首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
All Hedgehog (Hh) proteins are released from producing cells despite being synthesized as N- and C-terminally lipidated, membrane-tethered molecules. Thus, a cellular mechanism is needed for Hh solubilization. We previously suggested that a disintegrin and metalloprotease (ADAM)-mediated shedding of Sonic hedgehog (ShhNp) from its lipidated N and C termini results in protein solubilization. This finding, however, seemed at odds with the established role of N-terminal palmitoylation for ShhNp signaling activity. We now resolve this paradox by showing that N-palmitoylation of ShhNp N-terminal peptides is required for their proteolytic removal during solubilization. These peptides otherwise block ShhNp zinc coordination sites required for ShhNp binding to its receptor Patched (Ptc), explaining the essential yet indirect role of N-palmitoylation for ShhNp function. We suggest a functional model in which membrane-tethered multimeric ShhNp is at least partially autoinhibited in trans but is processed into fully active, soluble multimers upon palmitoylation-dependent cleavage of inhibitory N-terminal peptides.  相似文献   

2.
Sonic hedgehog (Shh) signaling plays major roles in embryonic development and has also been associated with the progression of certain cancers. Here, Shh family members act directly as long range morphogens, and their ability to do so has been linked to the formation of freely diffusible multimers from the lipidated, cell-tethered monomer (ShhNp). In this work we demonstrate that the multimeric morphogen secreted from endogenous sources, such as mouse embryos and primary chick chondrocytes, consists of oligomeric substructures that are “undisruptable” by boiling, denaturants, and reducing agents. Undisruptable (UD) morphogen oligomers vary in molecular weight and possess elevated biological activity if compared with recombinant Sonic hedgehog (ShhN). However, ShhN can also undergo UD oligomerization via a heparan sulfate (HS)-dependent mechanism in vitro, and HS isolated from different sources differs in its ability to mediate UD oligomer formation. Moreover, site-directed mutagenesis of conserved ShhN glutamine residues abolishes UD oligomerization, and inhibitors directed against transglutaminase (TG) activity strongly decrease the amount of chondrocyte-secreted UD oligomers. These findings reveal an unsuspected ability of the N-terminal hedgehog (Hh) signaling domain to form biologically active, covalently cross-linked oligomers and a novel HS function in this TG-catalyzed process. We suggest that in hypertrophic chondrocytes, HS-assisted, TG-mediated Hh oligomerization modulates signaling via enhanced protein signaling activity.  相似文献   

3.
Heparan sulfate (HS) proteoglycans (PGs) interact with a number of extracellular signaling proteins, thereby playing an essential role in the regulation of many physiological processes. These interactions are important for both normal signal transduction and regulation of the tissue distribution of signaling molecules. In this study, we use surface plasmon resonance (SPR) to study interactions of HS and structurally related heparin with proteins in the Hedgehog signaling pathway. SPR analysis shows that heparin binds with different affinities to active fragments of the proteins Hedgehog (Hh), Interference Hedgehog (Ihog), Cam-related/Down-regulated by Oncogenes (CDO), and Sonic Hedgehog (Shh). Solution competition studies show that the minimum size of a heparin oligosaccharide capable of interacting with Ihog is larger than a tetrasaccharide and for interacting with Shh is larger than an octasaccharide. In comparison with heparin, Ihog and Shh exhibited a lower affinity for HS than for heparin, and CDO and Hh exhibit negligible binding to HS. This study clearly demonstrates Shh and Ihog are heparin and HS binding proteins and that both molecules preferentially bind heparin or HS having a high level of sulfation.  相似文献   

4.
Enhanced potency of human Sonic hedgehog by hydrophobic modification   总被引:4,自引:0,他引:4  
Post-translational modifications of the developmental signaling protein Sonic hedgehog (Shh) by a long-chain fatty acid at the N-terminus and cholesterol at the C-terminus greatly activate the protein in a cell-based signaling assay. To investigate the structural determinants of this activation phenomenon, hydrophobic and hydrophilic moieties have been introduced by chemical and mutagenic methods to the soluble N-terminal signaling domain of Shh and tested in both in vitro and in vivo assays. A wide variety of hydrophobic modifications increased the potency of Shh when added at the N-terminus of the protein, ranging from long-chain fatty acids to hydrophobic amino acids, with EC(50) values from 99 nM for the unmodified protein to 0.6 nM for the myristoylated form. The N-myristoylated Shh was as active as the natural form having both N- and C-terminal modifications. The degree of activation appears to correlate with the hydrophobicity of the modification rather than any specific chemical feature of the adduct; moreover, substitution with hydrophilic moieties decreased activity. Hydrophobic modifications at the C-terminus of Shh resulted in only a 2-3-fold increase in activity, and no activation was found with hydrophobic modification at other surface positions. The N-terminal modifications did not appear to alter the binding affinity of the Shh protein for the transfected receptor protein, Patched, and had no apparent effect on structure as measured by circular dichroism, thermal denaturation, and size determination. Activation of Desert Hh through modification of its N-terminus was also observed, suggesting that this is a common feature of Hh proteins.  相似文献   

5.
The fly morphogen Hedgehog (Hh) and its mammalian orthologs, Sonic, Indian, and Desert hedgehog, are secreted signaling molecules that mediate tissue patterning during embryogenesis and function in tissue homeostasis and regeneration in the adult. The function of all Hh family members is regulated at the levels of morphogen multimerization on the surface of producing cells, multimer release, multimer diffusion to target cells, and signal reception. These mechanisms are all known to depend on interactions of positively charged Hh amino acids (the Cardin-Weintraub (CW) motif) with negatively charged heparan sulfate (HS) glycosaminoglycan chains. However, a precise mechanistic understanding of these interactions is still lacking. In this work, we characterized ionic HS interactions of multimeric Sonic hedgehog (called ShhNp) as well as mutant forms lacking one or more CW residues. We found that deletion of all five CW residues as well as site-directed mutagenesis of CW residues Lys(33), Arg(35), and Lys(39) (mouse nomenclature) abolished HS binding. In contrast, CW residues Arg(34) and Lys(38) did not contribute to HS binding. Analysis and validation of Shh crystal lattice contacts provided an explanation for this finding. We demonstrate that CW residues Arg(34) and Lys(38) make contact with an acidic groove on the adjacent molecule in the multimer, suggesting a new function of these residues in ShhNp multimerization rather than HS binding. Therefore, the recombinant monomeric morphogen (called ShhN) differs in CW-dependent HS binding and biological activity from physiologically relevant ShhNp multimers, providing new explanations for functional differences observed between ShhN and ShhNp.  相似文献   

6.
Ma Y  Erkner A  Gong R  Yao S  Taipale J  Basler K  Beachy PA 《Cell》2002,111(1):63-75
The dispatched (disp) gene is required for long-range Hedgehog (Hh) signaling in Drosophila. Here, we demonstrate that one of two murine homologs, mDispA, can rescue disp function in Drosophila and is essential for all Hh patterning activities examined in the early mouse embryo. Embryonic fibroblasts lacking mDispA respond normally to exogenously provided Sonic hedgehog (Shh) signal, but are impaired in stimulation of other responding cells when expressing Shh. We have developed a biochemical assay that directly measures the activity of Disp proteins in release of soluble Hh proteins. This activity is disrupted by alteration of residues functionally conserved in Patched and in a related family of bacterial transmembrane transporters, thus suggesting similar mechanisms of action for all of these proteins.  相似文献   

7.
8.

Background

Secreted Hedgehog (Hh) signalling molecules have profound influences on many developing and regenerating tissues. Yet in most vertebrate tissues it is unclear which Hh-responses are the direct result of Hh action on a particular cell type because Hhs frequently elicit secondary signals. In developing skeletal muscle, Hhs promote slow myogenesis in zebrafish and are involved in specification of medial muscle cells in amniote somites. However, the extent to which non-myogenic cells, myoblasts or differentiating myocytes are direct or indirect targets of Hh signalling is not known.

Results

We show that Sonic hedgehog (Shh) can act directly on cultured C2 myoblasts, driving Gli1 expression, myogenin up-regulation and terminal differentiation, even in the presence of growth factors that normally prevent differentiation. Distinct myoblasts respond differently to Shh: in some slow myosin expression is increased, whereas in others Shh simply enhances terminal differentiation. Exposure of chick wing bud cells to Shh in culture increases numbers of both muscle and non-muscle cells, yet simultaneously enhances differentiation of myoblasts. The small proportion of differentiated muscle cells expressing definitive slow myosin can be doubled by Shh. Shh over-expression in chick limb bud reduces muscle mass at early developmental stages while inducing ectopic slow muscle fibre formation. Abundant later-differentiating fibres, however, do not express extra slow myosin. Conversely, Hh loss of function in the limb bud, caused by implanting hybridoma cells expressing a functionally blocking anti-Hh antibody, reduces early slow muscle formation and differentiation, but does not prevent later slow myogenesis. Analysis of Hh knockout mice indicates that Shh promotes early somitic slow myogenesis.

Conclusions

Taken together, the data show that Hh can have direct pro-differentiative effects on myoblasts and that early-developing muscle requires Hh for normal differentiation and slow myosin expression. We propose a simple model of how direct and indirect effects of Hh regulate early limb myogenesis.
  相似文献   

9.
10.
11.
Sonic hedgehog (Shh) is crucial for motoneuron development in chick and mouse. However, zebrafish embryos homozygous for a deletion of the shh locus have normal numbers of motoneurons, raising the possibility that zebrafish motoneurons may be specified differently. Unlike other vertebrates, zebrafish express three hh genes in the embryonic midline: shh, echidna hedgehog (ehh) and tiggywinkle hedgehog (twhh). Therefore, it is possible that Twhh and Ehh are sufficient for motoneuron formation in the absence of Shh. To test this hypothesis we have eliminated, or severely reduced, all three Hh signals using mutations that directly or indirectly reduce Hh signaling and antisense morpholinos. Our analysis shows that Hh signals are required for zebrafish motoneuron induction. However, each of the three zebrafish Hhs is individually dispensable for motoneuron development because the other two can compensate for its loss. Our results also suggest that Twhh and Shh are more important for motoneuron development than Ehh.  相似文献   

12.
13.
Proper hedgehog (Hh) signaling is crucial for embryogenesis and tissue regeneration. Dysregulation of this pathway is associated with several types of cancer. The monoclonal antibody 5E1 is a Hh pathway inhibitor that has been extensively used to elucidate vertebrate Hh biology due to its ability to block binding of the three mammalian Hh homologs to the receptor, Patched1 (Ptc1). Here, we engineered a murine:human chimeric 5E1 (ch5E1) with similar Hh-binding properties to the original murine antibody. Using biochemical, biophysical, and x-ray crystallographic studies, we show that, like the regulatory receptors Cdon and Hedgehog-interacting protein (Hhip), ch5E1 binding to Sonic hedgehog (Shh) is enhanced by calcium ions. In the presence of calcium and zinc ions, the ch5E1 binding affinity increases 10–20-fold to tighter than 1 nm primarily because of a decrease in the dissociation rate. The co-crystal structure of Shh bound to the Fab fragment of ch5E1 reveals that 5E1 binds at the pseudo-active site groove of Shh with an epitope that largely overlaps with the binding site of its natural receptor antagonist Hhip. Unlike Hhip, the side chains of 5E1 do not directly coordinate the Zn2+ cation in the pseudo-active site, despite the modest zinc-dependent increase in 5E1 affinity for Shh. Furthermore, to our knowledge, the ch5E1 Fab-Shh complex represents the first structure of an inhibitor antibody bound to a metalloprotease fold.  相似文献   

14.

Background

Sonic hedgehog (Shh) signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened.

Methodology/Principal Findings

Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol) from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol.

Conclusion/Significance

Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway activation.  相似文献   

15.
Hedgehog (Hh) signaling proteins stimulate cell proliferation, differentiation, and tissue patterning at multiple points in animal development. A single Hh homolog is present in Drosophila, but three Hh homologs, Sonic Hh, Indian Hh, and Desert Hh, are present in mammals. Distribution, movement, and reception of Hh signals are tightly regulated, and abnormal Hh signaling is associated with developmental defects and cancer. In addition to the integral membrane proteins Patched and Smoothened, members of the Drosophila Ihog family of adhesion-like molecules have recently been shown to bind Hh proteins with micromolar affinity and positively regulate Hh signaling. Cell adhesion molecule-related, down-regulated by oncogenes (CDO) and Brother of CDO (BOC) are the closest mammalian relatives of Drosophila Ihog, and CDO binds Sonic Hh with micromolar affinity and positively regulates Hh signaling. Despite these similarities, structural and biochemical studies have shown that Ihog and CDO utilize nonorthologous domains and completely different binding modes to interact with cognate Hh proteins. We report here biochemical and x-ray structural studies of Sonic, Indian, and Desert Hh proteins both alone and complexed with active domains of CDO and BOC. These results show that all mammalian Hh proteins bind CDO and BOC in the same manner. We also show that interactions between Hh proteins and CDO are weakened at low pH. Formation of Hh-mediated Hh oligomers is thought to be an important feature of normal Hh signaling, but no conserved self-interaction between Hh proteins is apparent from inspection of 14 independent Hh-containing crystal lattices.  相似文献   

16.
17.
The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.  相似文献   

18.
Cell pattern in the ventral neural tube is organized by Sonic hedgehog (Shh) secreted by floor plate cells. To assay the range of direct Shh action, we developed a general method for blocking transduction of Hedgehog (Hh) signals through ectopic expression of a deleted form of the Hh receptor Patched (Ptc), termed Ptc(Deltaloop2). We validated this method in Drosophila and used mouse Ptc1(Deltaloop2) (mPtc1(Deltaloop2)) to block Shh transduction in the chick neural tube. mPtc1(Deltaloop2) expression caused cell-autonomous ventral-to-dorsal switches in progenitor identity and neuronal fate throughout the ventral neural tube, supporting a gradient mechanism whereby Shh acts directly and at long range. mPtc1(Deltaloop2) expression also caused the abnormal spread of Shh to more dorsal cells, indicating that Shh in the neural tube, like Hh in Drosophila, induces a feedback mechanism that limits its range of action.  相似文献   

19.
The Hedgehog (Hh) signaling pathway is involved in the development of many tissues during embryogenesis, but has also been described to function in adult self-renewing tissues. In the immune system, Sonic Hedgehog (Shh) regulates intrathymic T cell development and modulates the effector functions of peripheral CD4(+) T cells. In this study we investigate whether Shh signaling is involved in peripheral B cell differentiation in mice. Shh is produced by follicular dendritic cells, mainly in germinal centers (GCs), and GC B cells express both components of the Hh receptor, Patched and Smoothened. Blockade of the Hh signaling pathway reduces the survival, and consequently the proliferation and Ab secretion, of GC B cells. Furthermore, Shh rescues GC B cells from apoptosis induced by Fas ligation. Taken together, our data suggest that Shh is one of the survival signals provided by follicular dendritic cells to prevent apoptosis in GC B cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号