首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
Five women were studied during exercise and passive heating to determine whether PV dynamics were affected by the menstrual cycle. The exercise bout (80% VO2 peak) on a modified cycle ergometer and the passive heat stress were done in a hot environment (Ta = 50 degrees C, Pw = 1.61 kPa) during the follicular and luteal phase. Esophageal temperature (Tes) was measured continuously. Blood samples were drawn after each 0.2 degree C increase in Tes and VO2 was measured at that time. Initial PV was estimated at rest during the follicular phase. PV changes from rest were calculated at each Tes from Hb and Hct. During passive heating, PV decreased by a mean volume of 156 (+/- 80) ml to 2.83 (+/- 0.09) l in the follicular phase. During the luteal phase, there was a larger volume reduction (300 +/- 100 ml) during passive heating, and the final PV was lower than in the follicular phase and averaged 2.47 +/- 0.18 l. During exercise, PV decreased 463 (+/- 90) ml to 2.50 (+/- 0.11) l in the follicular and 381 (+/- 70) ml to 2.50 (+/- 0.23) l in the luteal phase. These data indicate that there is a menstrual cycle effect on PV dynamics during passive heating such that more fluid is shifted out of the vasculature during the luteal phase. During severe exercise there is a greater fluid loss during the follicular phase, yet the final PV is not different between phases.  相似文献   

2.
The effect of 33 h of wakefulness on the control of forearm cutaneous blood flow and forearm sweating during exercise was studied in three men and three women. Subjects exercised for 30 min at 60% peak O2 consumption while seated behind a cycle ergometer (Ta = 35 degrees C, Pw = 1.0 kPa). We measured esophageal temperature (Tes), mean skin temperature, and arm sweating continuously and forearm blood flow (FBF) as an index of skin blood flow, twice each minute by venous occlusion plethysmography. During steady-state exercise, Tes was unchanged by sleep loss. The sensitivity of FBF to Tes was depressed an average of 30% (P less than 0.05) after 33 h of wakefulness with a slight decrease (-0.15 degrees C, P less than 0.05) in the core temperature threshold for vasodilatory onset. Sleep loss did not alter the Tes at which the onset of sweating occurred; however, sensitivity of arm sweating to Tes tended to be lower but was not significant. Arm skin temperature was not different between control and sleep loss experiments. Reflex cutaneous vasodilation during exercise appeared to be reduced by both central and local factors after 33 h of wakefulness.  相似文献   

3.
In 10 women, external cold and heat exposures were performed both in the middle of luteal phase (L) and in the early follicular phase (F) of the menstrual cycle. Serum progesterone concentrations in L and F averaged 46.0 and 0.9 nmol X l-1, respectively. The experiments took place between 3:00 and 4:30 A.M., when the L-F core temperature difference is maximal. At neutral ambient temperature, esophageal (Tes), tympanic (Tty), rectal (Tre), and mean skin (Tsk) temperatures averaged 0.59 degrees C higher in L than in F. The thresholds for shivering, chest sweating, and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were increased in L by an average of 0.47 degrees C, related to mean body temperature [Tb(es) = 0.87Tes + 0.13 Tsk] and to Tes, Tty, Tre, or Tsk. The above-threshold chest sweat rate and cutaneous heat clearances at the thumb and forearm were also enhanced in L, when related to Tb(es) or time. The metabolic rate, arm blood flow, and heart rate at thermoneutral conditions were increased in L by 5.0%, 1.1 ml X 100 ml-1 X min-1, and 4.6 beats X min-1, respectively. The concomitant increase in threshold temperatures for all autonomic thermoregulatory responses in L supports the concept of a resetting of the set point underlying the basal body temperature elevation in L. The effects of the increased threshold temperatures are counteracted by enhanced heat loss responses.  相似文献   

4.
Ten women [mean maximal O2 uptake (VO2max), 2.81 l X min-1] exercised for 15 min on a cycle ergometer in the middle of the luteal phase (L) and in the early follicular phase (F) of the menstrual cycle at the same constant work rates (mean 122 W) and an ambient temperature of 18 degrees C. Serum progesterone averaged 44.7 nmol X l-1 in L and 0.7 nmol X l-1 in F. After a 4-h resting period, exercise was performed between 3 and 4 A.M., when the L-F core temperature difference is maximal. Preexercise esophageal (Tes), tympanic (Tty), and rectal (Tre) temperatures averaged 0.6 degrees C higher in L. During exercise Tes, Tty, and Tre averaged 0.5 degrees C higher. The thresholds for chest sweating and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were elevated in L by an average of 0.47 degrees C, related to mean body temperature (Tb(es) = 0.87Tes + 0.13Tskin), Tes, Tty, or Tre. The above-threshold chest sweat rate and cutaneous heat clearances were also increased in L. The mean exercise heart rate was 170.0 beats X min-1 in L and 163.8 beats X min-1 in F. The mean exercise VO2 in L (2.21 l X min-1) was 5.2% higher than in F (2.10 l X min-1), the metabolic rate was increased in L by 5.6%, but the net efficiency was 5.3% lower. No significant L-F differences in the respiratory exchange ratio and postexercise plasma lactate were demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We investigated whether menstrual cycle phase would affect temperature regulation during an endurance exercise bout performed at room temperature (Ta) of 22 degrees C and 60% relative humidity. Nine eumenorrheic women [age 27.2 +/- 3.7 yr, peak O2 uptake (VO2) 2.52 +/- 0.35 l/min] performed 60 min of cycle exercise at 65% of peak VO2. Subjects were tested in both midfollicular (F) and midluteal (L) phases, although one woman did not show a rise in serum progesterone (P4) that is typically evident 1 wk after ovulation. VO2, rectal (Tre) and skin (Tsk) temperatures, heart rates (HR), and ratings of perceived exertion (RPE) were measured throughout exercise. Sweat loss (SL) was estimated from pre- and postexercise body weight differences. VO2, SL, and Tsk were not affected by menstrual cycle phase. Preexercise Tre was 0.3 degrees C higher during L than during F conditions, and this difference increased to 0.6 degrees C by the end of exercise (P less than 0.01). Compared with F, HRs during L were approximately 10 beats/min greater (P less than 0.001) at all times, whereas RPE responses were significantly greater (P less than 0.01) by 50 min of cycling. No differences in any measured values were found in the subject whose P4 was low in both test conditions. Results indicate that thermoregulation (specifically, regulation of Tre), as well as cardiovascular strain and perception of exercise, was adversely affected during the L phase.  相似文献   

6.
To evaluate the role of beta-adrenergic receptors in the control of human sweating, we studied six subjects during 40 min of cycle-ergometer exercise (60% maximal O2 consumption) at 22 degrees C 2 h after oral administration of placebo or nonselective beta-blockade (BB, 80 mg propranolol). Internal temperature (esophageal temperature, Tes), mean skin temperature (Tsk), local chest temperature (Tch), and local chest sweat rate (msw) were continuously recorded. The control of sweating was best described by the slope of the linear relationship between msw and Tes and the threshold Tes for the onset of sweating. The slope of the msw-Tes relationship decreased 27% (P less than 0.01), from 1.80 to 1.30 mg X cm-2 X min-1 X degree C-1 during BB. The Tes threshold for sweating (36.8 degrees C) was not altered as the result of BB. These data suggest that BB modified the control of sweating via some peripheral interaction. Since Tsk was significantly (P less than 0.05) reduced during BB exercise, from a control value of 32.8 to 32.2 degrees C, we evaluated the influence of the reduction in local skin temperature (Tsk) in the altered control of sweating. Reductions in Tch accounted for only 45% of the decrease in the slope of the msw-Tes relationship during BB. Since evaporative heat loss requirement during exercise with BB, as estimated from the energy balance equation, was also reduced 18%, compared with control exercise, we concluded that during BB the reduction in sweating at any Tes is the consequence of both a decrease in local Tsk and a direct effect on sweat gland.  相似文献   

7.
To detect shifts in the threshold core temperature (Tc) for sweating caused by particular nonthermal stresses, it is necessary to stabilize or standardize all other environmental and physiological variables which cause such shifts. It is, however, difficult to cause progressive changes in Tc without also causing changes in skin temperature (Tsk). This study compares the technique of body warming by immersion in water at 40 degrees C, and subsequent body cooling in water at 28 degrees C, to determine the core threshold for sweating, with one by which Tc was raised by cycling exercise in air at 20 degrees C, and then lowered by immersion in water at 28 degrees C. The first of these procedures involved considerable shifts in Tsk upon immersion in water at 40 degrees C, and again upon transfer to water at 28 degrees C; the second procedure caused only small changes in Tsk. The onset of sweating at a lower esophageal temperature (Tes) during immersion in water at 40 degrees C (36.9 +/- 0.1 degrees C) than during exercise (37.4 +/- 0.3 degree C) is attributed to the high Tsk since Tes was then unchanged. Likewise, the rapid decline in the sweat rate during immersion at 28 degrees C had the same time course to extinction after the pretreatments. This related more to the Tsk, which was common, than to the levels or rates of change of Tes, which both differed between techniques. Tes fell most rapidly, and thus sweating was extinguished at a lower Tes, following 40 degrees C immersion than following exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In six male subjects the sweating thresholds, heart rate (fc), as well as the metabolic responses to exercise of different intensities [40%, 60% and 80% maximal oxygen uptake (VO2max)], were compared at ambient temperatures (Ta) of 5 degrees C (LT) and 24 degrees C (MT). Each period of exercise was preceded by a rest period at the same temperature. In LT experiments, the subjects rested until shivering occurred and in MT experiments the rest period was made to be of exactly equivalent length. Oxygen uptake (VO2) at the end of each rest period was higher in LT than MT (P less than 0.05). During 20-min exercise at 40% VO2max performed in the cold no sweating was recorded, while at higher exercise intensities sweating occurred at similar rectal temperatures (Tre) but at lower mean skin (Tsk) and mean body temperatures (Tb) in LT than MT experiments (P less than 0.001). The exercise induced VO2 increase was greater only at the end of the light (40% VO2max) exercise in the cold in comparison with MT (P less than 0.001). Both fc and blood lactate concentration [1a]b were lower at the end of LT than MT for moderate (60% VO2max) and heavy (80% VO2max) exercises. It was concluded that the sweating threshold during exercise in the cold environment had shifted towards lower Tb and Tsk. It was also found that subjects exposed to cold possessed a potentially greater ability to exercise at moderate and high intensities than those at 24 degrees C since the increases in Tre, fc and [1a]b were lower at the lower Ta.  相似文献   

9.
The whole body sweating response was measured at rest in eight women during the follicular (F) and the luteal (L) phases of the menstrual cycle. Subjects were exposed for 30-min to neutral (N) environmental conditions [ambient temperature (Ta) 28 degrees C] and then for 90-min to warm (W) environmental conditions (Ta, 35 degrees C) in a direct calorimeter. At the end of the N exposure, tympanic temperature (Tty) was 0.18 (SEM 0.06) degrees C higher in the L than in the F phase (P less than 0.05), whereas mean skin temperature (Tsk) was unchanged. During W exposure, the time to the onset of sweating as well as the concomitant increase in body heat content were similar in both phases. At the onset of sweating, the tympanic threshold temperature (Tty,thresh) was higher in the L phase [37.18 (SEM 0.08) degrees C] than in the F phase [36.95 (SEM 0.07) degrees C; P less than 0.01]. The magnitude of the shift in Tty,thresh [0.23 (SEM 0.07) degrees C] was similar to the L-F difference in Tty observed at the end of the N exposure. The mean skin threshold temperature was not statistically different between the two phases. The slope of the relationship between sweating rate and Tty was similar in F and L. It was concluded that the internal set point temperature of resting women exposed to warm environmental conditions shifted to a higher value during the L phase compared to the F phase of the menstrual cycle; and that the magnitude of the shift corresponded to the difference in internal temperature observed in neutral environmental conditions between the two phases.  相似文献   

10.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

11.
To investigate the effects of the menstrual cycle and of exercise intensity on the relationship between finger blood flow (FBF) and esophageal temperature (Tes), we studied four women, aged 20-32 years. Subjects exercised at 40% and 70% VO2max in the semi-supine posture at an ambient temperature of 20 degrees C. Resting Tes was higher during the luteal phase than the follicular phase (P less than 0.01). There were no significant differences between the two phases in FBF, oxygen consumption, carbon dioxide production, heart rate or minute ventilation at rest and during exercise, respectively. Each regression line of the FBF-Tes relationship consists of two distinct segments of FBF change to Tes (slope 1 and 2). FBF increased at a threshold Tes for vasodilation ([Tes 0]) and the rate of FBF rise became greater at ([Tes 0]) and the rate of FBF rise became greater at another Tes above this threshold ([Tes 0']). For both levels of exercise, [Tes 0] and [Tes 0'] were shifted upward during the luteal phase, but the slopes of the FBF-Tes relationship were almost the same in the two phases of the menstrual cycle. Increasing exercise intensity induced a significant decrease in slope 1 of the FBF-Tes relationship during the follicular (P less than 0.01) and the luteal phases (P less than 0.02), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Bed rest (BR) deconditioning causes excessive increase of exercise core body tempera-ture, while aerobic training improves exercise thermoregulation. The study was designed to determine whether 3 days of 6 degrees head-down bed rest (HDBR) affects body temperature and sweating dynamics during exercise and, if so, whether endurance training before HDBR modifies these responses. Twelve healthy men (20.7+/-0.9 yrs, VO2max: 46+/-4 ml x kg(-1) x min(-1) ) underwent HDBR twice: before and after 6 weeks of endurance training. Before and after HDBR, the subjects performed 45 min sitting cycle exercise at the same workload equal to 60% of VO2max determined before training. During exercise the VO2, HR, tympanic (Ttymp) and skin (Tsk) temperatures were recorded; sweating dynamics was assayed from a ventilated capsule on chest. Training increased VO2max by 12.1% (p<0.001). Resting Ttymp increased only after first HDBR (by 0.22 +/- 0.08 degrees C, p<0.05), while exercise equilibrium levels of Ttymp were increased (p<0.05) by 0.21 +/- 0.07 and 0.26 +/- 0.08 degrees C after first and second HDBR, respectively. Exercise mean Tsk tended to be lower after both HDBR periods. Total sweat loss and time-course of sweating responses were similar in all exercise tests. The sweating threshold related to Ttymp was elevated (p<0.05) only after first HDBR. In conclusion: six-week training regimen prevents HDBR-induced elevation of core temperature (Ttymp) at rest but not during ex-ercise. The post-HDBR increases of Ttymp without changes in sweating rate and the tendency for lower Tsk suggest an early (<3d) influence of BR on skin blood flow.  相似文献   

13.
We evaluated the effects of the menstrual cycle and physical training on heat loss (sweating and cutaneous vasodilation) responses during moderate exercise in a temperate environment. Ten untrained (group U) and seven endurance-trained (group T) women (maximal O2 uptake of 36.7+/-1.1 vs. 49.4+/-1.7 ml.kg-1.min-1, respectively; P<0.05) performed a cycling exercise at 50% maximal O2 uptake for 30 min during both the midfollicular and midluteal menstrual phase in a temperate environment (ambient temperature of 25 degrees C, relative humidity of 45%). In group U, plasma levels of estrone, estradiol, and progesterone at rest and esophageal temperature (Tes) during exercise were significantly higher during the midluteal than during the midfollicular phase (P<0.05). Sweating rate and cutaneous blood flow (measured via laser-Doppler flowmetry) on the chest, back, forearm, and thigh were lower during the midluteal than during the midfollicular phase during exercise. Tes threshold for heat loss responses was significantly higher and sensitivity of the heat loss responses was significantly lower in the midluteal than in the midfollicular phase, regardless of body site. These effects of the menstrual cycle in group U were not observed in group T. The sweating rate and cutaneous blood flow were significantly higher in group T than in group U, regardless of menstrual phase or body site. Tes threshold for heat loss responses was significantly lower and sensitivity of heat loss responses was significantly greater in group T than in group U in the midluteal phase; however, sensitivity of the sweating response was significantly greater in the midfollicular phase. These results suggest that heat loss responses in group U were inhibited in the midluteal phase compared with in the midfollicular phase. Menstrual cycle had no remarkable effects in group T. Physical training improved heat loss responses, which was more marked in the midluteal than in the midfollicular phase.  相似文献   

14.
This study examined both the thermal and metabolic responses of individuals in cool (30 degrees C, n = 9) and cold (18 degrees C, n = 7; 20 degrees C, n = 2) water. Male volunteers were immersed up to the neck for 1 h during both seated rest (R) and leg exercise (LE). In 30 degrees C water, metabolic rate (M) remained unchanged over time during both R (115 W, 60 min) and LE (528 W, 60 min). Mean skin temperature (Tsk) declined (P less than 0.05) over 1 h during R, while Tsk was unchanged during LE. Rectal (Tre) and esophageal (Tes) temperatures decreased (P less than 0.05) during R (delta Tre, -0.5 degrees C; delta Tes, -0.3 degrees C) and increased (P less than 0.05) during LE (delta Tre, 0.4 degrees C; Tsk, 0.4 degrees C). M, Tsk, Tre, and Tes were higher (P less than 0.05) during LE compared with R. In cool water, all regional heat flows (leg, chest, and arm) were generally greater (P less than 0.05) during LE than R. In cold water, M increased (P less than 0.05) over 1 h during R but remained unchanged during LE. Tre decreased (P less than 0.05) during R (delta Tre, -0.8 degrees C) but was unchanged during LE. Tes declined (P less than 0.05) during R (delta Tes, -0.4 degrees C) but increased (P less than 0.05) during LE (delta Tes, 0.2 degrees C). M, Tre, and Tes were higher (P less than 0.05), whereas Tsk was not different during LE compared with R at 60 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS.In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.  相似文献   

16.
Endogenous hormones subtly alter women's response to heat stress   总被引:1,自引:0,他引:1  
The thermoregulatory responses of menstruant women to exercise in dry heat (dry-bulb temperature/wet-bulb temperature = 48/25 degrees C) were evaluated at three times during the menstrual cycle: menstrual flow (MF), 3-5 days during midcycle including ovulation (OV), and in the middle of the luteal phase (LU). Serum concentrations of estradiol-17 beta (E2), progesterone (Pg), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were measured by radioimmunoassay, and these values were used to determine the dates of OV (peak LH and FSH) and LU (peak postovulatory Pg). After heat acclimation, subjects received heat stress tests (HST) consisting of a 2-h cycle-ergometer exercise at 30% of maximal O2 consumption in the heat. Rectal (Tre) and mean skin (Tsk) temperatures, heart rate (HR), and sweat rate on the chest and thigh were recorded continuously. Total sweat loss (Msw), as indicated by weight loss, was recorded every 20 min, and equivalent water replacement was given. Steady-state exercise metabolic rate (M) was measured at 45 and 110 min. Seven of eight subjects had ovulatory cycles during experimental months. At rest, Tre was lowest at OV and significantly higher at LU. During steady-state exercise both Tre and Tsk were lowest at OV and significantly higher at LU. There were no differences between phases in Msw, sweat rate on the chest and thigh or M. Despite higher Tre and Tsk at LU, all subjects were able to complete the 2-h of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of the discontinuation (DET) of an endurance training/heat acclimation (T/A) program on vascular volumes were studied in 16 adult males. Resting and exercise blood volume dynamics were examined prior to and during an exercise task performed after completion of T/A (CT1) and again at the end of DET (CT2). T/A consisted of cycling at 60% of peak VO2 for 90 min per day, 6 days per week, for 4 weeks. Ambient temperature was 20 degrees C for the first 3 weeks and 40 degrees C for the last week (rh = 30-35%). Subjects were randomly assigned to one of the following DET conditions: 1) cycling one day per week at 40 degrees C, 2) cycling one day per week at 20 degrees C, 3) resting one day per week at 40 degrees C, 4) control. The exercise tasks consisted of 60 min of continuous cycle ergometer exercise at 50% of peak VO2 (Ta = 30 degrees C, rh = 35%). Although significant differences were found between CT1 and CT2, there were no interactions between the various DET conditions. Resting red cell volume decreased 98 ml and plasma volume decreased 248 ml following DET. A reduction in plasma protein content accounted for 97% of the decrease in plasma volume. Hemoconcentration occurred during exercise in both CT1 and CT2, while there were slight increases in plasma [Na+] and [Cl-] and a rapid rise in [K+]. It appears that a single exercise and/or heat exposure per week was not different from complete cessation of endurance exercise in the heat with regard to maintenance of the various vascular volumes.  相似文献   

18.
Thermoregulation during exercise in relation to sex and age   总被引:1,自引:0,他引:1  
The thermoregulatory responses to 1 h exercise of 14 male (age range 18--65 year) and 7 female (age range 18--46 year) athletes and 4 (3 male and 1 female) non-athletic subjects have been investigated in a moderate environment (Tdb = 21 degrees C, Twb = 15 degrees C and rh less than 50%) and analysed in relation to age, sex, and maximum aerobic power output (VO2max). The maximal sweat loss (Msw max) under the given conditions was closely related (r = + 0.90) to VO2max and for a given relative work load (%VO2max), rectal (Tre) and mean skin (Tsk) temperatures was the same in all subjects. Sweat loss (Msw) was linearly related to total heat production (H) and to peripheral tissue heat conductance (K) and if expressed in relative terms (%Mswmax) was linearly related to Tre. For a given Tre relative sweat rate was identical in the groups studied. From these results it would seem that during exercise Tre rises to meet the requirements of heat dissipation by establishing a thermal gradient from core to skin and stimulating sweating in proportion to maximal capacity of the system. Thus provided the thermal responses to work were standardised using the appropriate physiological variables, there was no evidence to be found for differences in thermoregulatory function which could be ascribed to sex or age.  相似文献   

19.
Five males [age 28 +/- 8 yr; maximum O2 uptake (VO2max) 50 +/- 6 ml O2 . kg-1 . min-1; body wt 70 +/- 3 kg; DuBois surface area 1.85 +/- 0.02 m2] exercised on a cycle ergometer, placed on a Potter scale, at 31% VO2max for up to 2 h at an ambient temperature (Ta) of 25 degrees C and a dew-point temperature of 15 degrees C. Air movement was varied from still air to 0.4 and 2 m/s. Each subject, in separate runs, wore a track suit (TS ensemble) of 60% polyester-40% cotton (effective clo = 0.5); a Gortex parka (GOR ensemble), covering a sweat shirt and bottom of TS (effective clo = 1.4); or the TS ensemble covered by polyethylene overgarment (POG ensemble). Esophageal, skin temperature (Tsk) at eight sites, and heart rate were continuously recorded. Dew-point sensors recorded temperatures under the garments at ambient and chest (windward site) and midscapular sites. Local skin wettedness (loc w) and ratio of evaporative heat loss (Esk) to maximum evaporative capacity were determined. An observed average effective permeation (Pe, W . m-2 . Torr-1) was calculated as Esk/loc w (Ps,sk - Pw), where w is the average of chest and back loc w and (Ps,sk - Pw) is the gradient of skin saturation vapor pressure at Tsk and Ta. Additionally, the local effective evaporative coefficient was determined for chest and back sites by Esk/(Ps,dpl - Pw). The GOR ensemble produced an almost as high a Pe as the TS ensemble (82-86% of Pe with TS in still air and 0.4- and 2-m/s conditions). Direct dew-point recording offers an easy practical dimension to the study of efficacy of latent heat loss and skin wettedness properties through garments.  相似文献   

20.
Core temperature "null zone".   总被引:1,自引:0,他引:1  
An experimental protocol was designed to investigate whether human core temperature is regulated at a "set point" or whether there is a neutral zone between the core thresholds for shivering thermogenesis and sweating. Nine male subjects exercised on an underwater cycle ergometer at a work rate equivalent to 50% of their maximum work rate. Throughout an initial 2-min rest period, the 20-min exercise protocol, and the 100-min recovery period, subjects remained immersed to the chin in water maintained at 28 degrees C. On completion of the exercise, the rate of forehead sweating (Esw) decayed from a mean peak value of 7.7 +/- 4.2 (SD) to 0.6 +/- 0.3 g.m-2.min-1, which corresponds to the rate of passive transpiration, at core temperatures of 37.42 +/- 0.29 and 37.39 +/- 0.48 degrees C, as measured in the esophagus (Tes) and rectum (Tre), respectively. Oxygen uptake (VO2) decreased rapidly from an exercising level of 2.11 +/- 0.25 to 0.46 +/- 0.09 l/min within 4 min of the recovery period. Thereafter, VO2 remained stable for approximately 20 min, eventually increased with progressive cooling of the core region, and was elevated above the median resting values determined between 15 and 20 min at Tes = 36.84 +/- 0.38 degrees C and Tre = 36.80 +/- 0.39 degrees C. These results indicate that the core temperatures at which sweating ceases and shivering commences are significantly different (P less than 0.001) regardless of whether core temperature is measured within the esophagus or rectum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号