首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
This study was to determine whether pregnancy affects maximal aerobic power. We measured heart rate, O2 uptake (VO2), CO2 production (VCO2), and ventilation at rest and during bicycle (BE) and treadmill exercise (TE) tests with rapidly increasing exercise intensities at 16, 25, and 35 wk gestation and 7 wk after delivery. Maximal heart rate was slightly lower throughout pregnancy compared with the nonpregnant state during both BE [174 +/- 2 vs. 178 +/- 2 (SE) beats/min] and TE (178 +/- 2 vs. 183 +/- 2 beats/min). Maximal VO2 was unaffected by pregnancy during BE and TE (2.20 +/- 0.08, 2.16 +/- 0.08, 2.15 +/- 0.08, and 2.19 +/- 0.08 l/min for BE and 2.45 +/- 0.08, 2.38 +/- 0.09, 2.33 +/- 0.09, and 2.39 +/- 0.08 l/min for TE at 16, 25, and 35 wk gestation and 7 wk postpartum, respectively). As a result of increased VO2 at rest, the amount of O2 available for exercise (exercise minus rest) tended to decrease with advancing gestation, reaching statistical significance only during TE at 35 wk gestation (1.99 +/- 0.08 l/min vs. 2.10 +/- 0.08 l/min postpartum). Power showed a positive linear correlation with O2 availability during BE as well as TE, and the relationship was unaffected by pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pulmonary and ventilatory responses to pregnancy, immersion, and exercise   总被引:2,自引:0,他引:2  
To examine the effects of pregnancy, immersion, and exercise during immersion on pulmonary function and ventilation, 12 women were studied at 15, 25, and 35 wk of pregnancy and 8-10 wk postpartum. Pulmonary function and ventilation were measured under three experimental conditions: after 20 min of rest on land (LR), after 20 min of rest during immersion to the level of the xiphoid (IR), and after 20 min of exercise during immersion at 60% of predicted maximal capacity (IE). Forced vital capacity remained relatively constant, except for a decrease at 15 wk, for the duration of pregnancy. Expiratory reserve volume decreased with a change in the pregnancy status and with the duration of pregnancy. However, the forced vital capacity was maintained by an increase in the inspiratory capacity during pregnancy. Forced expiratory volume for 1 s, expressed as percent of forced vital capacity, did not differ significantly between conditions or as a result of pregnancy. Forced vital capacity was lower during the IR trial compared with LR and IE trials. The decreased forced vital capacity of the IR trials was mediated by a decrease in the expiratory reserve volume. Whereas the inspiratory capacity increased during IR and IE compared with LR, the increase was not large enough to offset the decrease in the expiratory reserve volume. Resting immersion resulted in a significant decrease in maximal voluntary ventilation as did pregnancy. Pregnancy resulted in significant increases in minute ventilation (VE), which were related to increases in the O2 consumption.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Twelve women early in their pregnancies were recruited to examine thermoregulation during immersion and exercise in the water (30 degrees C). Their responses were compared at 15, 25 and 35 weeks of pregnancy as well as 10-12 weeks post pregnancy to determine whether the responses differ between the gravid and non-gravid woman or were modified during pregnancy. Rectal temperature, mean skin temperature, heat storage, and evaporation were similar during immersion or exercise during the 15th, 25th and 35th weeks of pregnancy. Compared to 10 weeks post partum, pregnancy reduced heat storage, lowered skin temperature and increased evaporative heat loss during immersion and exercise (P less than 0.05). The results suggest that pregnancy causes subtle changes in the mechanism of thermoregulation which tend to increase heat production and improve heat conservation.  相似文献   

4.
Nine subjects (VO2max 65 +/- 2 ml.kg-1.min-1, mean +/- SEM) were studied on two occasions following ingestion of 500 ml solution containing either sodium citrate (C, 0.300 g.kg-1 body mass) or a sodium chloride placebo (P, 0.045 g.kg-1 body mass). Exercise began 60 min later and consisted of cycle ergometer exercise performed continuously for 20 min each at power outputs corresponding to 33% and 66% VO2max, followed by exercise to exhaustion at 95% VO2max. Pre-exercise arterialized-venous [H+] was lower in C (36.2 +/- 0.5 nmol.l-1; pH 7.44) than P (39.4 +/- 0.4 nmol.l-1; pH 7.40); the plasma [H+] remained lower and [HCO3-] remained higher in C than P throughout exercise and recovery. Exercise time to exhaustion at 95% VO2max was similar in C (310 +/- 69 s) and P (313 +/- 74 s). Cardiorespiratory variables (ventilation, VO2, VCO2, heart rate) measured during exercise were similar in the two conditions. The plasma [citrate] was higher in C at rest (C, 195 +/- 19 mumol.l-1; P, 81 +/- 7 mumol.l-1) and throughout exercise and recovery. The plasma [lactate] and [free fatty acid] were not affected by citrate loading but the plasma [glycerol] was lower during exercise in C than P. In conclusion, sodium citrate ingestion had an alkalinizing effect in the plasma but did not improve endurance time during exercise at 95% VO2max. Furthermore, citrate loading may have prevented the stimulation of lipolysis normally observed with exercise and prevented the stimulation of glycolysis in muscle normally observed in bicarbonate-induced alkalosis.  相似文献   

5.
The relative influences of the supine posture and of immersion on the renin-aldosterone system (RAS) were studied at rest and during moderate exercise in five healthy men. When supine, resting or immersion to the neck for 20 min in a thermoneutral environment both induced a decrease in plasma renin activity (PRA) when compared with the levels measured after 15 min sitting at rest (resting: -44%, p less than 0.05. Immersion: -45%, p less than 0.05). There was no significant difference in PRA decrease between the two situations. Aldosterone (ALDO) values were lower after supine rest or immersion than those observed after sitting at rest, but the difference was not significant. Two types of exercise at a constant relative work load (40-50% maximal oxygen uptake), namely cycling on an ergocycle in the supine position and free-style swimming, induced increases in PRA and ALDO when compared with the levels measured after 15 min rest when sitting (respectively, PRA = +35%, p less than 0.05, and +45%, p less than 0.05, ALDO = +32%, p less than 0.01 and +35%, p less than 0.05). Increases in PRA and ALDO did not differ between the two exercises. Thus inhibitory effects on RAS of change in external pressure are negligible during water immersion to the neck in the supine position and during swimming at moderate intensity.  相似文献   

6.
The purpose of this investigation was to examine the effects of moderate hypohydration (HY) on skeletal muscle glycogen resynthesis after exhaustive exercise. On two occasions, eight males completed 2 h of intermittent cycle ergometer exercise (4 bouts of 17 min at 60% and 3 min at 80% of maximal O2 consumption/10 min rest) to reduce muscle glycogen concentrations (control values 711 +/- 41 mumol/g dry wt). During one trial, cycle exercise was followed by several hours of light upper body exercise in the heat without fluid replacement to induce HY (-5% body wt); in the second trial, sufficient water was ingested during the upper body exercise and heat exposure to maintain euhydration (EU). In both trials, 400 g of carbohydrate were ingested at the completion of exercise and followed by 15 h of rest while the desired hydration level was maintained. Muscle biopsy samples were obtained from the vastus lateralis immediately after intermittent cycle exercise (T1) and after 15 h of rest (T2). During the HY trial, the muscle water content was lower (P less than 0.05) at T1 and T2 (288 +/- 9 and 265 +/- 5 ml/100 g dry wt, respectively; NS) than during EU (313 +/- 8 and 301 +/- 4 ml/100 g dry wt, respectively; NS). Muscle glycogen concentration was not significantly different during EU and HY at T1 (200 +/- 35 vs. 251 +/- 50 mumol/g dry wt) or T2 (452 +/- 34 vs. 491 +/- 35 mumol/g dry wt). These data indicate that, despite reduced water content during the first 15 h after heavy exercise, skeletal muscle glycogen resynthesis is not impaired.  相似文献   

7.
The purpose of this study was to determine the effect of ingesting fluids of varying carbohydrate content upon sensory response, physiologic function, and exercise performance during 1.25 h of intermittent cycling in a warm environment (Tdb = 33.4 degrees C). Twelve subjects (7 male, 5 female) completed four separate exercise sessions; each session consisted of three 20 min bouts of cycling at 65% VO2max, with each bout followed by 5 min rest. A timed cycling task (1200 pedal revolutions) completed each exercise session. Immediately prior to the first 20 min cycling bout and during each rest period, subjects consumed 2.5 ml.kg BW-1 of water placebo (WP), or solutions of 6%, 8%, or 10% sucrose with electrolytes (20 mmol.l-1 Na+, 3.2 mmol.l-1 K+). Beverages were administered in double blind, counterbalanced order. Mean (+/- SE) times for the 1200 cycling task differed significantly: WP = 13.62 +/- 0.33 min, *6% = 13.03 +/- 0.24 min, 8% = 13.30 +/- 0.25 min, 10% = 13.57 +/- 0.22 min (* = different from WP and 10%, P less than 0.05). Compared to WP, ingestion of the CHO beverages resulted in higher plasma glucose and insulin concentrations, and higher RER values during the final 20 min of exercise (P less than 0.05). Markers of physiologic function and sensory perception changed similarly throughout exercise; no differences were observed among subjects in response to beverage treatments for changes in plasma concentrations of lactate, sodium, potassium, for changes in plasma volume, plasma osmolality, rectal temperature, heart rate, oxygen uptake, rating of perceived exertion, or for indices of gastrointestinal distress, perceived thirst, and overall beverage acceptance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The hormonal responses to repetitive brief maximal exercise in humans   总被引:4,自引:0,他引:4  
The responses of nine men and nine women to brief repetitive maximal exercise have been studied. The exercise involved a 6-s sprint on a non-motorised treadmill repeated 10 times with 30 s recovery between each sprint. The total work done during the ten sprints was 37,693 +/- 3,956 J by the men and 26,555 +/- 4,589 J by the women (M greater than F, P less than 0.01). This difference in performance was not associated with higher blood lactate concentrations in the men (13.96 +/- 1.70 mmol.l-1) than the women (13.09 +/- 3.04 mmol.l-1). An 18-fold increase in plasma adrenaline (AD) occurred with the peak concentration observed after five sprints. The peak AD concentration in the men was larger than that seen in the women (9.2 +/- 7.3 and 3.7 +/- 2.4 nmol.l-1 respectively, P less than 0.05). The maximum noradrenaline (NA) concentration occurred after ten sprints in the men (31.6 +/- 10.9 nmol.l-1) and after five sprints in the women (27.4 +/- 20.8 nmol.l-1). Plasma cardiodilatin (CDN) and atrial natriuretic peptide (ANP) concentrations were elevated in response to the exercise. The peak ANP concentration occurred immediately post-exercise and the response of the women (10.8 +/- 4.5 pmol.l-1) was greater than that of the men (5.1 +/- 2.6 pmol.l-1, P less than 0.05). The peak CDN concentrations were 163 +/- 61 pmol.l-1 for the women and 135 +/- 61 pmol.l-1 for the men. No increases in calcitonin gene related peptide (CGRP) were detected in response to the exercise. These results indicate differences between men and women in performance and hormonal responses. There was no evidence for a role of CGRP in the control of the cardiovascular system after brief intermittent maximal exercise.  相似文献   

9.
Six men exercised on a cycle ergometer for 60 min on two occasions one week apart, at 68 +/- 3% of VO2max. On one occasion, a dilute glucose/electrolyte solution (E: osmolality 310 mosmol X kg-1, glucose content 200 mmol X l-1) was given orally at a rate of 100 ml every 10 min, beginning immediately prior to exercise. On the other occasion, a glucose polymer solution (P: osmolality 630 mosmol X kg-1, glucose content equivalent to 916 mmol X l-1) was given at the same rate. Blood samples were obtained from a superficial forearm vein immediately prior to exercise and at 15-min intervals during exercise; further samples were obtained at 15-min intervals for 60 min at rest following exercise. Heart rate and rectal temperature were measured at 5-min intervals during exercise. Blood glucose concentration was not different between the two tests during exercise, but rose to a peak of 8.7 +/- 1.2 mmol X l-1 (mean +/- SD) at 30-min post-exercise when P was drunk. Blood glucose remained unchanged during and after exercise when E was drunk. Plasma insulin levels were unchanged during exercise and were the same on both trials, but again a sharp rise in plasma insulin concentration was seen after exercise when P was drunk. The rate of carbohydrate oxidation during exercise, as calculated from VO2 and the respiratory exchange ratio, was not different between the two tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The purpose of this study was to examine the effects of pre-exercise glucose and fructose feedings on muscle glycogen utilization during exercise in six well-trained runners (VO2max = 68.2 +/- 3.4 ml X kg-1 X min-1). On three separate occasions, the runners performed a 30 min treadmill run at 70% VO2max. Thirty minutes prior to exercise each runner ingested 75 g of glucose (trial G), 75 g of fructose (trial F) or 150 ml of a sweetened placebo (trial C). During exercise, no differences were observed between any of the trials for oxygen uptake, heart rate or perceived exertion. Serum glucose levels were elevated as a result of the glucose feeding (P less than 0.05) reaching peak levels at 30 min post-feeding (7.90 +/- 0.24 mmol X l-1). With the onset of exercise, glucose levels dropped to a low of 5.89 +/- 0.85 mmol X l-1 at 15 min of exercise in trial G. Serum glucose levels in trials F and C averaged 6.21 +/- 0.31 mmol X l-1 and 5.95 +/- 0.23 mmol X l-1 respectively, and were not significantly different (P less than 0.05). There were also no differences in serum glucose levels between any of the trials at 15 and 30 min of exercise.  相似文献   

11.
Plasma somatostatin (SRIF), growth hormone (GH), somatomedin C (IGF1), osteocalcin (BGP), 1,25-dihydroxyvitamin D (1,25-(OH)2D), calcium and inorganic phosphorus were measured in 10 chronically-catheterized fetal calves and in their dams during the two last months of gestation. Thus fetal life is associated with high levels of GH (1.53 +/- 0.14 nmol.l-1), BGP (64 +/- 4 nmol), Ca (2.90 +/- 0.06 nmol.l-1) compared to the results obtained in the pregnant cows. The first week of postnatal life was associated with a tremendous increase in plasma SRIF concentration (from 36 +/- 5 to 106 +/- 15 pmol.l-1; P less than 0.01). These results agree with an intense bone growth during the end of fetal life in the bovine species. However, IG 1 might not play a major role in the regulation of fetal skeletal growth during this period.  相似文献   

12.
Cardiovascular response to cycle exercise during and after pregnancy   总被引:1,自引:0,他引:1  
Our purpose was to determine if pregnancy alters the cardiovascular response to exercise. Thirty-nine women [29 +/- 4 (SD) yr], performed submaximal and maximal exercise cycle ergometry during pregnancy (antepartum, AP, 26 +/- 3 wk of gestation) and postpartum (PP, 8 +/- 2 wk). Neither maximal O2 uptake (VO2max) nor maximal heart rate (HR) was different AP and PP (VO2 = 1.91 +/- 0.32 and 1.83 +/- 0.31 l/min; HR = 182 +/- 8 and 184 +/- 7 beats/min, P greater than 0.05 for both). Cardiac output (Q, acetylene rebreathing technique) averaged 2.2 to 2.8 l/min higher AP (P less than 0.01) at rest and at each exercise work load. Increases in both HR and stroke volume (SV) contributed to the elevated Q at the lower exercise work loads, whereas an increased SV was primarily responsible for the higher Q at higher levels. The slope of the Q vs. VO2 relationship was not different AP and PP (6.15 +/- 1.32 and 6.18 +/- 1.34 l/min Q/l/min VO2, P greater than 0.05). In contrast, the arteriovenous O2 difference (a-vO2 difference) was lower at each exercise work load AP, suggesting that the higher Q AP was distributed to nonexercising vascular beds. We conclude that Q is greater and a-vO2 difference is less at all levels of exercise in pregnant subjects than in the same women postpartum but that the coupling of the increase in Q to the increase in systemic O2 demand (VO2) is not different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A heterologous radioimmunoassay system developed for the rabbit and suitable for a wide range of mammalian species has been shown to measure prolactin in the plasma of the blue fox. Evaluation of prolactin levels throughout the year showed the concentrations displayed a circannual rhythm with the highest values occurring in May and June. Prolactin concentrations remained low (approximately 2.5 ng/ml plasma) from July until April with no consistent changes found around oestrus (March-April). In 8 pregnant females, the prolactin increase in late April and May coincided with the last part of gestation and lactation: concentrations (mean +/- s.e.m.) increased to 6.3 +/- 0.6 ng/ml at mid-gestation, 9.7 +/- 2.1 ng/ml at the end of gestation and 26.7 +/- 5.0 ng/ml during lactation. In 10 non-pregnant animals, the mean +/- s.e.m. values were 7.2 +/- 1.2 ng/ml in April, 8.8 +/- 2.2 ng/ml in May and 9.8 +/- 1.3 ng/ml in June. The prolactin profile in 4 ovariectomized females was similar to that observed in non-pregnant animals, but the plasma values tended to be lower during the reproductive season (April-June). In intact females, the only large LH peak (average 28 ng/ml) was observed around oestrus. During pro-oestrus, baseline LH levels were interrupted by elevations of 3.1-10.4 ng/ml. During the rest of the year, basal levels were less than 3 ng/ml. In ovariectomized females, LH concentrations increased within 2 days of ovariectomy and remained high (35-55 ng/ml) at all times of year.  相似文献   

14.
Energy needs are increased during pregnancy and lactation. These increased energy needs may be met through partitioning of nutrients for energy utilization which is under hormonal control. The objective of the present studies was to determine if changes in plasma leptin occurred during pregnancy and lactation and if the changes were related to prolactin. Plasma leptin and prolactin were measured longitudinally in 9 women through pregnancy and lactation. In a second study, leptin and prolactin were measured 4 days and 28 days postpartum in 21 lactating women. Mean plasma leptin during the three trimesters of pregnancy was significantly higher (29.3+/-2.8 ng/ml) when compared to mean leptin during the three time periods of lactation (19.3+/-3.2 ng/ml) and control groups (9.8+/-1.4 ng/ml). Plasma leptin was elevated early in pregnancy and remained elevated throughout pregnancy. In the second study, the mean plasma leptin in the lactating women was significantly higher 4 days postpartum (17.3+/-3.7 ng/ml) and 28 days postpartum (19.2+/-3.9 ng/ml) when compared to controls (11.6+/-1.2 ng/ml). Prolactin in the control subjects (24+/-4 ng/ml) was significantly lower than in the pregnant (202+/-16 ng/ml) and lactating (108+/-26 ng/ml) groups. Similar observations were made in the second study (controls 20+/-2 ng/ml; lactation 28 days 159+/-21 ng/ml). Leptin during lactation was lower than in pregnancy but higher than control subjects. Regression analysis suggested that BMI and prolactin can be used as predictors of leptin in pregnancy and lactation. The increase in leptin and prolactin early in pregnancy suggests an association between the two hormones. Results of the present studies and research done by other investigators presents a strong role for leptin during pregnancy and lactation. Leptin is regulated by factors other than adiposity especially in reproductive women leading to our hypothesis that there are leptin and prolactin mediated effects on substrates used for energy utilization during pregnancy and lactation.  相似文献   

15.
The kinetics underlying plasma epinephrine concentrations were studied. Six athletes (T) and six sedentary males (C) were given intravenous infusions of 3H-labeled epinephrine, after which arterial blood was drawn. They rested sitting and bicycled continuously to exhaustion (60 min at 125 W, 60 min at 160 W, 40 min at 200 W, and 240 W to the end). Work time was 154 +/- 13 (SE) (T) and 75 +/- 6 (C) min. At rest, epinephrine clearance was identical [28.4 +/- 1.3 (T) vs. 29.2 +/- 1.8 (C) ml . kg-1 . min-1], but plasma concentration [1.42 +/- 0.27 (T) vs. 0.71 +/- 0.16 (C) nmol . l-1] and, accordingly, secretion [2.9 +/- 0.7 vs. 1.5 +/- 0.4 nmol . min-1] were higher (P less than 0.05) in T than C subjects. Epinephrine clearance was closely related to relative work load, decreasing from 15% above the basal level at 30% of maximal O2 uptake (VO2 max) to 22% below at 76% of VO2 max. Epinephrine concentrations increased much more with work intensity than could be accounted for by changes in clearance and were, at exhaustion, higher (P less than 0.05) in T (7.2 +/- 1.6) than in C (2.5 +/- 0.7 nmol . l-1) subjects despite similar glucose, heart rate, and hematocrit values. At a given load, epinephrine clearance rapidly became constant, whereas concentration increased continuously. Forearm extraction of epinephrine invalidated use of blood from a cubital vein or a hand vein arterialized by hot water in turnover measurements. During exercise, changes in epinephrine concentrations reflect changes in secretion rather than in clearance. Training may increase adrenal medullary secretory capacity.  相似文献   

16.
The purpose of this study was to investigate whether simultaneous alterations in the availability of plasma free fatty acids and muscle glycogen would impair the maintenance of thermal balance during cold water immersion in humans. Eight seminude subjects were immersed on two occasions in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each immersion followed 2.5 days of a specific dietary and exercise regimen designed to elicit low (LOW) or high glycogen levels (HIGH) in large skeletal muscle groups. Nicotinic acid (1.6 mg/kg) was administered for 2 h before and during immersion to inhibit white adipose tissue lipolysis. Biopsies from the vastus lateralis showed that the glycogen concentration before the immersion was significantly lower in LOW than in HIGH (223 +/- 19 vs. 473 +/- 24 mmol glucose units/kg dry muscle). However, the mean rates of glycogen utilization were not significantly different between trials (LOW 0.62 +/- 0.14 vs. HIGH 0.88 +/- 0.15 mmol glucose units.kg-1.min-1). Nicotinic acid dramatically reduced plasma free fatty acid levels in both trials, averaging 127 +/- 21 mumol/l immediately before the immersion. Cold water immersion did not significantly alter those levels. Plasma glucose levels were significantly reduced after cold water immersion to a similar extent in both trials (18 +/- 4%). Mean respiratory exchange ratio at rest and during immersion was greater in HIGH than LOW, whereas there were no intertrial differences in O2 uptake. The calculated average metabolic heat production during immersion tended to be lower (P = 0.054) in LOW than in HIGH (15.3 +/- 1.9 vs. 17.5 +/- 1.9 kJ/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Adrenocorticotropic hormone (ACTH), cortisol, and prolactin responses following maximal and submaximal (40 min at 80% maximal O2 consumption) running were studied in eumenorrheic (ER; n = 8, 29.0 +/- 1.5 yr) and amenorrheic (AR; n = 8, 24.5 +/- 2.0 yr) runners. ER were studied in the early follicular and midluteal phases of the menstrual cycle. Physical, training, and gynecological characteristics were similar, and cardiorespiratory and metabolic responses to the exercises were indistinguishable in the groups. ACTH, cortisol, and prolactin data from the follicular luteal phases in ER were combined for comparison to AR, because no differences were noted between the menstrual phases at rest. Similar preexercise ACTH levels and responses following exercise occurred in both groups, but preexercise cortisol levels were elevated (ER = 293.1 +/- 46.3, AR = 479.6 +/- 42.4 nmol/l) and cortisol responses blunted in AR. Adrenal sensitivity was blunted in AR compared with ER after submaximal (ER = 121.9 +/- 17.4, AR = 51.7 +/- 13.6) and maximal exercise (ER = 27.9 +/- 9.2, AR = 12.1 +/- 3.8). Preexercise prolactin levels were reduced (ER = 16.4 +/- 2.7, AR = 10 +/- 2.3 micrograms/l), and prolactin responses to maximal exercises were blunted in AR, despite high lactate levels (11.4 +/- 0.4 mmol/l). We conclude that 1) control for menstrual phase in ER is important in studies of prolactin responses following exercise but not in studies of ACTH and cortisol responses following exercise, 2) cortisol responses following submaximal and maximal exercise in AR are blunted at the adrenal level, 3) prolactin responses following submaximal and maximal exercise are also blunted in AR, and 4) prolactin responses following exercise may be mediated by adrenal activation.  相似文献   

18.
The purpose of this study was to assess the effects of a 2 h cycle exercise (50% VO2max) on heart rate (HR) and blood pressure (BP), and on plasma epinephrine (E) and norepinephrine (NE) concentrations, during the recovery period in seven normotensive subjects. Measurements were made at rest in supine (20 min) and standing (10 min) positions, during isometric exercise (hand-grip, 3 min, 25% maximal voluntary, contraction), in response to a mild psychosocial challenge (Stroop conflicting color word task) and during a 5-min period of light exercise (42 +/- 3% VO2max). Data were compared to measurements taken on another occasion under similar experimental conditions, without a previous exercise bout (control). The results showed HR to be slightly elevated in all conditions following the exercise bout. However, diastolic and systolic BP during the recovery period following exercise were not significantly different from the values observed in the control situation. Plasma NE concentrations in supine position and in response to the various physiological and/or psychosocial challenges were similar in the control situation and during the recovery period following exercise. On the other hand plasma E (nmol.1-1) was about 50% lower at rest (0.11 +/- 0.03 vs 0.23 +/- 0.04) as well as in response to hand-grip (0.21 +/- 0.04 vs 0.41 +/- 0.20) and the Stroop-test (0.21 +/- 0.05 vs 0.41 +/- 0.15) following the exercise bout.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We examined the effect of maternal weight gain during pregnancy on exercise performance. Ten women performed submaximal cycle (up to 60 W) and treadmill (4 km/h, up to 10% grade) exercise tests at 34 +/- 1.5 (SD) wk gestation and 7.6 +/- 1.7 wk postpartum. Postpartum subjects wearing weighted belts designed to equal their body weight during the antepartum tests performed two additional treadmill tests. Absolute O2 uptake (VO2) at the same work load was higher during pregnancy than postpartum during cycle (1.04 +/- 0.08 vs. 0.95 +/- 0.09 l/min, P = 0.014), treadmill (1.45 +/- 0.19 vs. 1.27 +/- 0.20 l/min, P = 0.0002), and weighted treadmill (1.45 +/ 0.19 vs. 1.36 +/- 0.20 l/min, P = 0.04) exercise. None of these differences remained, however, when VO2 was expressed per kilogram of body weight. Maximal VO2 (VO2max) estimated from the individual heart rate-VO2 curves was the same during and after pregnancy during cycling (1.96 +/- 0.37 to 1.98 +/- 0.39 l/min), whereas estimated VO2max increased postpartum during treadmill (2.04 +/- 0.38 to 2.21 +/- 0.36 l/min, P = 0.03) and weighted treadmill (2.04 +/- 0.38 to 2.19 +/- 0.38 l/min, P = 0.03) exercise. We conclude that increased body weight during pregnancy compared with the postpartum period accounts for 75% of the increased VO2 during submaximal weight-bearing exertion in pregnancy and contributes to reduced exercise capacity. The postpartum increase in estimated VO2max during weight-bearing exercise is the result of consistently higher antepartum heart rates during all submaximal work loads.  相似文献   

20.
Our purpose was to test the hypothesis that hypoxia potentiates exercise-induced sympathetic neural activation in humans. In 15 young (20-30 yr) healthy subjects, lower leg muscle sympathetic nerve activity (MSNA, peroneal nerve; microneurography), venous plasma norepinephrine (PNE) concentrations, heart rate, and arterial blood pressure were measured at rest and in response to rhythmic handgrip exercise performed during normoxia or isocapnic hypoxia (inspired O2 concn of 10%). Study I (n = 7): Brief (3-4 min) hypoxia at rest did not alter MSNA, PNE, or arterial pressure but did induce tachycardia [17 +/- 3 (SE) beats/min; P less than 0.05]. During exercise at 50% of maximum, the increases in MSNA (346 +/- 81 vs. 207 +/- 14% of control), PNE (175 +/- 25 vs. 120 +/- 11% of control), and heart rate (36 +/- 2 vs. 20 +/- 2 beats/min) were greater during hypoxia than during normoxia (P less than 0.05), whereas the arterial pressure response was not different (26 +/- 4 vs. 25 +/- 4 mmHg). The increase in MSNA during hypoxic exercise also was greater than the simple sum of the separate responses to hypoxia and normoxic exercise (P less than 0.05). Study II (n = 8): In contrast to study I, during 2 min of exercise (30% max) performed under conditions of circulatory arrest and 2 min of postexercise circulatory arrest (local ischemia), the MSNA and PNE responses were similar during systemic hypoxia and normoxia. Arm ischemia without exercise had no influence on any variable during hypoxia or normoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号