首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cavasin MA  Tao Z  Menon S  Yang XP 《Life sciences》2004,75(18):2181-2192
There are conflicting data about gender differences in cardiac function after myocardial infarction (MI), including cardiac rupture and mortality. Using a mouse model of MI, we recently found that the cardiac rupture rate during the first week after MI was significantly lower in females than in males, suggesting that females have attenuated structural remodeling. Thus in this study, we attempted to determine whether: a) females have attenuated remodeling and faster healing during the early phase post-MI, and b) females have better cardiac function and outcome during the chronic phase compared to males. MI was induced in 12-week-old male and female C57BL/6J mice. Signs of early remodeling, including cardiac rupture, infarct expansion, inflammatory response, and collagen deposition, were studied during the first 2 weeks post-MI. Left ventricular remodeling and function were followed for 12 weeks post-MI. We found that males had a higher rate of cardiac rupture, occurring mainly at 3 to 5 days of MI and associated with a higher infarct expansion index. Neutrophil infiltration at the infarct border was more pronounced in males than females during the first days of MI, which were also characterized by increased MMP activity. However, the number of infiltrating macrophages was significantly higher in females at day 4. During the chronic phase post-MI, males had significantly poorer LV function, more prominent dilatation and significant myocyte hypertrophy compared to females. In conclusion, males have delayed myocardial healing, resulting in cardiac rupture, and the survivors have poorer cardiac function and pronounced maladaptive remodeling, whereas females show a better outcome during the development of HF.  相似文献   

2.

Aims

Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI.

Methods and Results

Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15.

Conclusion

Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.  相似文献   

3.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

4.
Cardiac rupture can be fatal after myocardial infarction (MI). Experiments in animals revealed gender differences in rupture rate; however, patient data are controversial. We found a significantly higher rupture rate in testosterone-treated female mice within 1 wk after MI, whereas castration in males significantly reduced rupture. We hypothesized that testosterone may adversely affect remodeling after MI, exaggerating the inflammatory response and increasing cardiac rupture, whereas estrogen may be cardioprotective, attenuating early remodeling and reducing rupture rate. We studied the effect of gender and hormone manipulation on morphological and histological changes during early remodeling after MI in 4-wk-old male and female C57BL/6J mice and how these events could affect cardiac function. Females were randomly divided into 1) sham ovariectomy + placebo (s-ovx + P), 2) s-ovx + testosterone (T), 3) ovx + P, and 4) ovx + T; males were divided into 1) sham castration + P (s-cas + P), 2) s-cas + 17beta-estradiol (E), 3) cas + P, and 4) cas + E. At 6 wk after gonadectomy and hormone manipulation, MI was induced. Mice were randomly killed 1, 2, 4, 7, and 14 days after MI. The left ventricle was weighed and sectioned for evaluation of MI size, infarct expansion index (IEI), and neutrophil infiltration. Transthoracic echocardiography was performed in conscious mice in the 14-day group before organ harvest. Cardiac rupture rate and IEI were significantly higher in testosterone-treated females and noncastrated males than in controls; these effects were accompanied by enhanced neutrophil infiltration and pronounced deterioration of cardiac function and left ventricular dilatation. Ovariectomy in females and estrogen supplementation in males did not confer significant protection from cardiac rupture, IEI, or neutrophil infiltration. We concluded that, in mice, high testosterone levels enhance acute myocardial inflammation, adversely affecting myocardial healing and early remodeling, as indicated by increased cardiac rupture, and possibly causing deterioration of cardiac function after MI, and, conversely, estrogen seems to have no significant protective effect in the acute phase after MI.  相似文献   

5.
Left ventricular (LV) remodeling is known to contribute to morbidity and mortality after myocardial infarction (MI). Because LV remodeling is strongly associated with an inflammatory response, we investigated whether or not TLR-4 influences LV remodeling and survival in a mice model of MI. Six days after MI induction, TLR4 knockout (KO)-MI mice showed improved LV function 32 and reduced LV remodeling as indexed by reduced levels of atrial natriuretic factor and total collagen as well as by a reduced heart weight to body weight ratio when compared with WT-MI mice. This was associated with a reduction of protein levels of the intracellular TLR4 adapter protein MyD88 and enhanced protein expression of the anti-hypertrophic JNK in KO-MI mice when compared with wild-type (WT)-MI mice. In contrast, protein activation of the pro-hypertrophic kinases protein kinase Cdelta and p42/44 were not regulated in KO-MI mice when compared with WT-MI mice. Improved LV function, reduced cardiac remodeling, and suppressed intracellular TLR4 signaling in KO-MI mice were associated with significantly improved survival compared with WT-MI mice (62 vs 23%; p < 0.0001). TLR4 deficiency led to improved survival after MI mediated by attenuated left ventricular remodeling.  相似文献   

6.
Tao ZY  Cavasin MA  Yang F  Liu YH  Yang XP 《Life sciences》2004,74(12):1561-1572
We previously found that male mice with myocardial infarction (MI) had a high rate of cardiac rupture, which generally occurred at 3 to 5 days after MI. Since matrix metalloproteinases (MMPs) play an important role in infarct healing, tissue repair and extracellular matrix (ECM) remodeling post-MI, we studied the temporal relationship of MMP expression and inflammatory response to cardiac rupture after acute MI. Male C57BL/6J mice were subjected to MI (induced by ligating the left anterior descending coronary artery) and killed 1, 2, 4, 7 or 14 days after MI. MMP-2 and MMP-9 activity in the heart were measured by zymography. Collagen content was measured by hydroxyproline assay. We found that after MI, MMP-9 activity increased as early as 1 day and reached a maximum by 2-4 days, associated with a similar increase in neutrophil and macrophage infiltration in the infarct area. MMP-2 started to increase rapidly within 4 days, reaching a maximum by 7 days and remaining high even at 14 days. Intense macrophage infiltration appeared by 4 days after MI and then gradually decreased within 7 to 14 days. Collagen content was unchanged until 4 days after MI, at which point it increased and remained high thereafter. Our data suggest that in mice, overexpression of MMP-2 and MMP-9 (possibly expressed mainly by neutrophils and macrophages) may lead to excessive ECM degradation in the early phase of MI, impairing infarct healing and aggravating early remodeling which in turn causes cardiac rupture.  相似文献   

7.

Background

We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI.

Methods and Results

In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group.

Conclusion

The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI.  相似文献   

8.
Several lines of evidence suggest that the immune activation after myocardial infarction (MI) induces secondary myocardial injury. Although dendritic cells (DC) are potent regulators of immunity, their role in MI is still undetermined. We investigated the effect of DC modulation by CSF on left ventricular (LV) remodeling after MI. MI was induced by ligation of the left coronary artery in male Wistar rats. G-CSF (20 microg/kg/day, MI-G, n = 33), a GM-CSF inducer (romurtide, 200 microg/kg/day, MI-GM, n = 28), or saline (MI-C, n = 55) was administered for 7 days. On day 14, MI-G animals had higher LV max dP/dt and smaller LV dimensions, whereas MI-GM animals had lower LV max dP/dt and larger LV dimensions than did MI-C animals, despite similar infarct size. In MI-C, OX62(+) DC infiltrated the infarcted and border areas, peaking on day 7. Bromodeoxyuridine-positive DC were observed in the border area during convalescence. Infiltration by DC was decreased in MI-G animals and increased in MI-GM animals compared with MI-C (p < 0.05). In the infarcted area, the heat shock protein 70, TLR2 and TLR4, and IFN-gamma expression were reduced in MI-G, but increased in MI-GM in comparison with those in MI-C animals. IL-10 expression was higher in MI-G and lower in MI-GM than in MI-C animals. In conclusion, G-CSF improves and GM-CSF exacerbates early postinfarction LV remodeling in association with modulation of DC infiltration. Suppression of DC-mediated immunity could be a new strategy for the treatment of LV remodeling after MI.  相似文献   

9.
Left ventricular (LV) remodeling, including cardiomyocyte necrosis, scar formation, LV geometric changes, and cardiomyocyte hypertrophy, contributes to cardiac dysfunction and mortality after myocardial infarction (MI). Although precise cellular signaling mechanisms for LV remodeling are not fully elucidated, G(q) protein-coupled receptor signaling pathway, including diacylglycerol (DAG) and PKC, are involved in this process. DAG kinase (DGK) phosphorylates DAG and controls cellular DAG levels, thus acting as a negative regulator of PKC and subsequent cellular signaling. We previously reported that DGK inhibited angiotensin II and phenylephrine-induced activation of the DAG-PKC signaling and subsequent cardiac hypertrophy. The purpose of this study was to examine whether DGK modifies LV remodeling after MI. Left anterior descending coronary artery was ligated in transgenic mice with cardiac-specific overexpression of DGKzeta (DGKzeta-TG) and wild-type (WT) mice. LV chamber dilatation (4.12 +/- 0.10 vs. 4.53 +/- 0.32 mm, P < 0.01), reduction of LV systolic function (34.8 +/- 8.3% vs. 28.3 +/- 4.8%, P < 0.01), and increases in LV weight (95 +/- 3.6 vs. 111 +/- 4.1 mg, P < 0.05) and lung weight (160 +/- 15 vs. 221 +/- 25 mg, P < 0.05) at 4 wk after MI were attenuated in DGKzeta-TG mice compared with WT mice. In the noninfarct area, fibrosis fraction (0.51 +/- 0.04, P < 0.01) and upregulation of profibrotic genes, such as transforming growth factor-beta1 (P < 0.01), collagen type I (P < 0.05), and collagen type III (P < 0.01), were blocked in DGKzeta-TG mice. The survival rate at 4 wk after MI was higher in DGKzeta-TG mice than in WT mice (61% vs. 37%, P < 0.01). In conclusion, these results demonstrate the first evidence that DGKzeta suppresses LV structural remodeling and fibrosis and improves survival after MI. DGKzeta may be a potential novel therapeutic target to prevent LV remodeling after MI.  相似文献   

10.
This study was conducted to examine the influence of acute streptozotocin‐induced diabetes on cardiac remodelling and function in mice subjected to myocardial infarction (MI) by coronary artery ligation. Echocardiography analysis indicated that diabetes induced deleterious cardiac functional changes as demonstrated by the negative differences of ejection fraction, fractional shortening, stroke volume, cardiac output and left ventricular volume 24 hrs after MI. Temporal analysis for up to 2 weeks after MI showed higher mortality in diabetic animals because of cardiac wall rupture. To examine extracellular matrix remodelling, we used fluorescent molecular tomography to conduct temporal studies and observed that total matrix metalloproteinase (MMP) activity in hearts was higher in diabetic animals at 7 and 14 days after MI, which correlated well with the degree of collagen deposition in the infarct area visualized by scanning electron microscopy. Gene arrays indicated temporal changes in expression of distinct MMP isoforms after 1 or 2 weeks after MI, particularly in diabetic mice. Temporal changes in cardiac performance were observed, with a trend of exaggerated dysfunction in diabetic mice up to 14 days after MI. Decreased radial and longitudinal systolic and diastolic strain rates were observed over 14 days after MI, and there was a trend towards altered strain rates in diabetic mouse hearts with dyssynchronous wall motion clearly evident. This correlated with increased collagen deposition in remote areas of these infarcted hearts indicated by Masson's trichrome staining. In summary, temporal changes in extracellular matrix remodelling correlated with exaggerated cardiac dysfunction in diabetic mice after MI.  相似文献   

11.
Effects of cardiac specific overexpression of beta(2)-adrenergic receptors (beta(2)-AR) on the development of heart failure (HF) were studied in wild-type (WT) and transgenic (TG) mice following myocardial infarction (MI) by coronary artery occlusion. Animals were studied by echocardiography at weeks 7 to 8 and by catheterization at week 9 after surgery. Post-infarct mortality, due to HF or cardiac rupture, was not different among WT mice, and there was no difference in infarct size (IS). Compared with the sham-operated group (all P < 0.01), WT mice with moderate (<36%) and large (>36%) IS developed lung congestion, cardiac hypertrophy, left ventricular (LV) dilatation, elevated LV end-diastolic pressure (LVEDP), and suppressed maximal rate of increase of LV pressure (LV dP/dt(max)) and fractional shortening (FS). Whereas changes in organ weights and echo parameters were similar to those in infarcted WT groups, TG mice had significantly higher levels of LV contractility in both moderate (dP/dt(max) 4,862 +/- 133 vs. 3,694 +/- 191 mmHg/s) and large IS groups (dP/dt(max) 4,556 +/- 252 vs. 3,145 +/- 312 mmHg/s, both P < 0.01). Incidence of pleural effusion (36% vs. 85%, P < 0.05) and LVEDP levels (6 +/- 0.3 vs. 9 +/- 0.8 mmHg, P < 0.05) were also lower in TG than in WT mice with large IS. Thus beta(2)-AR overexpression preserved LV contractility following MI without adverse consequence.  相似文献   

12.
Hearts of normotensive angiotensin II type 2 receptor (AT2)-deficient mice do not develop fibrosis after angiotensin II-induced chronic hypertension. Thus, the goal of our study was to clarify whether AT2 knockouts (KOs) are also characterized by altered left ventricular (LV) function and modified remodeling of the extracellular matrix (ECM) after induction of myocardial infarction (MI). MI was induced in 5-mo-old female AT2-deficient mice and controls by occlusion of the left coronary artery. Time-matched sham-operated animals served as controls. After 48 h, the first sets of mice were hemodynamically characterized using a pressure-tip catheter (n=8/group). We also obtained pressure volume loops using a microconductance catheter in additional sets of animals 3 wk after induction of MI (n=7/group). Finally, the collagen index was illustrated by Sirius red staining and quantified by digital analysis. Whereas the LV function of sham-operated animals did not differ between both genotypes, the collagen index was 44% lower in KO animals. Forty-eight hours and 3 wk post-MI, systolic and diastolic LV function were impaired in both AT2-deficient and wild-type (WT) animals to the same extent by approx 45%. No differences were found between the two genotypes with respect to LV hypertrophy and the fibrosis index in the infarcted and noninfarcted areas 3 wk post-MI. While AT2-KO mice had less cardiac collagen content under basal conditions, the receptor deficiency had no significant influence on LV function at the two investigated time points after induction of MI or on the remodeling of ECM at the latter time point. Thus, hypetension-induced fibrosis is probably triggered by other control mechanisms than fibrosis induced by MI.  相似文献   

13.
Infarct healing is dependent on an inflammatory reaction that results in leukocyte infiltration and clearance of the wound from dead cells and matrix debris. However, optimal infarct healing requires timely activation of "stop signals" that suppress inflammatory mediator synthesis and mediate resolution of the inflammatory infiltrate, promoting formation of a scar. A growing body of evidence suggests that interactions involving the transmembrane receptor CD44 may play an important role in resolution of inflammation and migration of fibroblasts in injured tissues. We examined the role of CD44 signaling in infarct healing and cardiac remodeling using a mouse model of reperfused infarction. CD44 expression was markedly induced in the infarcted myocardium and was localized on infiltrating leukocytes, wound myofibroblasts, and vascular cells. In comparison with wild-type mice, CD44(-/-) animals showed enhanced and prolonged neutrophil and macrophage infiltration and increased expression of proinflammatory cytokines following myocardial infarction. In CD44(null) infarcts, the enhanced inflammatory phase was followed by decreased fibroblast infiltration, reduced collagen deposition, and diminished proliferative activity. Isolated CD44(null) cardiac fibroblasts had reduced proliferation upon stimulation with serum and decreased collagen synthesis in response to TGF-beta in comparison to wild-type fibroblasts. The healing defects in CD44(-/-) mice were associated with enhanced dilative remodeling of the infarcted ventricle, without affecting the size of the infarct. Our findings suggest that CD44-mediated interactions are critically involved in infarct healing. CD44 signaling is important for resolution of the postinfarction inflammatory reaction and regulates fibroblast function.  相似文献   

14.
We previously demonstrated that injection of IL-2-activated natural killer (NK) cells contribute to vascular remodeling via a4b7 integrin and killer cell lectin-like receptor (KLRG) 1 and promote cardiac repair following myocardial infarction (MI). The aim of the present study is to test the hypothesis that injection of recombinant human interleukin (rhIL)-2 improves angiogenesis and preserves heart function after MI. A single IV injection of rhIL-2 two days following MI improved by 27.7% the left ventricular (LV) fractional shortening of immune competent (C57Bl6) mice, but had no effect on cardiac function of immune-deficient (NOD-SCID IL2Rγnull) mice. Immunohistochemical analysis of C57Bl6 cross sections of heart revealed that collagen deposition was reduced by 23.1% and that capillary density was enhanced in the scar area and the border zone of the infarct respectively by 22.4% and 33.6% following rhIL-2 injection. In addition, rhIL-2 enhanced 1.6-fold the in vivo endothelial cell proliferation index and 1.8-fold the number of NK cell infiltrating the infarcted heart, but had no effect on the number of cardiac CD4 and CD8 cells. In vitro, rhIL-2 activated NK cells enhanced cardiac endothelial cell proliferation by 17.2%. Here we show that a single IV injection of rhIL-2 positively impacted cardiac function by improving angiogenesis through a process involving NK cells.  相似文献   

15.
Antiplatelet agents such as sarpogrelate (SAR), a 5-hydroxytryptamine antagonist, and cilostazol (CIL), a phosphodiesterase-III inhibitor, are used in the management of peripheral vascular disease. In this study, we tested the hypothesis that both SAR and CIL prevent cardiac remodeling and improve cardiac function in congestive heart failure (CHF) due to myocardial infarction (MI). Post-MI rats (3 weeks after the occlusion of coronary artery) received either vehicle (MI+V, n = 36), SAR (MI+SAR; 5 mg xc kg(-1) x day(-1), n = 35) or CIL (MI+CIL; 5 mg x kg(-1) x day(-1), n = 34) from day 21 to day 56. Sham-operated rats (n = 29) served as controls. Electrocardiographic, echocardiographic, and hemodynamic parameters were measured on day 56. Treatment of infarcted animals with SAR or CIL significantly improved the left ventricular (LV) dimensions, LV fractional shortening, cardiac output, stroke volume, mean arterial pressure, LV diastolic function, and LV systolic pressure, as well as rates of LV pressure development and pressure decay. Although cardiac hypertrophy was reduced, both SAR and CIL had no effect on infarct size or MI-associated QTc prolongation. However, SAR decreased whereas CIL increased the incidence of ventricular arrhythmias and the mean number of episodes in infarcted animals. Mortality during the treatment period was decreased by 17% with SAR and increased by 10% with CIL, but these changes were not significant statistically. The data in this study suggest that both SAR and CIL prevent cardiac remodeling and improve cardiac function in MI-induced CHF; however, CIL unlike SAR increased the incidence of arrhythmias and adversely affected patient mortality.  相似文献   

16.
An emerging therapy to limit adverse heart remodelling following myocardial infarction (MI) is the injection of polymers into the infarcted left ventricle (LV). In the few numerical studies carried out in this field, the definition and distribution of the hydrogel in the infarcted myocardium were simplified. In this computational study, a more realistic biomaterial distribution was simulated after which the effect on cardiac function and mechanics was studied. A validated finite element heart model was used in which an antero-apical infarct was defined. Four infarct models were created representing different temporal phases in the progression of a MI. Hydrogel layers were simulated in the infarcted myocardium in each model. Biomechanical and functional improvement of the LV was found after hydrogel inclusion in the ischaemic models representing the early phases of MI. In contrast, only functional but no mechanical restitution was shown in the scar model due to hydrogel presence.  相似文献   

17.
Post-myocardial infarction (MI), chemokine homing of inflammatory cells into the injured left ventricle (LV) regulates ventricular remodeling, in part by stimulating the extracellular matrix response. The CC chemokine receptor 5 (CCR5) is a key chemokine receptor expressed on macrophages, and CCR5 ligands are highly upregulated post-MI. We hypothesized that deletion of CCR5 would attenuate adverse remodeling by decreasing inflammatory cell recruitment. Accordingly, we examined LV function, macrophage recruitment and activation, and collagen content in wild-type (WT, n = 25) and CCR5 null (n = 33) mice at 7 days post-MI. Both groups had similar infarct sizes (44 ± 2% in WT and 42 ± 2% in CCR5 null; P = 0.37). However, the LV remodeling index (end diastolic volume/LV mass) increased to a larger extent in CCR5 null (1.28 ± 0.08 μl/mg for CCR5 null and 1.02 ± 0.06 μl/mg for WT; P < 0.05). Although numbers of infiltrated macrophages were similar in WT and CCR5 null mice, CCR5-deficient macrophages isolated from the infarct zone displayed >50% decrease in gene expression levels of proinflammatory activation markers (interleukin-1β, interleukin-6, and tumor necrosis factor-α), as well as anti-inflammatory activation markers (arginase 1, CD163, mannose receptor, and transforming growth factor-β1) compared with WT (all P < 0.05). Concomitant with the reduced macrophage activation, heat shock protein-47 and collagen type I precursor levels in the infarct region decreased in the CCR5 null (1.2 ± 0.3 units in the CCR5 null and 2.3 ± 0.4 units in the WT; P < 0.05), while collagen fragments increased (88.3 ± 5.9 units in the CCR5 null and 32.7 ± 8.5 units in the WT; P < 0.05). We conclude that CCR5 deletion impairs LV remodeling by hindering macrophage activation, which stimulates an imbalance in collagen metabolism and increases the remodeling index.  相似文献   

18.
Myocardial necrosis triggers inflammatory changes and a complex cytokine cascade that are only incompletely understood. The chemokine receptor CCR1 mediates inflammatory recruitment in response to several ligands released by activated platelets and up-regulated after myocardial infarction (MI). Here, we assess the effect of CCR1 on remodelling after MI using Ccr1-deficient (Ccr1(-)(/-)) mice. MI was induced in Ccr1(-/-) or wild-type mice by proximal ligation of the left anterior descending (LAD). Mice were sacrificed and analysed at day 1, 4, 7, 14 and 21 after MI. While initial infarct areas and areas at risk did not differ between groups, infarct size increased to 20.6+/-8.4% of the left ventricle (LV) in wild-type mice by day 21 but remained at 11.2+/-1.2% of LV (P<0.05) in Ccr1(-/-) mice. This attenuation in infarct expansion was associated with preserved LV function, as analysed by isolated heart studies according to Langendorff. Left ventricular developed pressure was 84.5+/-19.8 mmHg in Ccr1(-/-) mice compared to 49.0+/-19.7 mmHg in wild-type mice (P<0.01) and coronary flow reserve was improved in Ccr1(-/-) mice. An altered post-infarct inflammatory pattern was observed in Ccr1(-/-) mice characterized by diminished neutrophil infiltration, accelerated monocyte/lymphocyte infiltration, decreased apoptosis, increased cell proliferation and earlier myofibroblast population in the infarcted tissue. In conclusion, functional impairment and structural remodelling after MI is reduced in the genetic absence of Ccr1 due to an abrogated early inflammatory recruitment of neutrophils and improved tissue healing, thus revealing a potential therapeutic target.  相似文献   

19.
20.
Zhang S  Ge J  Sun A  Xu D  Qian J  Lin J  Zhao Y  Hu H  Li Y  Wang K  Zou Y 《Journal of cellular biochemistry》2006,99(4):1132-1147
A variety of adult stem cells have been used to transplant into the infarcted (MI) heart, however, comparative studies are lacking to show more suitable source of cells for transplantation. We have identified a single non-hematopoietic mesenchymal stem cell subpopulation (snMSCs) isolated from human bone marrow and clonally purified, that over 99% of them expressed MSC marker proteins and cardiomyocyte marker proteins when induction in vitro. We also compared the effects of the snMSCs with unpurified MSC (uMSCs), mononuclear cells (BMMNCs), or peripheral blood mononuclear cells (PBMNCs) on myocardial repair after induction of MI in rats. Ninety days later, we observed a better cardiac function assessed by ejection fraction, fraction of shortening and lung wet/dry weight ratios, less remodeling of left ventricle (LV), lower collagen density in the LV, and more vessels in the ischemic wall in the snMSCs transplantation group than in other cell-transplanted groups. Furthermore, the transplanted cells expressing cardiomyocyte specific proteins or vascular endothelial cell marker proteins were more in the snMSCs group than in other ones. We conclude that transplantation with single clonally purified MSCs seems to be more beneficial to the cardiac repair than with other stem cells after MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号