首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

2.
Summary Strains inhibited by analogues of aromatic amino acids due to mutations in the 5mt locus were also sensitive to the purine analogues, 8-aza adenine, 8-aza guanine and 2,6-diaminopurine. Adenine or hypoxanthine and the respective ribosides relieved inhibition due to purine analogues but guanine or guanosine were not effective. Using resistance to 8-aza adenine and sensitivity to DL-4-methyl tryptophan as criteria aza-1 r and aza-2 r mutants were isolated and both loci were located in linkage group I the former was 10–20 units distal to the mating type and the latter approximately 2 units in the vicinity of mating type. The four allelic aza-1 r strains were resistant to 8-aza adenine and 2,6-diaminopurine but one of them showed increased resistance to 8-aza guanine also. The aza-2 r strain was resistant to both 8-aza analogues but was comparable to the parental aza-2 s strain in its sensitivity to 2,6-diaminopurine. One aza-1 r was distinguished by its ability to excrete hypoxanthine and/or inosine and this ability always segregated with the aza-1 r allele and appears to be a consequence of a single mutation in the aza-1 locus. In heterokaryon one aza-1 r and one aza-2 r alleles were found to be recessive to the respective wild type alleles. Uptake of exogenous adenine was reduced in germinating conidia of one aza-1 r and one aza-2 r strain when compared to a parental aza-1 s, aza-2s strain but the low affinity of 8-aza adenine to compete with adenine even in the sensitive strain indicated a need for direct study of the transport and metabolic reactions of the analogue. If an altered purine phosphoribosyl transferase is involved in the aza-1 r phenotype, an analogy with the Lesch-Nyhan syndrome of man, with respect to analogue-resistance and altered regulation of purine metabolism, seems to be appropriate.  相似文献   

3.
Summary We have studied the relationship between purine salvage enzymes, 6-mercaptopurine resistance, and the purR phenotype in E. coli. Mutants resistant to 6-mercaptopurine were found to have defects in HPRT, the purR repressor, or in both. Analysis of these mutants led to the isolation of a hypoxanthine phosphoribosyl transferase-guanine phosphoribosyl transferase double mutant (hpt - gpt-) that is extremely sensitive to adenine. Two classes of adenine resistant mutants were isolated from this strain. The first class was deficient in APRT (apt -) while the second class represented purine regulatory mutants (purR -). There is thus selection for the purR phenotype in a hpt - gpt-background.Abbreviations FGAR formyl glycinamide ribotide - HPRT hypoxanthine phosphoribosyl transferase - GPRT guanine phosphoribosyl transferase - APRT adenine phosphoribosyl transferase - PRPP 5 phosphoribosyl-1 pyrophosphate - 6MP 6-mercaptopurine - FA 2-fluoroadenine  相似文献   

4.
Summary Yeast mutants lacking activity of the enzyme hypoxanthine: guanine phosphoribosyltransferase (H:GPRT) have been isolated by selecting for resistance to 8-azaguanine in a strain carrying the wild type allele, ade4 + of the gene coding for amidophosphoribosyltransferase (PRPPAT), the first enzyme of de novo purine synthesis. The mutants excrete purines and are cross-resistant to 8-azaadenine. They are recessive and represent a single complementation group, designated hpt1. Ade4-su, a prototrophic allele of ade4 with reduced activity of PRPPAT, is epistatic to hpt1, suppressing purine excretion and resistance to azaadenine but not resistance to azaguanine. The genotype ade2 hpt1 does not respond to hypoxanthine. Hpt1 complements and is not closely linked to the purine excreting mutants pur1 to pur5. Hpt1 and pur6, a regulatory mutant of PRPPAT, are also unlinked but do not complement, suggesting a protein-protein interaction between H:G-PRT and PRPPAT. Mycophenolic acid (MPA), an inhibitor of de novo guanine nucleotide synthesis, inhibits the growth of hpt1 and hpt1 +. Xanthine allows both genotypes to grow in the presence of MPA whereas guanine only allows growth of hpt1 +. Activity of A-PRT, X-PRT and H:G-PRT is present in hpt +. Hpt1 lacks activity of H:G-PRT but has normal A-PRT and X-PRT.  相似文献   

5.
Incubation of human peripheral blood T-lymphocytes with phytohemagglutinin (PHA) resulted in increased rates of metabolism of the purine bases adenine, hypoxanthine, and guanine. The respective rates decreased to unmeasurable levels in cells incubated without PHA. [14C]Adenine was converted predominantly into adenine nucleotides, with slight catabolism to hypoxanthine and very low conversion into guanine nucleotides. [14C]Guanine labeled predominantly the guanine nucleotide pool, but some adenine nucleotide formation also took place. From [14C]hypoxanthine, adenine nucleotides in the soluble pool were more heavily labeled than the guanine nucleotides, whereas in the nucleic acid fraction the latter contained more radioactivity. Adenosine at low concentrations was mainly phosphorylated to adenine nucleotides, but at higher concentrations this process leveled off, while deamination continued to increase linearly. PHA-stimulation resulted in an increased rate of adenosine metabolism but no qualitative differences in comparison to unstimulated cells were observed. Enzyme assays indicated that after PHA-stimulation the activities of adenine and hypoxanthine phosphoribosyltransferases, and those of adenosine deaminase and kinase, increased with a peak at 48 h, when expressed on a per cell basis, but not at all when expressed per mg of protein. We conclude that stimulation of human T-lymphocytes with PHA increases the capacity of the cells for purine nucleotide synthesis from all the directly re-utilizable catabolic products, namely the purine bases and adenosine.  相似文献   

6.
Adenine deaminases (Ade) and hypoxanthine/guanine phosphoribosyltransferases (Hpt) are widely distributed enzymes involved in purine salvage. Characterization of the previously uncharacterized Ade (MJ1459 gene product) and Hpt (MJ1655 gene product) are discussed here and provide insight into purine salvage in Methanocaldococcus jannaschii. Ade was demonstrated to use either Fe(II) and/or Mn(II) as the catalytic metal. Hpt demonstrated no detectable activity with adenine, but was equally specific for hypoxanthine and guanine with a kcat/KM of 3.2 × 107 and 3.0 × 107 s? 1M? 1, respectively. These results demonstrate that hypoxanthine and IMP are the central metabolites in purine salvage in M. jannaschii for AMP and GMP production. A conserved cysteine (C127, M. jannaschii numbering) was examined due to its high conservation in bacterial and archaeal homologues. To assess the role of this highly conserved cysteine in M. jannaschii Ade, site‐directed mutagenesis was performed. It was determined that mutation to serine (C127S) completely abolished Ade activity and mutation to alanine (C127A) exhibited 10‐fold decrease in kcat over the wild type Ade. To further investigate the role of C127, detailed molecular docking and dynamics studies were performed and revealed adenine was unable to properly orient in the active site in the C127A and C127S Ade model structures due to distinct differences in active site conformation and rotation of D261. Together this work illuminates purine salvage in M. jannaschii and the critical role of a cysteine residue in maintaining active site conformation of Ade. Proteins 2016; 84:828–840. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
SYNOPSIS. Purine nucleotide biosynthesis was studied in culture forms of Trypanosoma cruzi strain Y, Crithidia deanei (a reduviid trypanosomatid with an endosymbiote) and an aposymbiotic strain of C. deanei (obtained by curing C. deanei with chloramphenicol). Trypanosoma cruzi was found to synthesize purine nucleotides only from the preformed bases adenine and guanine (“salvage” pathway), adenine being incorporated into both adenine and guanine nucleotides. Similar results were obtained with guanine, indicating that this flagellate has a system for the interconversion of purine nucleotides. Crithidia deanei was able to synthesize purine and pyrimidine nucleotides from glycine (“de novo” pathway) and purine nucleotides from adenine and guanine (“salvage” pathway). Adenine was incorporated into both adenine and guanine nucleotides, while guanine was incorporated into guanine nucleotides only, indicating the presence of a metabolic block at the level of GMP reducaase. The aposymbiotic C. deanei strain was unable to utilize glycine for the synthesis of purine nucleotides, although glycine was utilized for synthesizing pyrimidine nucleotides. These results suggest that the endosymbiote is implicated in the de novo purine nucleotide pathway of the C. deanei-endosymbiote complex. The incorporation of adenine and guanine by aposymbiotic C. deanei strain followed a pattern similar to that observed for C. deanei.  相似文献   

8.
Hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) of a strain of Streptomyces cyanogenus was purified 1,900-fold to an apparent homogenity from cell-free extracts. The enzyme had a molecular weight of 150,000 and consisted of eight identical subunits with a molecular weight of 18,000. The isoelectric point was at pH 4.4. The enzyme required Mg2+ or Ma2+ for activity and had a pH optimum at 8.5. Hypoxanthine and guanine were good substrates for the enzyme. Xanthine was a very poor substrate and adenine was not a substrate. Apparent Km values of the enzyme for hypoxanthine, guanine and 5-phosphoribose-1-pyro-phosphate were 1.6 × 10?8, 2.7 × 10?6 and 6.3 × 10?5 m, respectively. All purine nucleotides tested inhibited the activity significantly, apparently by competing with 5-phosphoribose-1-pyrophosphate.  相似文献   

9.
Toxoplasma gondii, growing exponentially in heavily infected mutant Chinese hamster ovary cells that had a defined defect in purine biosynthesis, did not incorporate [U-14C]glucose or [14C]formate into the guanine or adenine of nucleic acids. Intracellular parasites therefore must be incapable of synthesizing purines and depend on their host cells for them. Extracellular parasites, which are capable of limited DNA and RNA synthesis, efficiently incorporated adenosine nucleotides, adenosine, inosine, and hypoxanthine into their nucleic acids; adenosine 5′-monophosphate was the best utilized precursor. Extracellular parasites incubated with ATP labeled with 3H in the purine base and 32P in the α-phosphate incorporated the purine ring 50-fold more efficiently than they did the α-phosphate. Thus, ATP is largely degraded to adenosine before it can be used by T. gondii for nucleic acid synthesis. Two pathways for the conversion of adenosine to nucleotides appear to exist, one involving adenosine kinase, the other hypoxanthine—guanine phosphoribosyl transferase. In adenosine kinase-less mutant parasites, the efficiency of incorporation of ATP or adenosine was reduced by 75%, which indicates the adenosine kinase pathway was predominant. Extracellular parasites incorporated ATP into both the adenine and the guanine of their nucleic acids, so ATP from the host cell could supply the entire purine requirement of T. gondii. However, ATP generated by oxidative phosphorylation in the host cell is not essential for parasites because they grew normally in a cell mutant that was deficient in aerobic respiration and almost completely dependent upon glycolysis.  相似文献   

10.
The causative agent of human African trypanosomiasis, Trypanosoma brucei, lacks de novo purine biosynthesis and depends on purine salvage from the host. The purine salvage pathway is redundant and contains two routes to guanosine‐5′‐monophosphate (GMP) formation: conversion from xanthosine‐5′‐monophosphate (XMP) by GMP synthase (GMPS) or direct salvage of guanine by hypoxanthine‐guanine phosphoribosyltransferase (HGPRT). We show recombinant T. brucei GMPS efficiently catalyzes GMP formation. Genetic knockout of GMPS in bloodstream parasites led to depletion of guanine nucleotide pools and was lethal. Growth of gmps null cells was only rescued by supraphysiological guanine concentrations (100 μM) or by expression of an extrachromosomal copy of GMPS. Hypoxanthine was a competitive inhibitor of guanine rescue, consistent with a common uptake/metabolic conversion mechanism. In mice, gmps null parasites were unable to establish an infection demonstrating that GMPS is essential for virulence and that plasma guanine is insufficient to support parasite purine requirements. These data validate GMPS as a potential therapeutic target for treatment of human African trypanosomiasis. The ability to strategically inhibit key metabolic enzymes in the purine pathway unexpectedly bypasses its functional redundancy by exploiting both the nature of pathway flux and the limited nutrient environment of the parasite's extracellular niche.  相似文献   

11.
Enzymatic studies with Brevibacterium ammoniagenes ATCC 6872 demonstrated that 5-phosphoribose pyrophosphokinase and purinenucleotide pyrophosphorylase were involved in the nucleotide synthesis from purine base by ATCC 6872 and that its actual accumulation from base seemed to take place extracellularly through the action of the salvage enzymes leaked out of cells. Mn2+ deficiency and the simultaneous presence of pantothenate and thiamine, essential for efficient nucleotide accumulation, caused the extracellular leakage of the two enzymes with the simultaneous excretion of R5P. In the direct IMP fermentation with the adenine auxotroph, it was verified that hypoxanthine first produced de novo was reconverted into IMP extracellularly by the salvage enzymes as speculated previously.

A guanine-requiring mutant of Brevibacterium ammoniagenes ATCC 6872 accumulated a large amonnt of 5′-xanthosine-monophosphate (abbreviated as XMP).

The quantity of XMP accumulated by the strain was affected significantly by guanine levels in the medium. The suppression of XMP accumulation by an excessive addition of guanine compounds was recovered by the supply of casamino acids in the medium.

An enzyme in the pathway of de novo XMP synthesis, IMP dehydrogenase (IMP: NAD oxidoreductase, EC 1.2.1.14), was repressed and inhibited by guanine compounds.

The facts that an exogenous xanthine was not converted to XMP by the growing cells and that the activity of XMP-pyrophosphorylase was very low or deficient suggest that XMP accumulation by the strain would be probably due to the direct excretion of the nucleotide from the cells.  相似文献   

12.
Salmonella typhimurium strain GP660 (proAB-gpt deletion, purE) lacks guanine phosphoribosyltransferase and hence cannot utilize guanine as a purine source and is resistant to inhibition by 8-azaguanine. Strain GP660 was mutagenized and a derivative strain (GP36) was isolated for utilization of guanine and hypoxanthine, but not xanthine, as purine sources. This alteration was designated sug. The strain was then sensitive to inhibition by 8-azaguanine. Column chromatographic analysis revealed the altered phosphoribosyltransferase peaks for both hypoxanthine and guanine to be located together, in the same position as hypoxanthine phosphoribosyltransferase (hpt gene product) of the wild-type strain. Genetic analysis showed the sug mutation to be allelic with hpt. Therefore sug represented a modification of the substrate specificity of the hpt gene product.  相似文献   

13.
Human tuberculosis (TB) is a major cause of morbidity and mortality worldwide, especially in poor and developing countries. Moreover, the emergence of Mycobacterium tuberculosis strains resistant to first- and second-line anti-TB drugs raises the prospect of virtually incurable TB. Enzymes of the purine phosphoribosyltransferase (PRTase) family are components of purine salvage pathway and have been proposed as drug targets for the development of chemotherapeutic agents against infective and parasitic diseases. The PRTase-catalyzed chemical reaction involves the ribophosphorylation in one step of purine bases (adenine, guanine, hypoxanthine, or xanthine) and their analogues to the respective nucleoside 5′-monophosphate and pyrophosphate. Hypoxanthine–guanine phosphoribosyltransferase (HGPRT; EC 2.4.2.8) is a purine salvage pathway enzyme that specifically recycles hypoxanthine and guanine from the medium, which are in turn converted to, respectively, IMP and GMP. Here we report cloning, DNA sequencing, expression in Escherichia coli BL21 (DE3) cells, purification to homogeneity, N-terminal amino acid sequencing, mass spectrometry analysis, and determination of apparent steady-state kinetic parameters for an in silico predicted M. tuberculosis HGPRT enzyme. These data represent an initial step towards future functional and structural studies, and provide a solid foundation on which to base M. tuberculosis HGPRT-encoding gene manipulation experiments to demonstrate its role in the biology of the bacillus.  相似文献   

14.
Summary Thirty six mutants resistant to the purine analogue 4-aminopyrazolo(3,4-d)pyrimidine were isolated from a prototrophic strain of yeast carrying su-pur, a suppressor of purine excretion. The mutants were allocated to seven genes app1 to app7. Linkage was found between app3, app5, app6 and app7 but not close enough to suggest functional grouping. Some of the alleles of app1, app3 and app4 are dominant. None of the mutants excreted purine when out-crossed to remove su-pur, nor did they show allelism or linkage to any of the pur (purine excretion) genes. Two mutants, app6-30 and app7-31, are recessive in diploids homo-/or heterozygous for su-pur but are dominant in diploids homozygous for su-pur +. The mutants exhibit gene specific, and in one case allele specific, patterns of cross-resistance to other analogues of adenine, hypoxathine and guanine. In the presence of su-pur all seven genes confer resistance to the adenine analogue 8-azaadenine; in addition mutants of app1, app3 (dominant alleles only) and app4 are resistant to 6-methylpurine, 6-mercaptopurine, 8-azaguanine and guanine. Combination with su-pur + confers resistance to all analogues tested except in the cases of app7, which remains sensitive to 8-azaguanine and app2 which is rendered sensitive to the five purine analogues. Exogenous adenine or hypoxanthine increases the growth rate of wild type (su-pur), app2, app6 and app7 but not app1, app3, app4 and app5. These effects of purine supplementation on strains of the genotype ade2 app sup-pur suggest that mutants of app1, app3, app4 and app5 are defective in the utilisation of exogenous purines. It is suggested that the other three genes may have defects in the control of de novo purine synthesis.Supported by a Medical Research Council Research Training Scholarship Awarded to W.R.P.  相似文献   

15.
The microbial synthesis of some purine 2′-amino-2′-deoxyribonucleosides from purine bases and 2′-amino-2′-deoxyuridine is described. Various bacteria, especially Erwinia herbicola, Salmonella schottmuelleri, Enterobacter aerogenes and Escherichia coli, were able to transfer the aminoribosyl moiety of 2′-amino-2′-deoxyuridine to purine bases (transaminoribosylation) in the presence of inorganic phosphate. The optimum conditions for the reaction were pH 7.0 and 63°C. No reaction was observed in the absence of inorganic phosphate and the optimum concentration of it was around 30 mm. Adenine, guanine, 2-chlorohypoxanthine and hypoxanthine were transformed to the corresponding 2′-amino-2′-deoxyribonucleosides by the catalytic activity of the wet cell paste of Enterobacter aerogenes AJ 11125. The enzymatically synthesized purine 2′-amino-2′-deoxyribonucleosides were isolated and identified by physicochemical means. 2′-Amino-2′-deoxyadenosine strongly inhibited the growth of Hela cells in tissue culture, and the ED50 was 2.5μ/ml.  相似文献   

16.
Leishmania mexicana mexicana promastigotes, axenic amastigotes, and amastigotes derived from Vero cells were examined for de novo purine synthesis and mechanisms of purine salvage. Both promastigotes and axenic amastigotes were incapable of de novo purine synthesis, as shown by the lack of [14C]formate and [14C]glycine incorporation into purine nucleotide pools. However, the ready incorporation of [14C]hypoxanthine, [14C]adenine, and [14C]guanine suggested that purine salvage pathways were operating. In addition, a significant percentage (?60%) of the total label from these purine precursors was associated with adenylate nucleotides. Nucleotide pool levels of axenic amastigotes were consistently greater but the specific activities were less than those of promastigotes, suggesting a slower rate of purine metabolism in the axenic amastigote form. Similar results were obtained from amastigotes isolated from infected Vero cells.  相似文献   

17.
SYNOPSIS. Plasmodium lophurae cannot carry out extensive de novo purine biosynthesis, and depends upon the host erythrocyte for a supply of preformed purines. Exogenous purines taken up by the parasitized erythrocyte may constitute a major source of preformed purines for parasite nucleotide biosynthesis. The uptake of exogenous radioactive purine compounds and their incorporation into nucleic acids by duck erythrocytes parasitized with P. lophurae, uninfected erythrocytes, and erythrocyte-free parasites were studied. P. lophurae was found to have a remarkable ability, both intracellularly and extracellularly, to take up and utilize certain exogenous purines such as adenosine, inosine, and hypoxanthine. Incorporation studies indicated that this species has a functional purine salvage pathway by which inosine, hypoxanthine, and adenosine can be converted to both adenine and guanine nucleotides.  相似文献   

18.
Escherichia coli K-12 strain AB1157 given the conjugative group N plasmid R46 (or its derivative, pKM101, or plasmid R384N) grew only very slowly on defined medium containing the known growth-factor requirements of AB1157, which do not include any purine. Addition of adenine or hypoxanthine (or their nucleosides) restored normal growth; guanine and xanthine (and their nucleosides) were ineffective, because of thegpt defect caused by deletionproA2. Variants of AB1157(R46) able to grow rapidly on defined medium without purine were tetracycline-sensitive and/or transfer-defective; an, R46 gene,slo, causing purine auxotrophy, is inferred to be betweentet andtra.  相似文献   

19.
A new yeast species, Trichosporon adeninovorans, was isolated from soil by the enrichment culture method. Apart from adenine, the strain utilized uric acid, guanine, xanthine, hypoxanthine, 6,8-dihydroxypurine, putrescine, propylamine, butylamine, pentylamine, hexylamine and octylamine as sole source of carbon, nitrogen and energy.The structure of the cell wall of Tr. adeninovorans was ascomycetous. On the subcellular level growth on adenine or uric acid was accompanied with the development of microbodies in the cell. These cell organelles probably were the site of urate oxidase, an enzyme that, after growth on purine substrates, together with allantoinase was present at high activities. Low activities of adenine amidohydrolase and xanthine dehydrogenase were also demonstrated.  相似文献   

20.
Crystalline cytoplasmic inclusions were isolated by differential centrifugation from mass cultures of Paramecium tetraurelia feeding on Klebsiella pneumonia. Physical and chemical measurements of intact and solubilized crystals determined that they consist primarily of guanine and hypoxanthine with traces of xanthine. Crystals from the mutant sombre consist primarily of xanthine, suggesting there is a disorder of purine metabolism in this mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号