernema riobrave and other nematode species in petri dishes, soil (Hidalgo sandy clay loam), and cotton bolls and squares was investigated. Third instar weevils were susceptible to entomopathogenic nematode (EN) species and strains in petri dish bioassays at 30 degrees C. Lower LC(50)'s occurred with S. riobrave TX- 355 (2 nematodes per weevil), S. glaseri NC (3), Heterorhabditis indicus HOM-1 (5), and H. bacteriophora HbL (7) than H. bacteriophora IN (13), S. riobrave TX (14), and H. bacteriophora HP88 (21). When infective juveniles (IJs) of S. riobrave were applied to weevils on filter paper at 25 degrees C, the LC(50) of S. riobrave TX for first, second, and third instars, pupae, and 1-day-old and 10-days-old adult weevils were 4, 5, 4, 12, 13, and 11IJs per weevil, respectively. The mean time to death, from lowest to highest concentration, for the first instar (2.07 and 1.27days) and second instar (2.55 and 1.39days) weevils were faster than older weevil stages. But, at concentrations of 50 and 100IJs/weevil, the mean time to death for the third instar, pupa and adult weevils were similar (1.84 and 2.67days). One hundred percent weevil mortality (all weevil stages) occurred 3days after exposure to 100IJs per weevil. Invasion efficiency rankings for nematode concentration were inconsistent and changed with weevil stage from 15 to 100% when weevils were exposed to 100 and 1IJs/weevil, respectively. However, there was a consistent relationship between male:female nematode sex ratio (1:1.6) and nematode concentration in all infected weevil stages. Nematode production per weevil cadaver increased with increased nematode concentrations. The overall mean yield of nematodes per weevil was 7680IJs. In potted soil experiments (30 degrees C), nematode concentration and soil moisture greatly influenced the nematode efficacy. At the most effective concentrations of 200,000 and 400,000IJs/m(2) in buried bolls or squares, higher insect mortalities resulted in pots with 20% soil moisture either in bolls (94 and 97% parasitism) or squares (92 and 100% parasitism) than those of 10% soil moisture in bolls (44 and 58% parasitism) or squares (0 and 13% parasitism). Similar results were obtained when nematodes were sprayed on the bolls and squares on the soil surface. This paper presents the first data on the efficacy of S. riobrave against the boll weevil, establishes the potential of EN to control the BW inside abscised squares and bolls that lay on the ground or buried in the soil.  相似文献   

13.
Selected morphological and physiological characteristics of four Beauveria bassiana (Balsamo) Vuillemin isolates and one Metarhizium anisopliae (Metschnikoff) Sorokin isolate, which are highly pathogenic to Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), were determined. There were significant differences in conidial size, viability, spore production, speed of germination, relative hyphal growth, and temperature sensitivity. Spore viability after incubation for 24h at 20 degrees C ranged from 91.4 to 98.6% for the five isolates tested. Spore production on quarter-strength Sabouraud dextrose agar plus 0.25% (w/v) yeast extract after 10 days incubation at 20 degrees C ranged from 1.6x10(6) to 15.5x10(6)conidia/cm(2). One B. bassiana isolate (ARSEF 1394) produced significantly more conidia than the others. Spore germination was temperature-dependant for both B. bassiana and M. anisopliae. The time required for 50% germination (TG(50)) ranged from 25.0 to 30.9, 14.0 to 16.6, and 14.8 to 18.0h at 15, 22, and 28 degrees C, respectively. Only the M. anisopliae isolate (ARSEF 3540) had significant spore germination at 35 degrees C with a TG(50) of 11.8h. A destructive sampling method was used to measure the relative hyphal growth rate among isolates. Exposure to high temperature (40-50 degrees C) for 10min had a negative effect on conidial viability. The importance of these characteristics in selecting fungal isolates for management of L. lineolaris is discussed.  相似文献   

14.
Thirty-one isolates of Metarhizium anisopliae were bioassayed against the cattle tick (Boophilus microplus). More than half of the isolates showed a high degree of virulence to ticks. Radial growth curves for growth between 20 degrees C and 40 degrees C were obtained for all isolates. This information together with information on virulence will be important for the selection of isolates suitable to kill ticks on the surface of cattle. A biopesticide for cattle ticks must kill ticks rapidly at temperatures within the upper end of most isolates' growth curves. It was also found that the time taken to achieve 100% tick mortality in vitro using a virulent isolate could be halved by applying conidia in a 10% oil emulsion. Scanning electron microscopy and light microscopy were used to investigate and compare the germination and penetration of conidia formulated in aqueous and oil formulations. It was found that conidia in both formulations were able to germinate and produce appressoria on the surface of ticks in less than 11h. Marked weakness within 26h, followed by extensive hyphal growth on the cuticle characterised the invasion of ticks by M. anisopliae.  相似文献   

15.
Various instars of Choristoneura occidentalis were fed with a range of doses of Nosema fumiferanae and reared at 20, 24 and 28 degrees C to determine the influence of temperature and dose on the time to spore egestion and the number of spores egested in the frass. When larvae were fed in the third stadium, as few as 10(2) spores per larva initiated infection, and both onset of spore egestion and the number of spores egested were affected by a complex relationship between temperature and inoculation dose. Onset of spore egestion varied from 11 to 15 days postinoculation. At 20 degrees C, the onset was delayed and spore production decreased with increasing inoculation dose whereas at higher temperatures spores were first egested at the lowest dose and spore production increased with dose. When larvae were fed spores in the fifth and sixth stadium, no spores were egested because pupation occurred before completion of the incubation period. To assess the effect of temperature on horizontal transmission, Choristoneura fumiferana larvae fed with 10(4) N. fumiferanae spores per larva were reared with uninfected larvae at 15, 20 and 25 degrees C. At 15 degrees C, we observed the highest degree of horizontal transmission, defined by the largest change in N. fumiferanae prevalence, even though the density of spores available for horizontal transmission was the lowest. Infected adults eclosed later than uninfected adults and the time to eclosion was also dependent on sex and temperature. We relate our experimental findings to consequences for horizontal and vertical transmission of N. fumiferanae in spruce budworm populations.  相似文献   

16.
Our study describes the basic ecological characteristics of the entomopathogenic nematode Steinernema anatoliense including its response to temperature, moisture, and host range. The effect of temperature and soil moisture on the infection of Galleria mellonella larvae by S. anatoliense was determined. The temperature range for infectivity was greater than that for development. The optimal temperature for infection and development was 25 degrees C. Although S. anatoliense infected the hosts at 10 degrees C, no reproduction occurred at this temperature. This nematode species that was isolated from a cold region of Turkey exhibited warm-adapted temperature characteristics. Optimum water content of the soil for S. anatoliense to infect the host was 10%.  相似文献   

17.
Responses of late third instars of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to high temperatures (43, 46, and 48 degrees C) were investigated. The different heat exposures not only affected the timing of death but also induced different quantities of malformed puparia and changed the average eclosion time. A majority of larvae died immediately (as larvae) after 30 min at 46 degrees C and > or =15 min at 48 degrees C, whereas most individuals died as pupae after 10-25 min of 46 degrees C, 5-10 min of 48 degrees C, and 40-60 min of 43 degrees C treatments. Lethal times estimated by immediate mortality were longer than those estimated by delayed mortality at the same high temperature. Surviving larvae formed four types of puparial morphology (normal, bottlenose, larviform, and peanut form). The percentage of normal puparia showed a negative correlation with exposure time at all test temperatures. The number of bottlenose was more than the larviform and the peanut at 46 degrees C for < or =20 min and at 48 degrees C for < or =10 min, respectively, whereas the number of larviform was more than the bottlenose and the peanut at 46 degrees C and 48 degrees C for longer exposure times. The average eclosion time increased at first, then decreased as the exposure time prolonged, and the longest average eclosion time occurred in the 40-min exposure at 43 degrees C, 15-min exposure at 46 degrees C, and 10-min exposure at 48 degrees C.  相似文献   

18.
In non-irrigated agricultural fields in tropical zones, high temperature and water stress prevail during the main cropping season. Natural epizootics of Beauveria bassiana on lepidopteran pests occur during winter. Application of B. bassiana during hot months when pest populations are at their climax may prove an effective management strategy. Therefore, 29 isolates of B. bassiana were tested for their ability to germinate and grow in temperature and water availability conditions prevailing during the pest season in these fields. The effect of temperature cycles with 8 h duration of high temperature fluctuating with 16 h duration of lower temperature (similar to field conditions); low water availability; and a combination of these two stress conditions was studied. Germination and growth assays were done at fluctuating temperature cycles of 32, 35, 38, and 42+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and in media with water stress created by 10, 20, 30, and 40% polyethylene glycol (PEG 6000). Assays set at a continuous temperature of 25+/-1 degrees C with no PEG in the medium served as controls. Stress was assessed as percentage germination or as growth relative to control. Isolates showing 90% growth relative to the control at temperature cycles including high temperatures of 35 and 38+/-1 degrees C were identified. One isolate (ARSEF 2860) had a thermal threshold above 43 degrees C. At 25 degrees C, all but one isolate of B. bassiana showed >90% growth relative to the control in 10% PEG (-0.45 MPa). Some isolates were found with >90% growth relative to control in medium having 30% PEG with water availability (1.33 MPa), nearly equivalent to that in soils which induce permanent wilting point of plants. When isolates that showed >90% growth relative to the control at both stress conditions, were stressed simultaneously, a decrease in growth was observed. Growth was reduced by approximately 20% at 35+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG and was affected to a greater degree in combinations of harsher stress conditions. The isolate ARSEF 2860 with a thermal threshold of >43 degrees C showed approximately 80% relative growth at a combined stress of 38+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG. These findings will aid the selection of isolates for use in field trials in hot or dry agricultural climates.  相似文献   

19.
The effect of soil moisture on penetration, development, and reproduction of Heterodera cajani on pigeonpea (cv. ICPL 87) was investigated in growth chambers held at 20 and 25 C, and in a greenhouse where temperature fluctuated between 25 and 32 C. Averaged across temperatures, the percentage of juveniles that penetrated roots was 34.3, 31.8, 8.8, and 3.7% at 24, 32, 16, and 40% soil moisture levels, respectively. Numbers of females per root system 4 weeks after infesting soil with second-stage juveniles was 79.6 at 24%, 65.3 at 32%, 26.1 at 16%, and 2.9 at 40% soil moisture. Nematode reproduction was greatest (P = 0.001) at 24% soil moisture and 25 C. Reproductive factor was 19.4 at 24%, 15.2 at 32%, 5.7 at 16%, and 0.5 at 40% soil moisture level. Nematode penetration, development, and reproduction at different moisture levels were greater (P = 0.01) at 25 and 25-32 C than at 20 C. Plant growth was retarded at 40% soil moisture and 20 C in comparison to that at 24 and 32% moisture levels and 25 C. This information on influence of temperature and soil moisture will be helpful in developing models for predicting changes in H. cajani densities in pigeonpea fields during rainy and postrainy dry seasons in the semi-arid tropics.  相似文献   

20.
Understanding the factors affecting insect gas exchange in subterranean environments is critical to understanding energy budgets and predicting mortality under field conditions. Here, we examine the metabolic rate (MR) responses of tsetse puparia, which remain underground for ca. 1 month in this life-stage, to varying oxygen and temperature. First, the effects of temperature and oxygen on puparial MR were investigated by ramping temperature from 15 to 35 °C under 10, 21 or 40% O2. Overall, temperature was the dominant effect on puparial MR although O2 had small but significant impacts. Second, critical O2 concentration (PCRIT) for MR of puparia was examined across a range of oxygen concentrations (0-40%). PCRIT was 6% O2 which is similar to PCRIT in other basal arthropods but relatively high for inactive or subterranean insects. Third, we asked if puparia exposed to anoxia might experience oxygen debt, potentially indicative of anaerobic metabolism or cellular repair. Metabolic responses to anoxia were limited or insignificant, but MR was marginally elevated (∼15%) in anoxia-exposed (4 h) puparia by 12 h post-anoxia. Finally, we examined the ability of puparia to withstand water submersion, thus simulating flooding conditions frequently experienced in tropical soil habitats. Puparia were unable to survive submersion for >24 h suggesting limited flooding tolerance. These novel results suggest that soil conditions experienced by puparia should not be limiting for MR, except possibly under high temperature-low O2 conditions. Due to a large safety margin between PCRIT and soil oxygen levels and limited effects of oxygen on metabolism during temperature ramping experiments, we suggest that Glossina pallidipes puparia are not particularly susceptible to oxygen availability in their natural environment. However, soil flooding associated with tropical rainfall likely imposes strong selection on tsetse populations and may have had important effects for tsetse energy budgets and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号