首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nonlinear kinetics are commonly observed in the enzymatic hydrolysis of cellulose. This nonlinearity could be explained by any or all of the following three factors: enzyme inactivation, product inhibition, or substrate heterogeneity. In this study, four different approaches were applied to test the above hypotheses using two Thermomonospora fusca endocellulases, E2 and E5. The lack of stimulation of cellulase activity by beta-glucosidase rules out the possibility of product inhibition as a cause of the observed nonlinearity. The results from the other three approaches all provide strong evidence against enzyme inactivation and strong evidence for substrate heterogeneity as the cause of the nonlinear kinetics. The most direct evidence for substrate heterogeneity is that pretreatment of swollen cellulose with either E2cd or E5cd gave a product that was hydrolyzed at a much (3- to 4-fold) slower rate than untreated swollen cellulose even though the initial treatment degraded only 15-18% of the substrate. Furthermore, the activation energy of E2 catalyzed hydrolysis of swollen cellulose increased from 10 kcal/mol for the initial rate to 29 kcal/mol for hydrolysis after 24% digestion.  相似文献   

2.
The biochemical conversion of cellulosic biomass to ethanol, a promising alternative fuel, can be carried out efficiently and economically using the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis of cellulose to glucose, catalyzed by the synergistic action of cellulase and beta-glucosidase, with the fermentative synthesis of ethanol. Because the enzymatic step determines the ethanol. Because the enzymatic step determines the availability of glucose to the ethanologenic fermentation, the kinetic of cellulose hydrolysis by cellulase and beta-glucosidase and the susceptibility of the two enzymes to inhibition by hydrolysis and fermentation products are of significant importance to the SSF performance and were investigated under realistic SSF conditions. A previously developed SSF mathematical model was used to conceptualize the depolymerization of cellulose. The model was regressed to the collected data to determine the values of the enzyme parameters and was found to satisfactorily predict the kinetics of cellulose hydrolysis. Cellobiose and glucose were identified as the strongest inhibitors of cellulase and beta-glucosidase, respectively. Experimental and modeling results are presented in light of the impact of enzymatic hydrolysis on fuel ethanol production. (c) 1993 Wiley & Sons, Inc.  相似文献   

3.
A study was conducted on the kinetics of enzymatic hydrolysis of pure insoluble cellulose using unpurified culture filtrate Trichoderma reesei, with the emphasis on the initial reaction period. The initial hydrolysis rate and extent of enzyme (soluble protein)adsorption, either apparent or initial, were evaluated under various experimental conditions. It has been found that the various mass-transfer steps do not control the overall hydrolysis rate and that the hydrolysis rate is mainly controlled by the surface reaction step promoted by the adsorbed enzyme. It has also been found that the initial hydrolysis rate strongly depends on the initial extent of soluble protein adsorption and the effectiveness of the adsorbed soluble protein to promote the hydrolysis. The initial extent of soluble protein adsorption, in turn, is related to the initial cellulose concentration, enzyme concentration, and specific surface area of cellulose, whereas the effectiveness of the initially adsorbed soluble protein to promote the derived to interrelate these parameters without resorting to the Michaelis-Menten kinetics. The present result appear to imply that the role of enzyme-substrate complex formation should not be ignored in deriving a mechanistic kinetic model for enzymatic hydrolysis of cellulose.  相似文献   

4.
Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose   总被引:3,自引:0,他引:3  
The production of sugars by the enzymatic hydrolysis of cellulose is a two-step process that includes conversion of the intermediate cellobiose to glucose by beta-glucosidase. The hydrolysis was followed by analyzing the two sugar products (cellobiose and glucose). The enzyme showed maximum activity at pH 4.8. Thermal deactivation was significant at temperatures above 45 degrees C. At 50 degrees C (optimum temperature) thermal deactivation was found to follow first-order kinetics. Several models were tested by modeling the kinetics of the reaction. Their parameter values were determined by numerical optimization, including temperature dependence. The best fitting model was a competitive product inhibition for the two reactions in the operational range.  相似文献   

5.
Acetic acid formation in Escherichia coli fermentation   总被引:2,自引:0,他引:2  
Theoretical analysis of cellulase product inhibition (by cellobiose and glucose) has been performed in terms of the mathematical model for enzymatic cellulose hydrolysis. The analysis showed that even in those cases when consideration of multienzyme cellulase system as one enzyme (cellulase) or two enzymes (cellulase and beta-glucosidase) is valid, double-reciprocal plots, usually used in a product inhibition study, may be nonlinear, and different inhibition patterns (noncompetitive, competitive, or mixed type) may be observed. Inhibition pattern depends on the cellulase binding constant, enzyme concentration, maximum adsorption of the enzyme (cellulose surface area accessible to the enzyme), the range in which substrate concentration is varied, and beta-glucosidase activity. A limitation of cellulase adsorption by cellulose surface area that may occur at high enzyme/substrate ratio is the main reason for nonlinearity of double-reciprocal plots. Also, the results of calculations showed that material balance by substrate, which is usually neglected by researchers studying cellulase product inhibition, must be taken into account in kinetic analysis even in those cases when the enzyme concentration is rather low. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
The projected cost for the enzymatic hydrolysis of cellulosic biomass continues to be a barrier for the commercial production of liquid transportation fuels from renewable feedstocks. Predictive models for the kinetics of the enzymatic reactions will enable an improved understanding of current limitations, such as the slow-down of the overall conversion rate, and may point the way for more efficient utilization of the enzymes in order to achieve higher conversion yields. A mechanistically based kinetic model for the enzymatic hydrolysis of cellulose was recently reported in Griggs et al. (2011) (Part I). In this article (Part II), the enzyme system is expanded to include solution-phase kinetics, particularly cellobiose-to-glucose conversion by β-glucosidase (βG), and novel adsorption and product inhibition schemes have been incorporated, based on current structural knowledge of the component enzymes. Model results show cases of cooperative and non-cooperative hydrolysis for an enzyme system consisting of EG(I) and CBH(I). The model is used to explore various potential rate-limiting phenomena, such as substrate accessibility, product inhibition, sterically hindered enzyme adsorption, and the molecular weight of the cellulose substrate.  相似文献   

7.
Optimization of enzyme complexes for lignocellulose hydrolysis   总被引:2,自引:0,他引:2  
The ability of a commercial Trichoderma reesei cellulase preparation (Celluclast 1.5L), to hydrolyze the cellulose and xylan components of pretreated corn stover (PCS) was significantly improved by supplementation with three types of crude commercial enzyme preparations nominally enriched in xylanase, pectinase, and beta-glucosidase activity. Although the well-documented relief of product inhibition by beta-glucosidase contributed to the observed improvement in cellulase performance, significant benefits could also be attributed to enzymes components that hydrolyze non-cellulosic polysaccharides. It is suggested that so-called "accessory" enzymes such as xylanase and pectinase stimulate cellulose hydrolysis by removing non-cellulosic polysaccharides that coat cellulose fibers. A high-throughput microassay, in combination with response surface methodology, enabled production of an optimally supplemented enzyme mixture. This mixture allowed for a approximately twofold reduction in the total protein required to reach glucan to glucose and xylan to xylose hydrolysis targets (99% and 88% conversion, respectively), thereby validating this approach towards enzyme improvement and process cost reduction for lignocellulose hydrolysis.  相似文献   

8.
Pretreatment of cellulose with an industrial cellulosic solvent, N-methylmorpholine-N-oxide, showed promising results in increasing the rate of subsequent enzymatic hydrolysis. Cotton linter was used as high crystalline cellulose. After the pretreatment, the cellulose was almost completely hydrolyzed in less than 12 h, using low enzyme loading (15 FPU/g cellulose). The pretreatment significantly decreased the total crystallinity of cellulose from 7.1 to 3.3, and drastically increased the enzyme adsorption capacity of cellulose by approximately 42 times. A semi-mechanistic model was used to describe the relationship between the cellulose concentration and the enzyme loading. In this model, two reactions for heterogeneous reaction of cellulose to glucose and cellobiose, and a homogenous reaction for cellobiose conversion to glucose was incorporated. The Langmuir model was applied to model the adsorption of cellulase onto the treated cellulose. The competitive inhibition was also considered for the effects of sugar inhibition on the rate of enzymatic hydrolysis. The kinetic parameters of the model were estimated by experimental results and evaluated.  相似文献   

9.
A product inhibition model is developed to describe the hydrolysis of cellulose by the Trichoderma viride enzyme system. It is assumed that noncompetitive inhibition by cellobiose dominates the reaction kinetics. Experiments show that this is indeed a reasonable assumption for initial cellulose concentrations of up to 15 g/liter and at hydrolysis extents up to 65′. Kinetic parameters were determined for the noncompetitive inhibitionmodel in batch experiments with durations of up to 1.5 hr. These parameterswere then used in predicting reaction progress for up to 10 hr. Cellobiose was added to the reaction mixture at the onset of some runs and againreliable predictions were obtained for up to 8 hr of hydrolysis. Finally reaction was carried out in a membrane reactor whereby the product cellobiose was being continuously removed and again reasonable predictability was obtained with a higher net reaction rate.  相似文献   

10.
A mathematical model for enzymatic cellulose hydrolysis, based on experimental kinetics of the process catalysed by a cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparation from Trichoderma longibrachiatum has been developed. The model takes into account the composition of the cellulase complex, the structural complexity of cellulose, the inhibition by reaction products, the inactivation of enzymes in the course of the enzymatic hydrolysis and describes the kinetics of d-glucose and cellobiose formation from cellulose. The rate of d-glucose formation decelerated through the hydrolysis due to a change in cellulose reactivity and inhibition by the reaction product, d-glucose. The rate of cellobiose formation decelerated due to inhibition by the product, cellobiose, and inactivation of enzymes adsorbed on the cellulose surface. Inactivation of the cellobiose-producing enzymes as a result of their adsorption was found to be reversible. The model satisfactorily predicts the kinetics of d-glucose and cellobiose accumulation in a batch reactor up to 70–80% substrate conversion on changing substrate concentration from 5 to 100 g l?1and the concentration of the enzymic preparation from 5 to 60 g l?1.  相似文献   

11.
A multistep approach was taken to investigate the intrinsic kinetics of the cellulase enzyme complex as observed with hydrolysis of noncrystalline cellulose (NCC). In the first stage, published initial rate mechanistic models were built and critically evaluated for their performance in predicting time-course kinetics, using the data obtained from enzymatic hydrolysis experiments performed on two substrates: NCC and alpha-cellulose. In the second stage, assessment of the effect of reaction intermediates and products on intrinsic kinetics of enzymatic hydrolysis was performed using NCC hydrolysis experiments, isolating external factors such as mass transfer effects, physical properties of substrate, etc. In the final stage, a comprehensive intrinsic kinetics mechanism was proposed. From batch experiments using NCC, the time-course data on cellulose, cello-oligosaccharides (COS), cellobiose, and glucose were taken and used to estimate the parameters in the kinetic model. The model predictions of NCC, COS, cellobiose, and glucose profiles show a good agreement with experimental data generated from hydrolysis of different initial compositions of substrate (NCC supplemented with COS, cellobiose, and glucose). Finally, sensitivity analysis was performed on each model parameter; this analysis provides some insights into the yield of glucose in the enzymatic hydrolysis. The proposed intrinsic kinetic model parametrized for dilute cellulose systems forms a basis for modeling the complex enzymatic kinetics of cellulose hydrolysis in the presence of limiting factors offered by substrate and enzyme characteristics.  相似文献   

12.
Multi-stage and single-stage enzymatic hydrolysis of cellulose (Avicel PH-101) were conducted to investigate individual factors that affect the rate-reducing kinetics of enzymatic hydrolysis. Understanding factors affecting enzymatic hydrolysis of Avicel will help improve hydrolysis of various biomasses. Product inhibition, enzyme deactivation, and the changes of substrate are potential factors that can affect the hydrolysis efficiency of Avicel. Multi-stage enzymatic hydrolysis resulted in 36.9% and 25.4% higher carbohydrate conversion as compared to a single-stage enzymatic hydrolysis with an enzyme loading of 5 and 20 FPU/g in a 96 h reaction. However, a decline in carbohydrate conversion of 1.6% and 2.6% was observed through each stage with 5 and 20 FPU/g, respectively. This indicated that the substrate became more recalcitrant as hydrolysis progressed. The decreased reactivity was not due to crystallinity because no significant change in crystallinity was detected by X-ray diffraction. Product inhibition was significant at low enzyme loading, while it was marginal at high enzyme loading. Therefore, product inhibition can only partially explain this decreased conversion. Another important factor, enzyme deactivation, contributed to 20.3% and 25.4% decrease in the total carbohydrate conversion of 96 h hydrolysis with 5 and 20 FPU/g, respectively. This work shows that an important reason for the decreased Avicel digestibility is the effect of enzyme blockage, which refers to the enzymes that irreversibly adsorb on accessible sites of substrate. About 45.3% and 63.2% of the total decreased conversion at the end of the 8th stage with 5 and 20 FPU/g, respectively, was due to the presence of irreversibly adsorbed enzymes. This blockage of active sites by enzymes has been speculated by other researchers, but this article shows further evidence of this effect.  相似文献   

13.
An extended enzymatic hydrolysis of cotton fibers by crude cellulase from Trichoderma pseudokoningii S-38 is described with characterization of both the enzyme changes of activities and cellulose structure. The hydrolysis rates declined drastically during the early stage and then slowly and steadily throughout the whole hydrolysis process the same trend could be seen during the following re-hydrolysis process. Morphological and structural changes to the fibers, such as swelling, frequent surface erosion, and variation in the packing and orientation of microfibrils, were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Observation of X-ray diffraction and IR spectra suggests that the hydrolysis process results in a gradual increase in the relative intensity of the hydrogen bond network, and a gradual decrease in the apparent crystal size of cellulose. The I(alpha) crystal phase was hydrolyzed more easily than was the I(beta) crystal phase. Apart from the inactivation of CBHs activity, changes in the packing and arrangement of microfibrils and the structural heterogeneity of cellulose during hydrolysis could be responsible for the reduction in the rate of reaction, especially in its later stages. The results indicate that the enzymatic hydrolysis of cellulose occurs on the outer layer of the fiber surface and that, following this, the process continues in a sub-layer manner.  相似文献   

14.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

15.
In this study, we investigated the kinetics of linoleic acid production via lipase-mediated hydrolysis of corn DDGS oil in a batch reactor with continuous mechanical agitation and developed a kinetic model that incorporated the product inhibition to study the complete hydrolysis. The model agreed very well with observed data; though situations with low enzyme dosage or low stirring rates were modeled successfully without product inhibition, actual product concentration in such situations was too low to exert any inhibitory effects. Increasing the enzyme concentration increased hydrolysis, and beyond certain enzyme concentrations, effects tended to fade away because of excessive enzyme desorption from the interface. An enzyme dosage within the range of 40–60 KLU/L of oil dispersion could be successfully applied for a substrate concentration of 25–50 g/L of DDGS oil. Increasing the agitation rates improved enzymatic hydrolysis, but a higher stirring rate of 1000 rpm moderately improved production of linoleic acid compared with a stirring rate of 750 rpm. Within the range of substrate concentrations studied, enzymatic inhibition was moderate but still evident. The high degree of hydrolysis (i.e., ∼96% of theoretical linoleic acid yield) from DDGS oil suggests this method has potential for commercial production of linoleic acid.  相似文献   

16.
The dilution rate of an ultrafiltration membrane bioreactor in the enzymatic hydrolysis of cellulose was optimized using the kinetic model developed by Fan and Lee.(4) The sequence of optimal dilution rates was found to generally consist of an initial period of a minimal value (batch period), a subsequent period of maximum dilution rate, a period of a second batch, and a final period of a singular dilution rate. The effects of operating conditions, such as beta-glucosidase activity, operating time, maximum dilution rate, substrate feeding rate, and enzyme-to-substrate ratio on both the conversion yield and the sequence of optimal dilution rates were investigated. To evaluate the validity of kinetic model employed in this work, enzymatic hydrolysis was carried out using alpha-cellulose as a substrate in the ultrafiltration membrane bioreactor. The experimental data were well consistent with the simulation results. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.  相似文献   

18.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with trypto-phan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cell  相似文献   

19.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

20.
Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion — especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase inhibition mechanisms and kinetics. The data show that new strategies that place the bioreactor design at the center stage are required to alleviate the product inhibition and in turn to enhance the efficiency of enzymatic cellulose hydrolysis. Accomplishment of the enzymatic hydrolysis at medium substrate concentration in separate hydrolysis reactors that allow continuous glucose removal is proposed to be the way forward for obtaining feasible enzymatic degradation in lignocellulose processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号