首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneities of the two ovalbumin glycopeptides, (Man)5(GlcNAc)2Asn and (Man)6(GlcNAc)2Asn, were revealed by borate paper electrophoresis of oligosaccharide alcohols obtained from the glycopeptides by endo-beta-N-acetylglucosaminidase H digestion and NaB3H4 reduction. The structures of the major components of the oligosaccharides were determined by the combination of methylation analysis, acetolysis, and alpha-mannosidase digestion. Based on the results, the whole structures of the major components of (Man)5(GlcNAc)2Asn and (Man)6(GlcNAc)2Asn were elucidated as Manalpha1 leads to 6[Manalpha1 leads to 3]-Manalpha1 leads to 6[Manalpha1 leads to 3[Manbeta1 leads to 4GlcNAcbeta1 leads to 4GlcNAc leads to Asn and Manalpha1 leads to 6[Manalpha1 leads to 3]Manalpha1 leads to 6[Manalpha1 leads to 2Manalpha1 leads to 3]Manbeta1 leads to 4GlcNAcbeta1 leads to GlcNAc leads to Asn, respectively. Since endo-beta-N-acetylglucosamini dase D hydrolyzes (Man)5(GlcNAc)2Asn but not (Man)6(GlcNAc)2Asn, the presence of the unsubstituted alpha-mannosyl residue linked at the C-3 position of the terminal mannose of Manbeta1 leads to 4GlcNAcbeta1 leads to 4 GlcNAcAsn core must be essential for the action of the enzyme.  相似文献   

2.
Urine of a fucosidosis patient contained a large amount of fucosyl oligosaccharides and fucose-rich glycopeptides. Six major oligosaccharides were purified by a combination of Bio-Gel P-2 and P-4 column chromatographies and paper chromatography. Structural studies by sequential exoglycosidase digestion and by methylation analysis revealed that their structures were as follows: Fucalpha1 leads to 6GlcNAc, Fucalpha1 leads to 2Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 2Manalpha1 leads to 3Manbeta1 leads to 4GlcNAc, Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 4Manalpha1 leads to 4GlcNAc, Galbeta1 leads to 4(Fucalpha1 leads to3)GlcNAcbeta1 leads to 2Manalpha1 leads to 6Manbeta1 leads to 4GlcNAc, and Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 4Manalpha1 leads to 6Manalpha1 leads to 6Manbeta1 leads to 4GlcNAc. In additon, the structure of a minor decasaccharide was found to be Galbeta1 leads to (Fucalpha1 leads to)GlcNAcbeta1 leads to Manalpha1 leads to [Galbeta1 leads to (Fucalpha1 leads to)GlcNAcbeta1 leads to Manalpha1 leads to]Manbeta1 leads to 4GlcNAc.  相似文献   

3.
The trypanosomatids are generally aberrant in their protein N-glycosylation pathways. However, protein N-glycosylation in the African trypanosome Trypanosoma brucei, etiological agent of human African sleeping sickness, is not well understood. Here, we describe the creation of a bloodstream-form T. brucei mutant that is deficient in the endoplasmic reticulum enzyme glucosidase II. Characterization of the variant surface glycoprotein, the main glycoprotein synthesized by the parasite with two N-glycosylation sites, revealed unexpected changes in the N-glycosylation of this molecule. Structural characterization by mass spectrometry, nuclear magnetic resonance spectroscopy, and chemical and enzymatic treatments revealed that one of the two glycosylation sites was occupied by conventional oligomannose structures, whereas the other accumulated unusual structures in the form of Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, and Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc. The possibility that these structures might arise from Glc1Man9GlcNAc2 by unusually rapid alpha-mannosidase processing was ruled out using a mixture of alpha-mannosidase inhibitors. The results suggest that bloodstream-form T. brucei can transfer both Man9GlcNAc2 and Man5GlcNAc2 to the variant surface glycoprotein in a site-specific manner and that, unlike organisms that transfer exclusively Glc3Man9GlcNAc2, the T. brucei UDP-Glc: glycoprotein glucosyltransferase and glucosidase II enzymes can use Man5GlcNAc2 and Glc1Man5GlcNAc2, respectively, as their substrates. The ability to transfer Man5GlcNAc2 structures to N-glycosylation sites destined to become Man(4-3)GlcNAc2 or complex structures may have evolved as a mechanism to conserve dolichol-phosphate-mannose donors for glycosylphosphatidylinositol anchor biosynthesis and points to fundamental differences in the specificities of host and parasite glycosyltransferases that initiate the synthesis of complex N-glycans.  相似文献   

4.
On a way of structural analysis of total N-glycans linked to glycoproteins in royal jelly (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000), Kimura, M. et al., Biosci. Biotechnol. Biochem., 66, 1985-1989 (2002)), we found that some complex type N-glycans containing a beta1-3galactose residue occur on the insect glycoproteins. Up to date, it has been considered that naturally occurring insect glycoproteins do not bear the galactose-containing N-glycans, therefore, in this report we describe the structural analysis of the complex type N-glycans of royal jelly glycoproteins.By a combination of endo- and exo-glycosidase digestions, IS-MS analysis, and 1H-NMR spectroscopy, the structures of the beta1-3 galactose-containing N-glycan were identified as the following; GlcNAcbeta1-2Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, Manalpha1-3Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, and Manalpha1-6(Manalpha1-3)Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this is the first report showing that the Galbeta1-3GlcNAcbeta1-4Man unit occurs in N-glycans of insect glycoproteins, indicating a beta1-3 galactosyl transferase and beta1-4GlcNAc transferase (GNT-IV) are expressed in the honeybee cells.  相似文献   

5.
Hydrazinolysis of porcine thyroglobulin glycopeptides and of pineapple stem bromelain [EC 3.4.22.4] permitted the isolation of almost intact carbohydrate chains of these glycoproteins. On the basis of permethylation analyses of the released oligosaccharides after reduction with NaBH4, the core structures of Unit A-type and Unit B-type carbohydrate chains of porcine thyroglobulin were deduced to be Manalpha1 leads to 6[Manalpha1 leads to 3]Manbeta1 leads to 4GlcNAcbeta1 leads to 4[Ralpha1 leads to 6]GlcNAc leads to Asn (Unit A-type, R=H; Unit B-type, R=Fuc), and that of bromelain was found to be Manalpha1 leads to 6[R'1 leads to 2]Manbeta1 leads to 4GlcNAcbeta1 leads to 4[R1 leads to 3]GlcNAc leads to Asn (R'=Xylbeta and R=Fucalpha, or R'=Fucalpha and R=Xylbeta). From these results, it appears that the hydrazinolysis method is applicable to wide variety of glycoproteins which have an N-glycosylamine linkage between the carbohydrate and peptide moieties, regardless of the type of linkage to the most proximal N-acetylglucosamine residue which is bound to asparagine.  相似文献   

6.
Endo-beta-mannosidase, which hydrolyzes the Manbeta1-4GlcNAc linkage in the trimannosyl core structure of N-glycans, was recently purified to homogeneity from lily (Lilium longiflorum) flowers as a heterotrimer [Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M., and Hase, S. (2004) J. Biol. Chem. 279, 38555-38562]. Here, we describe the substrate specificity of the enzyme and cloning of its cDNA. The purified enzyme hydrolyzed pyridylaminated (PA-) Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc (n = 0-2) to Man(n)Manalpha1-6Man and GlcNAcbeta1-4GlcNAc-PA. It did not hydrolyze PA-sugar chains containing Manalpha1-3Manbeta and/or Xylbeta1-2Manbeta. The best substrate among the PA-sugar chains tested was Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA with a K(m) value of 1.2 mM. However, the enzyme displayed a marked preference for the corresponding glycopeptide, Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-peptide (K(m) value 75 microM). These results indicate that the substrate recognition by the enzyme involves the peptide portion attached to the N-glycan. Sequence information on the purified enzyme was used to clone the corresponding cDNA. The monocotyledonous lily enzyme (952 amino acids) displays 68% identity to its dicotyledonous (Arabidopsis thaliana) homologue. Our results show that the heterotrimeric enzyme is encoded by a single gene that gives rise to three polypeptides following posttranslational proteolysis. The enzyme is ubiquitously expressed, suggesting that it has a general function such as processing or degrading N-glycans.  相似文献   

7.
8.
Endo-beta-mannosidase is a novel endoglycosidase that hydrolyzes the Manbeta1-4GlcNAc linkage in the trimannosyl core structure of N-glycans. This enzyme was partially purified and characterized in a previous report (Sasaki, A., Yamagishi, M., Mega, T., Norioka, S., Natsuka, S., and Hase, S. (1999) J. Biochem. 125, 363-367). Here we report the purification and molecular cloning of endo-beta-mannosidase. The enzyme purified from lily flowers gave a single band on native-PAGE and three bands on SDS-PAGE with molecular masses of 42, 31, and 28 kDa. Amino acid sequence information from these three polypeptides allowed the cloning of a homologous gene, AtEBM, from Arabidopsis thaliana. AtEBM was engineered for expression in Escherichia coli, and the recombinant protein comprised a single polypeptide chain with a molecular mass of 112 kDa corresponding to the sum of molecular masses of three polypeptides of the lily enzyme. The recombinant protein hydrolyzed pyridylamino derivatives (PA) of Manalpha1-6Manbeta1-4Glc-NAcbeta1-4GlcNAc into Manalpha1-6Man and GlcNAcbeta1-4Glc-NAc-PA, showing that AtEBM is an endo-beta-mannosidase. AtEBM hydrolyzed Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA (n = 0-2) but not PA-sugar chains containing Manalpha1-3Manbeta or Xylosebeta1-2Manbeta as for the lily endo-beta-mannosidase. AtEBM belonged to the clan GH-A of glycosyl hydrolases. Site-directed mutagenesis experiments revealed that two glutamic acid residues (Glu-464 and Glu-549) conserved in this clan were critical for enzyme activity. The amino acid sequence of AtEBM has distinct differences from those of the bacterial, fungal, and animal exo-type beta-mannosidases. Indeed, AtEBM-like genes are only found in plants, indicating that endo-beta-mannosidase is a plant-specific enzyme. The role of this enzyme in the processing and/or degradation of N-glycan will be discussed.  相似文献   

9.
A processing The processing pathway of N-glycans in Carica papaya was deduced from the structures of N-glycans. The N-glycans were liberated by hydrazinolysis followed by N-acetylation. Their reducing-end sugar residues were tagged with 2-aminopyridine and the pyridylamino (PA-) sugar chains thus obtained were purified by HPLC. Eleven PA-sugar chains were found, and their structures were analyzed by two-dimensional sugar mapping combined with partial acid hydrolysis and exoglycosidase digestion. The structures of the N-glycans were of the highmannose types with xylose and fucose; however, among them two new N-glycans, Manalpha1-6(Manalpha1-3)Manalpha1-6(Xylbeta1-2)+ ++Manbeta1-4GlcNAcbeta1- 4(Fucalpha1-3)GlcNAc and Manalpha1-3Manalpha1-6(Xylbeta1-2)Manbeta1-4G lcNAcbeta1-4(Fucalpha1-3 )GlcNAc, were found. Judging from these structures together with Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) (Xylbeta1-2)Manbeta1- 4GlcNAcbeta1-4(Fucalpha1-3)GlcNAc reported previously [Shimazaki, A., Makino, Y., Omichi, K., Odani, S., and Hase, S. (1999) J. Biochem. 125, 560- 565], a processing pathway for N-glycans in C. papaya is inferred in which the activity of Golgi alpha-mannosidase II is incomplete.  相似文献   

10.
Cytosolic neutral alpha-mannosidase is a putative catabolic enzyme that produces cytosolic free oligomannosides. Activation of the enzyme by Co(II) treatment has been reported using pyridylamino derivatives of Man(5)GlcNAc and Man(5)GlcNAc2, and p-nitrophenyl alpha-mannoside as substrates, with the Co(II)-treated enzyme releasing four alpha-mannose residues from Man(9)GlcNAc to give Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc as an end product. When Man(9)GlcNAc, which is considered to be the actual substrate in the cytosol, was used as a substrate, we found that even before treatment with Co(II) the enzyme was able to cleave a single Manalpha1-2 residue from Man(9)GlcNAc to give Manalpha1-6(Manalpha1-2Manalpha1-3)Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc as the end product. The K(m) value of the Co(II)-treated enzyme for Man(9)GlcNAc was found to be 37 microM, which is one-twelfth that of the non-treated enzyme, while the values were V(max) values were almost the same, indicating that the affinity of the substrate is higher with Co(II). These results indicate that Co(II) regulates the substrate specificity of the enzyme.  相似文献   

11.
Yanagida K  Natsuka S  Hase S 《Glycobiology》2006,16(4):294-304
It is thought that free oligosaccharides in the cytosol are an outcome of quality control of glycoproteins by endoplasmic reticulum-associated degradation (ERAD). Although considerable amounts of free oligosaccharides accumulate in the cytosol, where they presumably have some function, detailed analyses of their structures have not yet been carried out. We isolated 21 oligosaccharides from the cytosolic fraction of HepG2 cells and analyzed their structures by the two-dimensional high-performance liquid chromatography (HPLC) sugar-mapping method. Sixteen novel oligosaccharides were identified in the cytosol in this study. All had a single N-acetylglucosamine at their reducing-end cores and could be expressed as (Man)n (GlcNAc)1. No free oligosaccharide with N,N'-diacetylchitobiose was detected in the cytosolic fraction of HepG2 cells. This suggested that endo-beta-N-acetylglucosaminidase was a key enzyme in the production of cytosolic free oligosaccharides. The 21 oligosaccharides were classified into three series--series 1: oligosaccharides processed from Manalpha1-2Manalpha1-6 (Manalpha1-2Manalpha1-3)Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3) Manbeta1-4GlcNAc (M9A') and Manalpha1-2Manalpha1-6(Manalpha1-3) Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M8A') by digestion with cytosolic alpha-mannosidase; series 2: oligosaccharides processed with Golgi alpha-mannosidases in addition to endoplasmic reticulum (ER) and cytosolic alpha-mannosidases; and series 3: glucosylated oligosaccharides produced from Glc1Man9GlcNAc1 by hydrolysis with cytosolic alpha-mannosidase. The presence of the series "2" oligosaccharides suggests that some of the misfolded glycoproteins had been processed in pre-cis-Golgi vesicles and/or the Golgi apparatus. When the cells were treated with swainsonine to inhibit cytosolic alpha-mannosidase, the amounts of M9A' and M8A' increased remarkably, suggesting that these oligosaccharides were translocated into the cytosol. Four oligosaccharides of series "2" also increased. In contrast, there were obvious reductions in Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M5B'), the end product from M9A' by digestion with cytosolic alpha-mannosidase, and Manalpha1-6(Manalpha1- 2Manalpha1-3)Manbeta1-4GlcNAc, derived from series "2" oligosaccharides by digestion with cytosolic alpha-mannosidase. Our data suggest that (1) some of the cytosolic oligosaccharides had been processed with Golgi alpha-mannosidases, (2) the major oligosaccharides translocated from the ER were M9A' and M8A', and (3) M5B' and Glc1M5B' were maintained at relatively high concentrations in the cytosol.  相似文献   

12.
Cauxin is a carboxylesterase-like glycoprotein excreted as a major component of cat urine. Cauxin contains four putative N-glycosylation sites. We characterized the structure of an N-linked oligosaccharide of cauxin using nano liquid chromatography (LC)-electrospray ionization (ESI) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) and MS/MS, and high-performance liquid chromatography (HPLC) with an octadecylsilica (ODS) column. The structure of the N-linked oligosaccharide of cauxin attached to (83)Asn was a bisecting complex type, Galbeta1-4GlcNAcbeta1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc.  相似文献   

13.
The N-linked sugar chains, GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-4)(Manalpha1++ +-3)Manbeta1-4GlcNAcb eta1-4(Fucalpha1-6)GlcNAc (BA-1) and GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-4)(GlcNAcbeta1 -2Manalpha1-3)Manb eta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc (BA-2), were recently found to be linked to membrane proteins of mouse brain in a development-dependent manner [S. Nakakita, S. Natsuka, K. Ikenaka, and S. Hase, J. Biochem. 123, 1164-1168 (1998)]. The GlcNAc residue linked to the Manalpha1-3 branch of BA-2 is lacking in BA-1 and the removal of this GlcNAc residue is not part of the usual biosynthetic pathway for N-linked sugar chains, suggesting the existence of an N-acetyl-beta-D-hexosaminidase. Using pyridylaminated BA-2 (BA-2-PA) as a substrate the activity of this enzyme was found in all four subcellular fractions obtained. The activity was much greater in the cerebrum than in the cerebellum. To further identify the N-acetyl-beta-D-hexosaminidase, BA-1 and BA-2 in brain tissues of Hex gene-disrupted mutant mice were detected and quantified. PA-sugar chains were liberated from the cerebrum and cerebellum of the mutant mice by hydrazinolysis-N-acetylation followed by pyridylamination. PA-sugar chains were separated by anion-exchange HPLC, size-fractionation, and reversed-phase HPLC. Each peak was quantified by measuring the peaks at the elution positions of authentic BA-1-PA and BA-2-PA. BA-2-PA was detected in all the PA-sugar chain fractions prepared from Hexa, Hexb, and both Hexa and Hexb (double knockout) gene-disrupted mice, but BA-1 was not found in the fractions from Hexb gene-disrupted and double knockout mice. These results indicate that N-acetyl-beta-D-hexosaminidase B encoded by the Hexb gene hydrolyzed BA-2 to BA-1.  相似文献   

14.
While doing a structural analysis of minor component N-glycans linked to 350-kDa royal jelly glycoprotein (RJGP), which stimulates the proliferation of human monocytes, we found that a Galbeta1-3GlcNAcbeta1-4Man unit occurs on the insect glycoprotein. The structure of the fluorescence-labeled N-glycan was analyzed by sugar component analysis, IS-MS, and (1)H-NMR. The structural analysis showed that the 350-kDa RJGP bears Galbeta1-3GlcNAcbeta1-4(GlcNAcbeta1-2)Manalpha1-3 (Manalpha1-3Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, suggesting this insect glycoprotein is one of the substrates for both beta1-3 galactosyl and beta1-4 N-acetylglucosamininyl transferases. To our knowledge, this is the first report that succeeded in identifying an insect glycoprotein bearing the beta1-3 galactosylated N-glycan.  相似文献   

15.
Free oligosaccharides (FOSs) in the cytosol of eukaryotic cells are mainly generated during endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded glycoproteins. We analyzed FOS of the nematode Caenorhabditis elegans to elucidate its detailed degradation pathway. The major FOSs were high mannose-type ones bearing 3-9 Man residues. About 94% of the total FOSs had one GlcNAc at their reducing end (FOS-GN1), and the remaining 6% had two GlcNAc (FOS-GN2). A cytosolic endo-beta-N-acetylglucosaminidase mutant (tm1208) accumulated FOS-GN2, indicating involvement of the enzyme in conversion of FOS-GN2 into FOS-GN1. The most abundant FOS in the wild type was Man(5)GlcNAc(1), the M5A' isomer (Manalpha1-3(Manalpha1-6)Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAc), which is different from the corresponding M5B' (Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAc) in mammals. Analyses of FOS in worms treated with Golgi alpha-mannosidase I inhibitors revealed decreases in Man(5)GlcNAc(1) and increases in Man(7)GlcNAc(1). These results suggested that Golgi alpha-mannosidase I-like enzyme is involved in the production of Man(5-6)-GlcNAc(1), which is unlike in mammals, in which cytosolic alpha-mannosidase is involved. Thus, we assumed that major FOSs in C. elegans were generated through Golgi trafficking. Analysis of FOSs from a Golgi alpha-mannosidase II mutant (tm1078) supported this idea, because GlcNAc(1)Man(5)GlcNAc(1), which is formed by the Golgi-resident GlcNAc-transferase I, was found as a FOS in the mutant. We concluded that significant amounts of misfolded glycoproteins in C. elegans are trafficked to the Golgi and are directly or indirectly retro-translocated into the cytosol to be degraded.  相似文献   

16.
A disaccharide substrate of Manbeta1-4GlcNAc-oxazoline 2 was designed and synthesized as a novel probe for detection of the transglycosylating activity of endoglycosidases. A regio- and stereoselective transglycosylation reaction of 2 to GlcNAcbeta1-O-pNP or Dns-Asn(GlcNAc)-OH catalyzed by endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) and endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has been demonstrated for the first time, resulting in the core trisaccharide derivative Manbeta1-4GlcNAcbeta1-4GlcNAcbeta1-O-pNP 8 (or -(Dns)Asn-OH). Interestingly, the transglycosylation proceeds irreversibly; the resulting trisaccharide 8 was not hydrolyzed by Endo-M and Endo-A. Based on these results, a new mechanism including an oxazolinium ion intermediate has been proposed for the endoglycosidase-catalyzed hydrolysis or transglycosylation.  相似文献   

17.
N-Glycans in nearly all eukaryotes are derived by transfer of a precursor Glc(3)Man(9)GlcNAc(2) from dolichol (Dol) to consensus Asn residues in nascent proteins in the endoplasmic reticulum. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide-lipid properly, and the alg9 mutant, accumulates Man(6)GlcNAc(2)-PP-Dol. High-field (1)H NMR and methylation analyses of Man(6)GlcNAc(2) released with peptide-N-glycosidase F from invertase secreted by Deltaalg9 yeast showed its structure to be Manalpha1,2Manalpha1,2Manalpha1, 3(Manalpha1,3Manalpha1,6)-Manbeta1,4GlcNAcbeta1, 4GlcNAcalpha/beta, confirming the addition of the alpha1,3-linked Man to Man(5)GlcNAc(2)-PP-Dol prior to the addition of the final upper-arm alpha1,6-linked Man. This Man(6)GlcNAc(2) is the endoglycosidase H-sensitive product of the Alg3p step. The Deltaalg9 Hex(7-10)GlcNAc(2) elongation intermediates were released from invertase and similarly analyzed. When compared with alg3 sec18 and wild-type core mannans, Deltaalg9 N-glycans reveal a regulatory role for the Alg3p-dependent alpha1,3-linked Man in subsequent oligosaccharide-lipid and glycoprotein glycan maturation. The presence of this Man appears to provide structural information potentiating the downstream action of the endoplasmic reticulum glucosyltransferases Alg6p, Alg8p and Alg10p, glucosidases Gls1p and Gls2p, and the Golgi Och1p outerchain alpha1,6-Man branch-initiating mannosyltransferase.  相似文献   

18.
An endo-beta-mannosidase [EC 3.2.1.152, glycoside hydrolase family 2], which hydrolyzes the Manbeta1-4GlcNAc linkage of N-glycans in an endo-manner, has been found in plant tissues [Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M., and Hase, S. (2004) J. Biol. Chem. 279, 38555-38562]. So far, this glycosidase has been purified only from a monocot plant, a lily. Here, an endo-beta-mannosidase was purified from a dicot plant, cabbage (Brassica oleracea), and characterized. The cabbage endo-beta-mannosidase consists of four polypeptides. These four polypeptides are encoded by a single gene, whose nucleotide sequence is homologous to those of the lily and Arabidopsis endo-beta-mannosidase genes. 1H NMR analysis of the stereochemistry of the hydrolysis of pyridylaminated (PA) Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc showed that the cabbage endo-beta-mannosidase is a retaining glycoside hydrolase, as are other glycoside hydrolase family 2 enzymes. The enzymatic characteristics, including substrate specificity, of the cabbage enzyme are very similar to those of the lily enzyme. These endo-beta-mannosidases specifically act on Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA (n = 0 to 2). These results suggest that the endo-beta-mannosidase is present in at least the angiosperms, and has common roles, such as the degradation of N-glycans.  相似文献   

19.
The amounts and isomeric structures of free oligosaccharides derived from N-linked sugar chains present in the cytosol fraction of perfused mouse liver were analyzed by tagging the reducing end with 2-aminopyridine followed by 2-dimensional HPLC mapping with standard sugar chains. Sixteen pyridylaminated (PA-) oligomannosides terminating with a PA-GlcNAc residue (GN1-type), three glucose-containing oligomannosides, and four oligomannosides terminating with a PA-di-N-acetylchitobiose (GN2-type) were detected. The total contents of the GN1- and GN2-type oligomannosides were 3. 4 and 0.5 nmol, respectively, per gram of wet tissue. Maltooligosaccharides (dimer to pentamer) were also detected, the total content of which was 13 nmol per gram of wet tissue. Besides these oligosaccharides, a PA-disialobiantennary sugar chain-the sole complex-type sugar chain-was also detected. All the oligomannosides identified had partial structures of Glc(3)Man(9)GlNAc(2)-p-p-dolichol, revealing that they were metabolic degradation products. Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)++ +Manbeta1-4GlcNAc (M5B') was the major oligomannoside, suggesting that cytosolic endo-beta-N-acetylglucosaminidase and neutral alpha-mannosidase participate in the degradation, because these enzymes have suitable substrate specificities for the production of M5B'. Degradation by these enzymes seems to be the main pathway by which oligomannosides are degraded in mouse cytosol; however, small amounts of Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) Manbeta1-4(GlcNAc)1-2 and related oligomannosides together with parts of their structures were also detected, suggesting that there is another minor route by which cytosolic free oligomannosides are produced.  相似文献   

20.
We have previously detected two brain-specific and development-dependent N-glycans [H. Shimizu, K. Ochiai, K. Ikenaka, K. Mikoshiba, and S. Hase (1993) J. Biochem. 114, 334-338]. In the present study we attempted to analyze specific N-glycans detected in neurological mutant mice. N-glycans in cerebrum and cerebellum obtained from 3-week-old neurological mutant mice (jimpy, staggerer, and shiverer) were compared with those obtained from normal mice. N-glycans liberated from the cerebrum and cerebellum by hydrazinolysis-N-acetylation were pyridylaminated, and pyridylamino derivatives of N-glycans thus obtained were separated into neutral and five acidic fractions by anion exchange chromatography. PA-N-glycans in each fraction were compared with those obtained from normal mice by reversed-phase HPLC, and the following results were obtained. The ratio of the two brain-type N-glycans, Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-6)GlcNAc (BA-1) to GlcNAcbetaManalpha1-3(GlcNAcbeta1-2Manalpha1-6)(GlcNAcbeta1-4)Manbeta1-4GlcNAcbeta1-4(Fuca1-6)GlcNAc (BA-2), was higher in staggerer mice than other mutant mice and normal mice. Sia-Gal-BA-2, triantennary N-glycans, and bisected biantennary N-glycans were found in the cerebellum of shiverer and staggerer mice but not in normal or jimpy mice. High-mannose type N-glycans were not altered in mutant mice brains. The amounts of disialylbiantennary N-glycans and disialylfucosylbiantennary N-glycans were lower in jimpy mouse cerebellum than in normal mouse cerebellum, but were higher in shiverer mouse. Some alterations of N-glycans specific to mutations were successfully identified, suggesting that expression of component(s) of the N-glycan biosynthetic pathway was specifically affected in neurological mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号