首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Schein CH  Volk DE  Oezguen N  Paul A 《Proteins》2006,63(4):719-726
The VPg peptide, which is found in poliovirus infected cells either covalently bound to the 5'-end of both plus and minus strand viral RNA, or in a uridylylated free form, is essential for picornavirus replication. Combining experimental structure and mutation results with molecular modeling suggests a new mechanism for VPg uridylylation, which assigns an additional function, that of scaffold, to the polymerase. The polarity of the NMR structure of VPg is complementary to the binding site on the surface of poliovirus polymerase determined previously by mutagenesis. Docking VPg at this position places the reactive tyrosinate close to the 5'-end of Poly(A)7 RNA when this is bound with its 3'-end in the active site of the polymerase. The triphosphate tail of a UTP moiety, base paired with the 5'-end of the RNA, projects back over the Tyr3-OH and is held in position by conserved positively charged side-chains of VPg. Other conserved residues mediate binding to the polymerase surface and serve as ligands for metal ion catalyzed transphosphorylation. Additional viral proteins or a second polymerase molecule may aid in stabilizing the components of the reaction. In the model complex, VPg can direct its own uridylylation before entering the polymerase active site.  相似文献   

2.
VPg uridylylation is essential for picornavirus RNA replication. The VPg uridylylation reaction consists of the binding of VPg to 3D polymerase (3Dpol) and the transfer of UMP by 3Dpol to the hydroxyl group of the third amino acid Tyr of VPg. Previous studies suggested that different picornaviruses employ distinct mechanisms during VPg binding and uridylylation. Here, we report a novel site (Site-311, located at the base of the palm domain of EV71 3Dpol) that is essential for EV71 VPg uridylylation as well as viral replication. Ala substitution of amino acids (T313, F314, and I317) at Site-311 reduced the VPg uridylylation activity of 3Dpol by >90%. None of the Site-311 mutations affected the RNA elongation activity of 3Dpol, which indicates that Site-311 does not directly participate in RNA polymerization. However, mutations that abrogated VPg uridylylation significantly reduced the VPg binding ability of 3Dpol, which suggests that Site-311 is a potential VPg binding site on enterovirus 71 (EV71) 3Dpol. Mutation of a polymerase active site in 3Dpol and Site-311 in 3Dpol remarkably enables trans complementation to restore VPg uridylylation. In contrast, two distinct Site-311 mutants do not cause trans complementation in vitro. These results indicate that Site-311 is a VPg binding site that stabilizes the VPg molecule during the VPg uridylylation process and suggest a two-molecule model for 3Dpol during EV71 VPg uridylylation, such that one 3Dpol presents the hydroxyl group of Tyr3 of VPg to the polymerase active site of another 3Dpol, which in turn catalyzes VPg→VPg-pU conversion. For genome-length RNA, the Site-311 mutations that reduced VPg uridylylation were lethal for EV71 replication, which indicates that Site-311 is a potential antiviral target.  相似文献   

3.
M M Falk  F Sobrino    E Beck 《Journal of virology》1992,66(4):2251-2260
In order to analyze the function of VPg amplification in aphthoviruses, we have undertaken the first mutational analysis of the repetitive VPg-coding region using an improved foot-and-mouth disease virus (FMDV) cDNA clone from which infective viral RNA was synthesized. A set of VPg mutants was constructed by site-directed mutagenesis which includes different VPg deletion mutations, a VPg insertion mutation, and amino acid residue replacement mutations that interfere with binding of the VPg protein to the viral RNA and with its proteolytic processing. Our results revealed that an amazing flexibility in the number of VPgs is tolerated in FMDV. Optimal viability is given when three VPgs are encoded. Deletion as well as insertion of one VPg gene still resulted in infective particle production. Infective particle formation was observed as long as one VPg remained intact. No obvious differences in the individual VPg molecules with regard to their promoting viral RNA synthesis were observed, indicating that all three VPgs can act equally in FMDV replication. Mutant polyprotein processing was comparable to that of the wild-type virus. However, VPg mutants showed reduced viral RNA synthesis levels after infection. The levels of viral RNA synthesis and infective particle formation were found to correlate with the number of functional VPgs left in the mutant virus. These findings suggest a direct VPg gene dosage effect on viral RNA synthesis, with a secondary effect on infective particle formation.  相似文献   

4.
Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix alpha8 of the fingers domain and helix alpha13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction.  相似文献   

5.
The first step in poliovirus (PV) RNA synthesis is the covalent linkage of UMP to the terminal protein VPg. This reaction can be studied in vitro with two different assays. The simpler assay is based on a poly(A) template and requires synthetic VPg, purified RNA polymerase 3D(pol), UTP, and a divalent cation. The other assay uses specific viral sequences [cre(2C)] as a template for VPg uridylylation and requires the addition of proteinase 3CD(pro). Using one or both of these assays, we analyzed the VPg specificities and metal requirements of the uridylylation reactions. We determined the effects of single and double amino acid substitutions in VPg on the abilities of the peptides to serve as substrates for 3D(pol). Mutations in VPg, which interfered with uridylylation in vitro, were found to abolish viral growth. A chimeric PV containing the VPg of human rhinovirus 14 (HRV14) was viable, but substitutions of HRV2 and HRV89 VPgs for PV VPg were lethal. Of the three rhinoviral VPgs tested, only the HRV14 peptide was found to function as a substrate for PV1(M) 3D(pol) in vitro. We also examined the metal specificity of the VPg uridylylation reaction on a poly(A) template. Our results show a strong preference of the RNA polymerase for Mn(2+) as a cofactor compared to Mg(2+) or other divalent cations.  相似文献   

6.
Poliovirus VPg is a 22 amino acid residue peptide that serves as the protein primer for replication of the viral RNA genome. VPg is known to bind directly to the viral RNA-dependent RNA polymerase, 3D, for covalent uridylylation, yielding mono and di-uridylylated products, VPg-pU and VPg-pUpU, which are subsequently elongated. To model the docking of the VPg substrate to a putative VPg-binding site on the 3D polymerase molecule, we performed a variety of structure-based computations followed by experimental verification. First, potential VPg folded structures were identified, yielding a suite of predicted beta-hairpin structures. These putative VPg structures were then docked to the region of the polymerase implicated by genetic experiments to bind VPg, using grid-based and fragment-based methods. Residues in VPg predicted to affect binding were identified through molecular dynamics simulations, and their effects on the 3D-VPg interaction were tested computationally and biochemically. Experiments with mutant VPg and mutant polymerase molecules confirmed the predicted binding site for VPg on the back side of the polymerase molecule during the uridylylation reaction, opposite to that predicted to bind elongating RNA primers.  相似文献   

7.
The uridylylation of the VPg peptide primer is the first stage in the replication of picornavirus RNA. This process can be achieved in vitro using purified components, including 3B (VPg) with the RNA dependent RNA polymerase (3Dpol), the precursor 3CD, and an RNA template containing the cre/bus. We show that certain RNA sequences within the foot-and-mouth disease virus (FMDV) 5' untranslated region but outside of the cre/bus can enhance VPg uridylylation activity. Furthermore, we have shown that the FMDV 3C protein alone can substitute for 3CD, albeit less efficiently. In addition, the VPg precursors, 3B(3)3C and 3B(123)3C, can function as substrates for uridylylation in the absence of added 3C or 3CD. Residues within the FMDV 3C protein involved in interaction with the cre/bus RNA have been identified and are located on the face of the protein opposite from the catalytic site. These residues within 3C are also essential for VPg uridylylation activity and efficient virus replication.  相似文献   

8.
Amongst the picornaviruses, poliovirus encodes a single copy of the genome-linked protein, VPg wheras foot-and-mouth disease virus uniquely encodes three copies of VPg. We have previously shown that a genetically engineered poliovirus genome containing two tandemly arranged VPgs is quasi-infectious (qi) that, upon genome replication, inadvertently deleted one complete VPg sequence. Using two genetically marked viral genomes with two VPg sequences, we now provide evidence that this deletion occurs via homologous recombination. The mechanism was abrogated when the second VPg was engineered such that its nucleotide sequence differed from that of the first VPg sequence by 36%. Such genomes also expressed a qi phenotype, but progeny viruses resulted from (i) random deletions yielding single VPg coding sequences of varying length lacking the Q*G cleavage site between the VPgs and (ii) mutations in the AKVQ*G cleavage sites between the VPgs at either the P4, P1 or P1' position. These variants present a unique genetic system defining the cleavage signals recognized in 3Cpro-catalyzed proteolysis. We propose a recognition event in the cis cleavages of the polyprotein P2-P3 region, and we present a hypothesis why the poliovirus genome does not tolerate two tandemly arranged VPg sequences.  相似文献   

9.
Picornaviral RNA replication utilizes a small virus-encoded protein, termed 3B or VPg, as a primer to initiate RNA synthesis. This priming step requires uridylylation of the VPg peptide by the viral polymerase protein 3D(pol), in conjunction with other viral or host cofactors. In this study, we compared the viral specificity in 3D(pol)-catalyzed uridylylation reactions between poliovirus (PV) and human rhinovirus 16 (HRV16). It was found that HRV16 3D(pol) was able to uridylylate PV VPg as efficiently as its own VPg, but PV 3D(pol) could not uridylylate HRV16 VPg. Two chimeric viruses, PV containing HRV16 VPg (PV/R16-VPg) and HRV16 containing PV VPg (R16/PV-VPg), were constructed and tested for replication capability in H1-HeLa cells. Interestingly, only PV/R16-VPg chimeric RNA produced infectious virus particles upon transfection. No viral RNA replication or cytopathic effect was observed in cells transfected with R16/PV-VPg chimeric RNA, despite the ability of HRV16 3D(pol) to uridylylate PV VPg in vitro. Sequencing analysis of virion RNA isolated from the virus particles generated by PV/R16-VPg chimeric RNA identified a single residue mutation in the VPg peptide (Glu(6) to Val). Reverse genetics confirmed that this mutation was highly compensatory in enhancing replication of the chimeric viral RNA. PV/R16-VPg RNA carrying this mutation replicated with similar kinetics and magnitude to wild-type PV RNA. This cell culture-induced mutation in HRV16 VPg moderately increased its uridylylation by PV 3D(pol) in vitro, suggesting that it might be involved in other function(s) in addition to the direct uridylylation reaction. This study demonstrated the use of chimeric viruses to characterize viral specificity and compatibility in vivo between PV and HRV16 and to identify critical amino acid residue(s) for viral RNA replication.  相似文献   

10.
The nucleotide sequence corresponding to the P3 region of the hepatitis A virus (HAV) polyprotein genome was determined from cloned cDNA and translated into an amino acid sequence. Comparison of the amino acid sequences of the genome-linked proteins (VPgs) of other picornaviruses with the predicted amino acid sequence of HAV was used to locate the primary structure of a putative VPg within the genome of HAV. The sequence of HAV VPg, like those of other picornaviral VPg molecules, contains a tyrosine residue as a potential binding site for HAV RNA in position 3 from its N terminus. The potential cleavage sites to generate VPg from a putative HAV polyprotein are between glutamic acid and glycine at the N terminus and glutamic acid and serine or glutamine and serine at the C terminus. A synthetic peptide corresponding to 10 amino acids of the predicted C terminus of HAV VPg induced anti-peptide antibodies in rabbits when it was conjugated to thyroglobulin as a carrier. These antibodies were specific for the peptide and precipitated VPg, linked to HAV RNA, from purified HAV and from lysates of HAV-infected cells. The precipitation reaction was blocked by the synthetic peptide (free in solution or coupled to carrier proteins) and prevented by pretreatment of VPg RNA with protease. Thus, our predicted amino acid sequence is colinear with the nucleotide sequence of the VPg gene in the HAV genome. From our results we concluded that HAV has the typical organization of picornavirus genes in this part of its genome. Similarity among hydrophobicity patterns of amino acid sequences of different picornaviral VPgs was revealed in hydropathy plots. Thus, the VPg of HAV appears to be closely related to VPg1 and VPg2 of foot-and-mouth disease virus. In contrast, HAV VPg has a unique isoelectric point (pI = 7.15) among the picornavirus VPgs.  相似文献   

11.
The cis-acting replication element (CRE) is a 61-nucleotide stem-loop RNA structure found within the coding sequence of poliovirus protein 2C. Although the CRE is required for viral RNA replication, its precise role(s) in negative- and positive-strand RNA synthesis has not been defined. Adenosine in the loop of the CRE RNA structure functions as the template for the uridylylation of the viral protein VPg. VPgpUpU(OH), the predominant product of CRE-dependent VPg uridylylation, is a putative primer for the poliovirus RNA-dependent RNA polymerase. By examining the sequential synthesis of negative- and positive-strand RNAs within preinitiation RNA replication complexes, we found that mutations that disrupt the structure of the CRE prevent VPg uridylylation and positive-strand RNA synthesis. The CRE mutations that inhibited the synthesis of VPgpUpU(OH), however, did not inhibit negative-strand RNA synthesis. A Y3F mutation in VPg inhibited both VPgpUpU(OH) synthesis and negative-strand RNA synthesis, confirming the critical role of the tyrosine hydroxyl of VPg in VPg uridylylation and negative-strand RNA synthesis. trans-replication experiments demonstrated that the CRE and VPgpUpU(OH) were not required in cis or in trans for poliovirus negative-strand RNA synthesis. Because these results are inconsistent with existing models of poliovirus RNA replication, we propose a new four-step model that explains the roles of VPg, the CRE, and VPgpUpU(OH) in the asymmetric replication of poliovirus RNA.  相似文献   

12.
Internally located, cis-acting RNA replication elements, termed cres, are essential for replication of the genomes of picornaviruses such as human rhinovirus 14 (HRV-14) and poliovirus because they template uridylylation of the protein primer, VPg, by the polymerase 3D(pol). These cres form stem-loop structures sharing a common loop motif, and the HRV-14 cre can substitute functionally for the poliovirus cre in both uridylylation in vitro and RNA replication in vivo. We show, however, that the poliovirus cre is unable to support HRV-14 RNA replication. This lack of complementation maps to the stem of the poliovirus cre and was reversed by single nucleotide substitutions in the stem as well as the base of the loop. Replication-competent, revertant viruses rescued from dicistronic HRV-14 RNAs containing the poliovirus cre, or a chimeric cre containing the poliovirus stem, contained adaptive amino acid substitutions. These mapped to the surface of both the polymerase 3D(pol), at the tip of the "thumb" domain, and the protease 3C(pro), on the side opposing the active site and near the end of an extended strand segment implicated previously in RNA binding. These mutations substantially enhanced replication competence when introduced into HRV-14 RNAs containing the poliovirus cre, and they were additive in their effects. The data support a model in which 3CD or its derivatives 3C(pro) and 3D(pol) interact directly with the stem of the cre during uridylylation of VPg.  相似文献   

13.
Olspert A  Arike L  Peil L  Truve E 《FEBS letters》2011,585(19):2979-2985
Positive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5' end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position. In addition, we identified the termini of the corresponding VPgs and discovered three and seven phosphorylation sites in SBMV and RGMoV VPgs, respectively. This is the first report on the use of threonine for linking RNA to VPg.  相似文献   

14.
Protein priming of viral RNA synthesis plays an essential role in the replication of picornavirus RNA. Both poliovirus and coxsackievirus encode a small polypeptide, VPg, which serves as a primer for addition of the first nucleotide during synthesis of both positive and negative strands. This study examined the effects on the VPg uridylylation reaction of the RNA template sequence, the origin of VPg (coxsackievirus or poliovirus), the origin of 3D polymerase (coxsackievirus or poliovirus), the presence and origin of interacting protein 3CD, and the introduction of mutations at specific regions in the poliovirus 3D polymerase. Substantial effects associated with VPg origin were traced to differences in VPg-polymerase interactions. The effects of 3CD proteins and mutations at polymerase-polymerase intermolecular Interface I were most consistent with allosteric effects on the catalytic 3D polymerase molecule. In conclusion, the efficiency and specificity of VPg uridylylation by picornavirus polymerases is greatly influenced by allosteric effects of ligand binding that are likely to be relevant during the viral replicative cycle.  相似文献   

15.
Steil BP  Barton DJ 《Journal of virology》2008,82(19):9400-9408
Initiation of RNA synthesis by RNA-dependent RNA polymerases occurs when a phosphodiester bond is formed between the first two nucleotides in the 5′ terminus of product RNA. The concentration of initiating nucleoside triphosphates (NTPi) required for RNA synthesis is typically greater than the concentration of NTPs required for elongation. VPg, a small viral protein, is covalently attached to the 5′ end of picornavirus negative- and positive-strand RNAs. A cis-acting replication element (CRE) within picornavirus RNAs serves as a template for the uridylylation of VPg, resulting in the synthesis of VPgpUpUOH. Mutations within the CRE RNA structure prevent VPg uridylylation. While the tyrosine hydroxyl of VPg can prime negative-strand RNA synthesis in a CRE- and VPgpUpUOH-independent manner, CRE-dependent VPgpUpUOH synthesis is absolutely required for positive-strand RNA synthesis. As reported herein, low concentrations of UTP did not support negative-strand RNA synthesis when CRE-disrupting mutations prevented VPg uridylylation, whereas correspondingly low concentrations of CTP or GTP had no negative effects on the magnitude of CRE-independent negative-strand RNA synthesis. The experimental data indicate that CRE-dependent VPg uridylylation lowers the Km of UTP required for viral RNA replication and that CRE-dependent VPgpUpUOH synthesis was required for efficient negative-strand RNA synthesis, especially when UTP concentrations were limiting. By lowering the concentration of UTP needed for the initiation of RNA replication, CRE-dependent VPg uridylylation provides a mechanism for a more robust initiation of RNA replication.  相似文献   

16.
Poty- and picornaviruses share similar genome organizations and polyprotein processing strategies. By analogy to picornaviruses it has been proposed that the genome-linked protein VPg may serve as a primer for genome replication of potyviruses. The multifunctional VPg of potato virus A (PVA; genus Potyvirus) was found to be uridylylated by NIb, the RNA polymerase of PVA. The nucleotidylation activity of NIb is more efficient in the presence of Mn(2+) than Mg(2+) and does not require an RNA template. Our results suggest that the nucleotidylation reaction exhibits weak preference for UTP over the other NTPs. An NTP-binding experiment with oxidized [alpha-(32)P]UTP revealed that PVA VPg contains an NTP-binding site. Deletion of a 7-amino acid-long putative NTP-binding site from VPg reduced nucleotide-binding capacity and debilitated uridylylation reaction. These results provide evidence that VPg may play a similar role in RNA synthesis of potyviruses as it does in the case of picornaviruses.  相似文献   

17.
The RNA-dependent RNA polymerase (RdRp) is a central piece in the replication machinery of RNA viruses. In picornaviruses this essential RdRp activity also uridylates the VPg peptide, which then serves as a primer for RNA synthesis. Previous genetic, binding, and biochemical data have identified a VPg binding site on poliovirus RdRp and have shown that is was implicated in VPg uridylation. More recent structural studies have identified a topologically distinct site on the closely related foot-and-mouth disease virus RdRp supposed to be the actual VPg-primer-binding site. Here, we report the crystal structure at 2.5-Å resolution of active coxsackievirus B3 RdRp (also named 3Dpol) in a complex with VPg and a pyrophosphate. The pyrophosphate is situated in the active-site cavity, occupying a putative binding site either for the coproduct of the reaction or an incoming NTP. VPg is bound at the base of the thumb subdomain, providing first structural evidence for the VPg binding site previously identified by genetic and biochemical methods. The binding mode of VPg to CVB3 3Dpol at this site excludes its uridylation by the carrier 3Dpol. We suggest that VPg at this position is either uridylated by another 3Dpol molecule or that it plays a stabilizing role within the uridylation complex. The CVB3 3Dpol/VPg complex structure is expected to contribute to the understanding of the multicomponent VPg-uridylation complex essential for the initiation of genome replication of picornaviruses.  相似文献   

18.
Schein CH  Oezguen N  Volk DE  Garimella R  Paul A  Braun W 《Peptides》2006,27(7):1676-1684
VPgs are essential for replication of picornaviruses, which cause diseases such as poliomyelitis, foot and mouth disease, and the common cold. VPg in infected cells is covalently linked to the 5' end of the viral RNA, or, in a uridylylated form, free in the cytoplasm. We show here the first solution structure for a picornaviral VPg, that of the 22-residue peptide from poliovirus serotype 1. VPg in buffer is inherently flexible, but a single conformer was obtained by adding trimethylamine N-oxide (TMAO). TMAO had only minor effects on the TOCSY spectrum. However, it increased the amount of structured peptide, as indicated by more peaks in the NOESY spectrum and an up to 300% increase in the ratio of normalized NOE cross peak intensities to that in buffer. The data for VPg in TMAO yielded a well defined structure bundle with 0.6 A RMSD (versus 6.6 A in buffer alone), with 10-30 unambiguous constraints per residue. The structure consists of a large loop region from residues 1 to 14, from which the reactive tyrosinate projects outward, and a C-terminal helix from residues 18 to 21 that aligns the sidechains of conserved residues on one face. The structure has a stable docking position at an area on the poliovirus polymerase crystal structure identified as a VPg binding site by mutagenesis studies. Further, UTP and ATP dock in a base-specific manner to the reactive face of VPg, held in place by residues conserved in all picornavirus VPgs.  相似文献   

19.
The basis for a dual inhibitory and mutagenic activity of 5-fluorouracil (5-FU) on foot-and-mouth disease virus (FMDV) RNA replication has been investigated with purified viral RNA-dependent RNA polymerase (3D) in vitro. 5-Fluorouridine triphosphate acted as a potent competitive inhibitor of VPg uridylylation, the initial step of viral replication. Peptide analysis by mass spectrometry has identified a VPg fragment containing 5-fluorouridine monophosphate (FUMP) covalently attached to Tyr3, the amino acid target of the uridylylation reaction. During RNA elongation, FUMP was incorporated in the place of UMP or CMP by FMDV 3D, using homopolymeric and heteropolymeric templates. Incorporation of FUMP did not prevent chain elongation, and, in some sequence contexts, it favored misincorporations at downstream positions. When present in the template, FUMP directed the incorporation of AMP and GMP, with ATP being a more effective substrate than GTP. The misincorporation of GMP was 17-fold faster opposite FU than opposite U in the template. These results in vitro are consistent with the mutational bias observed in the mutant spectra of 5-FU-treated FMDV populations. The dual mutagenic and inhibitory activity of 5-fluorouridine triphosphate may contribute to the effective extinction of FMDV by 5-FU through virus entry into error catastrophe.  相似文献   

20.
Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3C(pro) and the viral polymerase 3D(pol) and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4-A resolution and the G64S fidelity mutant of 3D(pol) at a 3.0-A resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active site is intact in both the 3CD and the 3D(pol) G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3D(pol) makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号