首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.  相似文献   

2.
The mitotic chromosomes of the neotenic (sensu Gould, 1977, and Alberch et al., 1979) salamander Necturus maculosus (Rafinesque) have been examined using a C-band technique to demonstrate the distribution of heterochromatin. The C-banded mitotic chromosomes provide evidence of a highly differentiated XY male/XX female sex chromosome heteromorphism, in which the X and Y chromosomes differ greatly in size and morphology, and in the amount and distribution of C-band heterochromatin. The X chromosome represents one of the largest biarmed chromosomes in the karyotype and is indistinguishable from similar sized autosomes on the basis of C-band heterochromatin. The Y chromosome, on the other hand, is diminutive, morphologically distinct from all other chromosomes of the karyotype, and is composed almost entirely of C-band heterochromatin. The discovery of an X/Y chromosome heteromorphism in this species is consistent with the observation by King (1912) of a heteromorphic spermatogenic bivalent. Karyological and phylogenetic implications are discussed.  相似文献   

3.
Somatic and meiotic chromosomes of one plant of Anthurium warocqueanum J. Moore and its selfed offspring were analyzed. The parent showed 2n = 30 + 3B in both somatic cells and pollen mother cells. The B chromosomes divided normally in somatic cells, but meiotic associations of Bs varied. Three configurations of three B chromosomes were observed at metaphase I of parent meiosis: one trivalent, one bivalent and one univalent, or three univalents. The number of B chromosomes in offspring ranged from 0 to 6, indicating their transmission from both male and female gametes. Offspring with two B chromosomes appeared in greatest frequency. It was hypothesized that both male and female gametes of the 3 B parent frequently contained one B chromosome through the normal distribution of the bivalent Bs at meiosis and the elimination of the univalent B chromosome due to lagging. Examination of pollen mother cells of offspring also revealed irregular behavior of B chromosomes. With a high number of B chromosomes, normal A chromosome bivalent formation seemed to be reduced. No phenotypic effects of B chromosomes were observed.  相似文献   

4.
《环境昆虫学报》2013,35(5):610-616
本文研究了天牛科3亚科9族20种的染色体核型。在所研究的20种天牛核型中,染色体以10对为主,其性染色体决定机制以Xyp为主。这种性别决定机制被认为是最原始的形式。Xyp,是大X染色体和小y染色体形成的降落伞状(parachute-like)的二价体。在细胞减数分裂中,雄性细胞呈现单倍体数目。研究发现,20种染色体中1/2种类其雄性单倍体数目为10,并且由Xyp型性染色体的性别决定机制。生物活细胞在24 h内均能制作成核型玻片。由于不同生物种类间的核型差异显著,本文对应用核型检测方法检测和鉴定有害生物的可行性进行探讨。  相似文献   

5.
Petitpierre E 《ZooKeys》2011,(157):67-79
Nearly 260 taxa and chromosomal races of subfamily Chrysomelinae have been chromosomally analyzed showing a wide range of diploid numbers from 2n = 12 to 2n = 50, and four types of male sex-chromosome systems. with the parachute-like ones Xy(p) and XY(p) clearly prevailing (79.0%), but with the XO well represented too (19.75%). The modal haploid number for chrysomelines is n = 12 (34.2%) although it is not probably the presumed most plesiomorph for the whole subfamily, because in tribe Timarchini the modal number is n = 10 (53.6%) and in subtribe Chrysomelina n = 17 (65.7%). Some well sampled genera, such as Timarcha, Chrysolina and Cyrtonus, are variable in diploid numbers, whereas others, like Chrysomela, Paropsisterna, Oreina and Leptinotarsa, are conservative and these differences are discussed. The main shifts in the chromosomal evolution of Chrysomelinae seems to be centric fissions and pericentric inversions but other changes as centric fusions are also clearly demonstrated. The biarmed chromosome shape is the prevalent condition, as found in most Coleoptera, although a fair number of species hold a few uniarmed chromosomes at least. A significant negative correlation between the haploid numbers and the asymmetry in size of karyotypes (r = -0.74) has been found from a large sample of 63 checked species of ten different genera. Therefore, the increases in haploid number are generally associated with a higher karyotype symmetry.  相似文献   

6.
Karyotypes of Tago's brown frog Rana tagoi from the Chausu mountains in Minamishinshu of Nagano Prefecture were examined by conventional Giemsa staining, C-banding and late replication (LR)-banding. Chromosome number was 2n = 28 in all cases. The 28 chromosomes consisted of four pairs (1-4) of large biarmed chromosomes, two pairs (5-6) of telocentric chromosomes and eight pairs (7-14) of small biarmed chromosomes. Chromosome pair 11 had a secondary constriction on the long arm. In females, the C-band on the long arm of chromosome pair 6 was detected in both homologs, but was absent from the arms of the homologs of chromosome pairs 5 and 9. In males, C-bands were found in the long arms of both homologs of chromosome pairs 5 and 6, were present only in one homolog of chromosome pair 5 for certain male specimens and found in only one homolog of chromosome pair 9. Specimens of R. tagoi (2n = 28) should thus have two pairs of telocentric chromosomes to provide the same number of chromosome arms, these originating quite likely from chromosome pair 1 in the 26-chromosome specimens by centric fission. Heteromorphic sex chromosomes of the XX-XY type in R. tagoi (2n = 28) in the Chausu mountains were identified. Karyotypes of tail-tip cells from a hybrid tadpole between female R. tagoi (2n = 26) from the Hinohara village in Tokyo and male R. tagoi (2n = 28) from the Chausu mountain population were examined by squash preparation. Chromosome number was 2n = 27 in all tadpoles. The 27 chromosomes consisted of one chromosome set of R. tagoi (2n = 28) and one of R. tagoi (2n = 26).  相似文献   

7.
An air drying and Giemsa staining technique produces consistently good quality cytological preparations when applied to different species of Euxoa (Lepidoptera: Noctuidae) and, in particular, it allows an imporved resolution of the meiotic chromosomes in both sexes. All species so far investigated have a basic haploid chromosome complement of n (male) = 31(XX): n(female) = (XY). A single chiasma per individual bivalent is clearly visible in the male sex. Some chiasmata are formed in interstitial positions, but, by metaphase I, they have all undergone complete terminalization while the bivalents orient axially on the first division spindle. Direct evidence for lack of chiasma formation in the 31 hormorphic bivalents in the female sex is reported for the first time for species of Noctuidae. Evidence in favor of an XY system in the female sex is discussed. Preliminary studies of the meiotic divisions in hybrid material reveal the presence of cryptic structural differences between certain taxa, and will help to elucidate taxonomic problems within this complex genus.  相似文献   

8.
Abstract

Autotriploidy is described in a female of the endemic New Zealand frog Leiopelma hochstetteri. This frog was found to have 3n=33 chromosomes plus 2 supernumerary chromosomes. All the chromosomes in the karyotype of this species contained C-band heterochromatin at the centromeres. A prominent C-band was found to be associated with a secondary constriction on chromosome no. 7. The supernumerary chromosomes in this species appear to be mitotically stable and contain C-band heterochromatin at the centromeres. From the limited data presently available, the triploid individual may have resulted from the fertilisation of a diploid egg produced when the second meiotic division had been suppressed.  相似文献   

9.
The whole-mount SC preparations from males of three species of the genus Ellobius (Ellobius fuscocapillus, Ellobius lutescens), and Ellobius tancrei were studied by electron microscopy. In the males of Ellobius fuscocapillus, behavioral peculiarities of the sex bivalent (viz. the normal male heterozygosity) are characterized by early complete desynapsis of sex chromosomes (X, Y), occurring at late pachytene-early diplotene. The karyotype of species Ellobius lutescens is unique for mammals. In both sexes it is characterized by an odd number of chromosomes (2n=17). At prophase I the unpaired chromosome 9 is not involved in synapsis with other chromosomes and forms a sex body at the end of pachytene.The complete Robertsonian fan has been described for superspecies Ellobius tancrei. As shown on the basis of G-band patterns the male and female sex chromosomes are cytologically indistinguishable.Analysis of whole-mount SC preparations revealed the formation of a closed sex SC bivalent and showed some morphological differences in the axes of sex chromosomes at meiotic prophase I. A number of assumptions are made about the relationship between the behavior of sex chromosomes, their evolution and the sex determination system in the studied species of genus Ellobius.
  相似文献   

10.
We made a cytogenetic analysis of four species of Oxyopidae and compared it with the karyotype data of all species of this family. In Hamataliwa sp, the mitotic cells showed 2n♂ = 26+X(1)X(2) and telocentric chromosomes. The 2n♂ = 28, which has been described for only one oxyopid spider, is the highest diploid number reported for this family. Peucetia species exhibited distinct karyotype characteristics, i.e., 2n♂ = 20+X(1)X(2) in P. flava and 2n♂ = 20+X in P. rubrolineata, revealing interspecific chromosome variability within this genus. However, both Peucetia species exhibited telocentric chromosomes. The most unexpected karyotype was encountered in Oxyopes salticus, which presented 2n♂ = 10+X in most individuals and a predominance of biarmed chromosomes. Additionally, one male of the sample of O. salticus was heterozygous for a centric fusion that originated the first chromosomal pair and exhibited one supernumerary chromosome in some cells. Testicular nuclei of Hamataliwa sp and O. salticus revealed NORs on autosomal pairs, after silver impregnation. The majority of Oxyopidae spiders have their karyotype differentiated by both reduction in diploid number chromosome number and change of the sex chromosome system to X type; however, certain species retain the ancestral chromosome constitution 2n = 26+X1X2. The most remarkable karyotype differentiation occurred in O. salticus studied here, which showed the lowest diploid number ever observed in Oxyopidae and the second lowest registered for Entelegynae spiders.  相似文献   

11.
A post-zygotic mechanism of sex determination is described in the two symphypleonans Dicyrtomina ornata (Nicolet) and Ptenothrix italica Dallai. The process consists of the loss of two sex chromosomes from the male embryo. At the end of the first meiotic division of spermatogenesis, a second chromosome elimination occurs, allowing half the secondary spermatocytes, later transformed into spermatids, to receive a complete haploid set of chromosomes. The secondary spermatocytes, which receive an incomplete set of chromosomes, degenerate. Males of the two collembolan species, therefore, produce a reduced number (50%) of spermatozoa. Females of D. ornata have 2n = 12 and males 2n = 10 chromosomes; females of P. italica have 2n = 14 and males 2n = 12 chromosomes. In both species, oogenesis proceeds normally and chromosomes pair and form chiasmata in meiotic prophase. The adaptive significance of this post-zygotic mechanism of sex determination is discussed. The mechanism seems to be a characteristic feature of the suborder Symphypleona. The neanurid Arthropleona Anurida maritima (Guérin), which was studied for comparative analysis, has 2n = 8 chromosomes and normal spermatogenesis producing haploid nuclei with four chromosomes. J. Exp. Zool. (Mol. Dev. Evol.) 285:215-225, 1999.  相似文献   

12.
Detailed meiotic studies were conducted on ten haploid plants representing six different genotypes of barley (Hordeum vulgare, 2n=14). At pachytene stages the non-homologous chromosomes were observed to pair as intimately as homologous chromosomes in many cells. Foldback pairing, involving single chromosomes, and multivalent associations were common. At diplotene, up to 4 chiasmatalike structures were observed in paired chromosomes but it is not likely that they resulted from crossing over. At diakinesis the bivalent frequency mean was from 1 to 1.3 per cell whereas by metaphase I the paired associations were rare with a single rod bivalent being observed in 3 to 5% of the cells. The frequencies of various types of secondary associations at metaphase were also recorded. — The origin and significance of bivalents and secondary associations in haploids is reviewed and discussed. Caution is urged in the interpretation that low levels of chromosome pairing in haploids is evidence of homology. It is concluded that very little chromosome duplication is likely to be found within the haploid set of barley chromosomes and that the basic chromosome number is seven.  相似文献   

13.
Cytogenetic investigations were carried out on seven species of bisexual weevils from five subfamilies. The following numbers of chromosomes were found in individual species: 2n = 22, n male = 10 + Xyp in Ptochus porcellus Boh. (Otiorhynchinae); 2n = 40, n male = 19 + Xyp in Larinodontes turbinatus Gyll. (Cleoninae); 2n = 26, n male = 12 + Xyp in Curculio pellitus (Boh.) (Curculioninae); 2n = 30, n male = 14 + Xyp in Acalles camelus (F.), Acalles echinatus (Germ.), Acalles hypocrita Boh. (Cryptorhynchinae), and 2n = 40, n male = 19 + Xyp in Cionus hortulanus (Foucr.) (Mecininae). The heterochromosomes of all the examined species form, in the first meiotic metaphase, a parachute bivalent. The chromosome number and sex determining system of six species and two genera are described for the first time.  相似文献   

14.
We provide a karyological study of 12 species of the genus Pnigalio in an attempt to evaluate the taxonomic utility of karyotypes at the species level. For all species of Pnigalio examined the number of chromosome was 2n=12. Karyotype formulae presented mainly metacentric and submetacentric chromosomes, although a pair of acrocentrics or subtelocentrics, shorter than biarmed chromosomes, was present in some species. The analysis of karyotypes of Pnigalio showed frequent but not general interspecific variability of the chromosome traits. Although most of the studied species revealed concordance between morphological and karyological characters (centromeric index and relative length), two other categories have been identified: morphologically distinct species without reciprocal differences in karyotype structure, and morphologically similar species that strongly differ in chromosomal characters.  相似文献   

15.
本文利用姬姆萨染色压片法对花蝽科小花蝽属3个种:荷氏小花蝽Orius horvathi(Reuter),微小花蝽Oriusminutus Linnaeus和东亚小花蝽Orius sauteri(Poppius)的核型做了研究,结果表明3种小花蝽单倍体均具有12条染色体,X-Y性别决定机制,但3种核型行为具特定的差异,其核型特征可用于种间分类。  相似文献   

16.
Karyotype of a Japanese small salamander, Hynobius katoi, was first described. All individuals examined had 2n=58 chromosomes, consisting of nine pairs of biarmed macrochromosomes, four pairs of biarmed medium-sized chromosomes, six pairs of biarmed microchromosomes, and 10 pairs of uniarmed microchromosomes, although distinction of the second and the third groups of chromosome pairs was not clear. All pairs appeared homologous and no sexual dimorphism was found. Possession of 2n=58 chromosomes in H. katoi strongly suggests its lotic-breeding habits as was expected from the number and size of eggs and adult morphology. When compared morphology of chromosomes among lotic-breeders with 2n=58 chromosomes, metacentric nature of No. 10 seems to characterize the karyotype of H. katoi.  相似文献   

17.
Altiero T  Rebecchi L 《Hereditas》2003,139(2):116-120
Chromosome behaviour during male meioses has been studied in two bisexual amphimictic populations of two tardigrade species, namely Richtersius coronifer and Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Both bisexual populations exhibit a diploid chromosome number 2n=12 and no sex chromosomes were identified. DAPI staining and C-banding data indicate that all chromosomes of the bisexual population of R. coronifer are acrocentric. In both species, at male meiotic prophase, all six bivalent homologous chromosomes are aligned side by side along their length and show no evidence of chiasmata. However, in the oocytes of both species a chiasma is generally present in each bivalent at diplotene stage. Lack of recombination is previously unknown in tardigrades, but is a well known phenomenon in many other metazoans where it is always restricted to the heterogametic sex. In tardigrades there is no evidence of heterochromosomes, but it does not mean that in tardigrades, the heterogametic sex does not exist. The adaptive and evolutionary significance of achiasmatic meiosis is discussed.  相似文献   

18.
A male dwarf blue sheep was collected 60 km south of Batang east to the Jinsha Jiang river, and a male Subei blue sheep (Greater form) was collected from Gansu, China, representing two geographically separated blue sheep forms. Chromosome preparations were prepared from fibroblast cultures. The dwarf blue sheep has a 2n = 54 and a karyotype with three biarmed formations that resulted from acrocentric chromosome fusions (based on the 2n = 60 Capra autosomal equivalents) 14p/5q, 27p/1q, and 29p/2q from the largest to the smallest biarmed chromosome, respectively. The 14p/5q fusion is metacentric, whereas the 27p/1q and 29p/2q are submetacentric. The Subei blue sheep had a 2n = 56, with only the 27p/1q and 29p/2q biarmed chromosome fusions. The remainder of the chromosomes in both blue sheep are acrocentric; the X is the largest acrocentric chromosome and the Y is a minute biarmed chromosome. Our observation is one evidence showing that chromosome evolution within blue sheep has followed a series of centric fusions resulting in the reduction of chromosome number, which is typical of all extant genera within the tribe Caprini.  相似文献   

19.
The karyotype of male and female individuals of the species Trichinella nelsoni was studied. It was found that the number of chromosomes in females individuals is 2n = 6 and in males 2n = 5. Each pair of chromosomes differs from one another as to dimensions and location of the centromere. The univalent chromosome that was found in the chromosome set containing five chromosomes is the second largest submetacentric chromosome. It is suggested that this chromosome is the sex chromome of the studied Trichinellae.  相似文献   

20.
Light and electron microscopic evidence is provided to describe a new example of a postzygotic sex-determination system in two collembolan species, Bourletiella arvalis and B. hortensis. In B. arvalis, where chromosome number could be assessed, both sexes are homogametic (n=6) and all zygotes have an identical chromosome composition (2n=12). However, male embryos develop after the loss of two sex chromosomes, making the male genotype 2n=10 (4AAX10X20). On the other hand, female embryos develop if the zygote retains all chromosomes and the female genetic system is, therefore, 4AAX1X1X2X2 (2n=12). As an apparent consequence of the lack of two chromosomes in the male germ cells, spermatogenesis is aberrant. At the first meiotic division, in fact, the two resulting secondary spermatocytes receive a different number of chromosomes: six and four. The cells which receive six chromosomes (one haploid set of four autosomes and two sex chromosomes) proceed through the meiotic process and the two spermatids generated produce two spermatozoa by a normal spermiogenesis. The cells receiving only four chromosomes do not undergo the second meiotic division and soon degenerate. The degenerating cells can be considered a morphological marker for this process, as they are easily recognizable at the electron microscope from the functional secondary spermatocytes by the appearance of the nucleus (totally condensed), the reduction of the cytoplasm (limited to a thin layer surrounding the nucleus), and the lack of most cytoplasmic organelles (with the exception of a couple of centrioles). Electron microscopic evidence has been collected for both species, allowing to extend the same process to B. hortensis, even if chromosomes could not be counted in this species. Therefore, as a result of the spermatocyte elimination, the efficiency of spermatogenesis is reduced to 50%. This process is identical to that observed in other collembolan species of the suborder Symphypleona, and it is suggested that it represents a synapomorphic feature uniting the families Dicyrtomidae, Sminthuridae and Bourletiellidae (Sminthuriformia). It is also suggested that the process is related with the finding of a distorted sex ratio in natural populations and, possibly, with the evolution of parthenogenesis. This hypothesis is supported by the fact that chromosome pairing and genetic recombination occurs only during female meiosis, while chromosomes do not pair during male meiosis. Accepted: 27 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号