首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The bisphosphatase domain of the rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been shown to exhibit a structural similarity to yeast phosphoglycerate mutase and human red blood cell 2,3-bisphosphoglycerate mutase including very similar active site sequences with a histidyl residue being involved in phospho group transfer. The liver bifunctional enzyme was found to catalyze the hydrolysis of glycerate 1,3-bisphosphate to glycerate 3-phosphate and inorganic phosphate. The Km for glycerate 1,3-bisphosphate was 320 microM and the Vmax was 11.5 milliunits/mg. Incubation of the rat liver enzyme with [1-32P]glycerate 1,3-bisphosphate resulted in the formation of a phosphoenzyme intermediate, and the labeled amino acid was identified as 3-phosphohistidine. Tryptic and endoproteinase Lys-C peptide maps of the 32P-phosphoenzyme labeled either with [2-32P]fructose 2,6-bisphosphate or [1-32P]glycerate 1,3-bisphosphate revealed that 32P-radioactivity was found in the same peptide, proving that the same histidyl group accepts phosphate from both substrates. Fructose 2,6-bisphosphate inhibited competitively the formation of phosphoenzyme from [1-32P]glycerate 1,3-bisphosphate. Effectors of fructose-2,6-bisphosphatase also inhibited phosphoenzyme formation. Substrates and products of phosphoglycerate mutase and 2,3-bisphosphoglycerate mutase also modulated the activities of the bifunctional enzyme. These results demonstrate that, in addition to a structural homology, the bisphosphatase domain of the bifunctional enzyme has a functional similarity to phosphoglycerate mutase and 2,3-bisphosphoglycerate mutase and support the concept of an evolutionary relationship between the three enzyme activities.  相似文献   

2.
The complete amino acid sequence of 6-phospho-fructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was determined by direct analysis of the S-carboxamidomethyl protein. A complete set of nonoverlapping peptides was produced by cleavage with a combination of cyanogen bromide and specific proteolytic enzymes. The active enzyme is a dimer of two identical polypeptide chains composed of 470 amino acids each. The NH2-terminal amino acid residue of the polypeptide chain was shown to be N-acetylserine by fast atom bombardment mass spectrometry of the purified N-terminal tetradecapeptide isolated after cleavage of the intact S-carboxamidomethylated protein with lysyl endoproteinase (Achromobacter protease I). Alignment of the set of unique peptides was accomplished by the analysis of selected overlapping peptides generated by proteolytic cleavage of the intact protein and the larger purified cyanogen bromide peptides with trypsin, Staphylococcus aureus V8 protease, and lysyl endoproteinase. Four nonoverlapping peptides were aligned by comparison with the amino acid sequence predicted from a partial cDNA clone encoding amino acid positions 166-470 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Colosia, A.D., Lively, M., El-Maghrabi, M. R., and Pilkis, S. J. (1987) Biochem. Biophys. Res. Commun. 143, 1092-1098). The nucleotide sequence of the cDNA corroborated the peptide sequence determined by direct methods. A search of the Protein Identification Resource protein sequence database revealed that the overall amino acid sequence appears to be unique since no obviously homologous sequences were identified. However, a 100-residue segment of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (residues 250-349), including the active site histidine residue of the bisphosphatase domain, was found to be homologous to the active site regions of yeast phosphoglycerate mutase and human bisphosphoglycerate mutase.  相似文献   

3.
Okar DA  Live DH  Devany MH  Lange AJ 《Biochemistry》2000,39(32):9754-9762
The histidines in the bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were labeled with (15)N, both specifically at N1' and globally, for use in heteronuclear single quantum correlation (HSQC) NMR spectroscopic analyses. The histidine-associated (15)N resonances were assigned by correlation to the C2' protons which had been assigned previously [Okar et al., Biochemistry 38, 1999, 4471-79]. Acquisition of the (1)H-(15)N HSQC from a phosphate-free sample demonstrated that the existence of His-258 in the rare N1' tautomeric state is dependent upon occupation of the phosphate binding site filled by the O2 phosphate of the substrate, fructose-2,6-bisphosphate, and subsequently, the phosphohistidine intermediate. The phosphohistidine intermediate is characterized by two hydrogen bonds involving the catalytic histidines, His-258 and His-392, which are directly observed at the N1' positions of the imidazole rings. The N1' of phospho-His-258 is protonated ((1)H chemical shift, 14.0 ppm) and hydrogen bonded to the backbone carbonyl of Gly-259. The N1' of cationic His-392 is hydrogen bonded ((1)H chemical shift, 13.5 ppm) to the phosphoryl moiety of the phosphohistidine. The existence of a protonated phospho-His-258 intermediate and the observation of a fairly strong hydrogen bond to the same phosphohistidine implies that hydrolysis of the covalent intermediate proceeds without any requirement for an "activated" water. Using the labeled histidines as probes of the catalytic site mutation of Glu-327 to alanine revealed that, in addition to its function as the proton donor to fructose-6-phosphate during formation of the transient phosphohistidine intermediate at the N3' of His-258, this residue has a significant role in maintaining the structural integrity of the catalytic site. The (1)H-(15)N HSQC data also provide clear evidence that despite being a surface residue, His-446 has a very acidic pK(a), much less than 6.0. On the basis of these observations a revised mechanism for fructose-2,6-bisphosphatase that is consistent with all of the previously published kinetic data and X-ray crystal structures is proposed. The revised mechanism accounts for the structural and kinetic consequences produced by mutation of the catalytic histidines and Glu-327. It also provides the basis for a hypothetical mechanism of bisphosphatase activation by cAMP-dependent phosphorylation of Ser-32, which is located in the N-terminal kinase domain.  相似文献   

4.
We report here the identification of the amino acid residue which forms the covalent intermediate in the catalytic mechanism of bovine intestinal 5'-nucleotide phosphodiesterase and the sequence of the neighboring amino acids. The active site of 5'-nucleotide phosphodiesterase was labeled using thymidine 5'-[alpha-32P]triphosphate as substrate. A single labeled cyanogen bromide peptide was isolated using reversed-phase high performance liquid chromatography. After subdigestion with endoproteinase Lys-C and chymotrypsin, the entire amino acid sequence of the 60-residue active site peptide was obtained using automated Edman degradation. All of the radioactivity of the active site peptide was localized to a hexapeptide with sequence Thr-Phe-Pro-Asn-His-Tyr. Phosphoamino acid analysis of this peptide indicated that the labeled residue was threonine. We are not aware of any other enzymes in which threonine is phosphorylated as a covalent intermediate in the catalytic mechanism.  相似文献   

5.
Some physicochemical properties of a homogeneous preparation of a bifunctional enzyme, fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase, were determined. The molecular weight of the enzyme is 101 000 as determined by high-speed sedimentation equilibrium. The molecular weight of dissociated enzyme is 55 000 in 6 M guanidinium chloride by sedimentation equilibrium and in sodium dodecyl sulfate by polyacrylamide gel electrophoresis. A value of 4.7 was observed for the isoelectric point. Tryptic peptide maps and high-performance liquid chromatography of the trypsin-digested enzyme revealed approximately 60 peptides. Amino acid analysis of the enzyme shows that it contains 27 lysine and 36 arginine residues per 55 000 daltons. No free N-terminal amino acid residue was detectable, suggesting that it is blocked. Hydrolysis of the enzyme by carboxypeptidases A and B releases tyrosine followed by histidine and arginine, indicating that the amino acid sequence at the carboxyl terminus is probably -Arg-His-Tyr. Tryptic digestion of [32P]phosphofructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase yields a 32P-labeled peptide detected by tryptic peptide mapping and high-performance liquid chromatography. Thermolysin digestion of CNBr-cleaved 32P-enzyme also yields a single 32P-peptide. These results indicate that fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase is a dimer of 55 000 daltons and the subunits are very similar, if not identical.  相似文献   

6.
Inactivation of a bifunctional enzyme, fructose-6-P,2-kinase:fructose-2,6-bisphosphatase by pyridoxal 5'-P followed by reduction with NaBH4 was studied. Fructose-6-P,2-kinase is over 80% inactivated by 2 mM pyridoxal 5'-P. The stoichiometry of the pyridoxyl-P incorporation and the inactivation of the kinase follows a biphasic curve. The first P-pyridoxyl residue incorporated per protomer does not affect fructose-6-P,2-kinase, but the next two P-pyridoxyl incorporation/protomer results in 80% inactivation. The Km values for ATP and fructose-6-P of the enzymes containing varying amounts of P-pyridoxyl groups at intermediate levels of inactivation are not altered, but Vmax is decreased. Among the metabolites tested, only fructose-2,6-P2 and Mg-ATP are competitive with pyridoxal-P and protect the enzyme against the inactivation. Neither the activity nor the fructose-6-P inhibition of fructose-2,6-bisphosphatase is affected by the modification. The acid hydrolysate of the inactive P-[3H]pyridoxyl enzyme contained only [3H]pyridoxyl lysine. High performance liquid chromatography of tryptic peptides of phospho[3H]pyridoxyl enzymes reveals two peptides which were missing in the enzyme protected by fructose-2,6-P2 or ATP during the modification reaction. These peptides have been isolated, and their amino acid sequences have been determined as Asp-Gln-Asp-Lys-Tyr-Arg and Asp-Val-His-Lys-Tyr. Pyridoxal-P reacts specifically with two lysine residues at the fructose-2,6-P2-binding site of fructose-6-P,2-kinase but not that of fructose-2,6-bisphosphatase. The site may also overlap with the ATP-binding site.  相似文献   

7.
8.
The fructose-2,6-bisphosphatase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been shown to be structurally and functionally homologous to phosphoglycerate mutase. Both enzymes catalyze their reactions via phosphoenzyme intermediates which utilize an active site histidine as a nucleophilic phosphoacceptor and another histidine as a proton donor to the leaving group. Glu327 in the bisphosphatase domain of the rat liver bifunctional enzyme is conserved in all phosphoglycerate mutase structures and is postulated, by modelling studies, to be located in the active site. Glu327 was mutated to Ala, Gln, or Asp. The mutant and wild-type enzymes were expressed in Escherichia coli with a T-7 RNA polymerase-based expression system and purified to homogeneity by substrate elution from phosphocellulose. The Glu327 mutants had apparent molecular weights of 110,000 by gel filtration and had unaltered 6-phosphofructo-2-kinase activity. Circular dichroism showed that the secondary structure of the Glu327 mutant enzyme forms was the same as the wild-type enzyme. The maximal velocity of the fructose-2,6-bisphosphatase of the Glu327----Ala, Glu327----Gln, and Glu327----Asp mutants was 4, 2, and 20%, respectively, that of the wild-type enzyme, but the rate of phosphoenzyme formation of the mutants was reduced by at least a factor of 1000. In addition, the rate constants of phosphoenzyme hydrolysis for the Glu372----Ala and Glu327----Gln mutants were 2.7 and 1.3%, respectively, of the wild type, whereas the rate constant for the Glu327----Asp mutant was 60% of the wild-type value. Glu327 was not a substrate or product binding site determinant since the Km for fructose-2,6-bisphosphate and Ki for fructose-6-phosphate of the mutants were not appreciably changed. The results implicate Glu327 as part of a catalytic triad in fructose-2,6-bisphosphatase and suggest that it influences the protonation state of the active site histidine residues during phosphoenzyme formation and/or acts as a base catalyst to enhance the nucleophilic attack of water on the phosphoenzyme intermediate.  相似文献   

9.
6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were copurified to homogeneity from bovine liver. The purification scheme consisted of polyethylene glycol precipitation, anion-exchange and Blue-Sepharose chromatography, substrate elution from phosphocellulose, and gel filtration. The bifunctional enzyme had an apparent molecular weight of 102,000 and consisted of two subunits (Mr 49,000). The kinase had a Km for ATP of 12 microM and a S0.5 for fructose 6-phosphate of 150 microM while the bisphosphatase had a Km for fructose 2,6-bisphosphate of 7 microM. Both activities were subject to modulation by various effectors. Inorganic phosphate stimulated both activities, while alpha-glycerolphosphate inhibited the kinase and stimulated the bisphosphatase. The pH optimum for the 6-phosphofructo-2-kinase activity was 8.5, while the fructose-2,6-bisphosphatase reaction was maximal at pH 6.5. Incubation of the purified enzyme with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in 32P incorporation to the extent of 0.7 mol/mol enzyme subunit with concomitant inhibition of the kinase activity and activation of the bisphosphatase activity. The mediation of the bisphosphatase reaction by a phosphoenzyme intermediate was suggested by the isolation of a stable labeled phosphoenzyme when the enzyme was incubated with fructose 2,6-[2-32P]bisphosphate. The pH dependence of hydrolysis of the phospho group suggested that it was linked to the N3 of a histidyl residue. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver has properties essentially identical to those of the rat liver enzyme, suggesting that hepatic fructose 2,6-bisphosphate metabolism is under the same control in both species.  相似文献   

10.
The hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) plays a crucial role in the progression of cancerous cells by enabling their glycolytic pathways even under severe hypoxic conditions. To understand its structural architecture and to provide a molecular scaffold for the design of new cancer therapeutics, the crystal structure of the human form was determined. The structure at 2.1 A resolution shows that the overall folding and functional dimerization are very similar to those of the liver (PFKFB1) and testis (PFKFB4) forms, as expected from sequence homology. However, in this structure, the N-terminal regulatory domain is revealed for the first time among the PFKFB isoforms. With a beta-hairpin structure, the N terminus interacts with the 2-Pase domain to secure binding of fructose-6-phosphate to the active pocket, slowing down the release of fructose-6-phosphate from the phosphoenzyme intermediate product complex. The C-terminal regulatory domain is mostly disordered, leaving the active pocket of the fructose-2,6-bisphosphatase domain wide open. The active pocket of the 6-phosphofructo-2-kinase domain has a more rigid conformation, allowing independent bindings of substrates, fructose-6-phosphate and ATP, with higher affinities than other isoforms. Intriguingly, the structure shows an EDTA molecule bound to the fructose-6-phosphate site of the 6-phosphofructo-2-kinase active pocket despite its unfavorable liganding concentration, suggesting a high affinity. EDTA is not removable from the site with fructose-6-P alone but is with both ATP and fructose-6-P or with fructose-2,6-bisphosphate. This finding suggests that a molecule in which EDTA is covalently linked to ADP is a good starting molecule for the development of new cancer-therapeutic molecules.  相似文献   

11.
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was phosphorylated by cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Treatment of the 32P-labeled enzyme with thermolysin removed all of the radioactivity from the enzyme core and produced a single labeled peptide. The phosphopeptide was purified by ion exchange chromatography, gel filtration, and reverse phase high pressure liquid chromatography. The sequence of the 12-amino acid peptide was found to be Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser(P)-Ser-Ile-Pro-Gln. Correlation of the extent of phosphorylation with activity showed that a 50% decrease in the ratio of kinase activity to bisphosphate activity occurred when only 0.25 mol of phosphate was incorporated per mol of enzyme subunit, and maximal changes occurred with 0.7 mol incorporated. The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of the native bifunctional enzyme was compared with that of other rat liver protein substrates. The Km for 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (10 microM) was less than that for rat liver pyruvate kinase (39 microM), fructose-1,6-bisphosphatase (222 microM), and 6- phosphofructose -1-kinase (230 microM). Comparison of the initial rate of phosphorylation of a number of protein substrates of the cyclic AMP-dependent protein kinase revealed that only skeletal muscle phosphorylase kinase was phosphorylated more rapidly than the bifunctional enzyme. Skeletal muscle glycogen synthase, heart regulatory subunit of cyclic AMP-dependent protein kinase, and liver pyruvate kinase were phosphorylated at rates nearly equal to that of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, while phosphorylation of fructose-1,6-bisphosphatase and 6-phosphofructo-1-kinase was barely detectable. Phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was not catalyzed by any other protein kinase tested. These results are consistent with a primary role of the cyclic AMP-dependent protein kinase in regulation of the enzyme in intact liver.  相似文献   

12.
In order to ascertain whether the heart and liver forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were products of two different genes or arose via alternative splicing of a single gene, the bovine liver cDNA of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a lambda gt10 phage library and its sequence compared with that of bovine heart cDNA. The deduced amino acid sequence of the bovine liver cDNA was also compared with the amino acid sequence of the human and rat liver phosphofructo-2-kinase/fructose-2,6-bisphosphatase enzyme. The bovine liver cDNA codes for a protein that has 81.6% amino acid identity with the bovine heart form and 97.0 and 98.3% identity with the rat and human liver forms of the enzyme, respectively. Comparison of the nucleotide sequences of the two bovine cDNAs and their deduced amino acid sequences demonstrates that while there is conservation of the active sites of liver/muscle and heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases they are encoded by different genes.  相似文献   

13.
1H and 31P nuclear magnetic resonance was used to investigate the interaction of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) with bovine liver fructose-1,6-bisphosphatase. Mn2+ bound to fructose-1,6-bisphosphatase was used as a paramagnetic probe to map the active and AMP allosteric sites of fructose-1,6-bisphosphatase. Distances between enzyme-bound Mn2+ and the phosphorus atoms at C-6 of fructose-6-P and alpha-methyl-D-fructofuranoside 1,6-bisphosphate were identical, and the enzyme-Mn to phosphorus distance determined for the C-6 phosphorus atom of Fru-2,6-P2 was very similar to these values. Likewise, the enzyme-Mn to phosphorus distances for Pi, the C-1 phosphorus atom of alpha-methyl-D-fructofuranoside 1,6-bisphosphate, and the C-2 phosphorus atom of Fru-2,6-P2 agreed within 0.5 A. The distance between enzyme-bound Mn2+ and the phosphorus atom of AMP was significantly shorter than the distances obtained for any of the aforementioned ligands, but the presence of Fru-2,6-P2 caused the enzyme-Mn to phosphorus distance for AMP to lengthen markedly. NMR line broadening of AMP protons was studied at various temperatures. The dissociation rate constant was found to be greater than 20 s-1. It was concluded that Fru-2,6-P2 strongly affects the interaction of AMP with fructose-1,6-bisphosphatase and that the sugar most likely acts at the active site of the enzyme.  相似文献   

14.
Phosphofructokinase 2 from Saccharomyces cerevisiae was purified 8500-fold by chromatography on blue Trisacryl, gel filtration on Superose 6B and chromatography on ATP-agarose. Its apparent molecular mass was close to 600 kDa. The purified enzyme could be activated fivefold upon incubation in the presence of [gamma-32P]ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase from beef heart; there was a parallel incorporation of 32P into a 105-kDa peptide and also, but only faintly, into a 162-kDa subunit. A low-Km (0.1 microM) fructose-2,6-bisphosphatase could be identified both by its ability to hydrolyze fructose 2,6-[2-32P]bisphosphate and to form in its presence an intermediary radioactive phosphoprotein. This enzyme was purified 300-fold, had an apparent molecular mass of 110 kDa and was made of two 56-kDa subunits. It was inhibited by fructose 6-phosphate (Ki = 5 microM) and stimulated 2-3-fold by 50 mM benzoate or 20 mM salicylate. Remarkably, and in deep contrast to what is known of mammalian and plant enzymes, phosphofructokinase 2 and the low-Km fructose-2,6-bisphosphatase clearly separated from each other in all purification procedures used. A high-Km (approximately equal to 100 microM), apparently specific, fructose 2,6-bisphosphatase was separated by anion-exchange chromatography. This enzyme could play a major role in the physiological degradation of fructose 2,6-bisphosphate, which it converts to fructose 6-phosphate and Pi, because it is not inhibited by fructose 6-phosphate, glucose 6-phosphate or Pi. Several other phosphatases able to hydrolyze fructose 2,6-bisphosphate into a mixture of fructose 2-phosphate, fructose 6-phosphate and eventually fructose were identified. They have a low affinity for fructose 2,6-bisphosphate (Km greater than 50 microM), are most active at pH 6 and are deeply inhibited by inorganic phosphate and various phosphate esters.  相似文献   

15.
16.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

17.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

18.
We have isolated and sequenced two overlapping cDNA fragments which could encode the complete amino acid sequence of rat testis fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. Northern blot analysis revealed that the major 2-kilobase mRNA isolated from rat testis hybridized with a cDNA fragment. A full length cDNA, which encoded a protein of 468 amino acids, was constructed and expressed in Escherichia coli. The expressed protein, purified to homogeneity, showed a Mr of 55,000 by gel electrophoresis under denaturing conditions, compared to the deduced Mr of 54,023. Fru-6-P,2-kinase:Fru-2,6-bisphosphatase with the same Mr 55,000 was also present in rat testis extract. The active enzyme was a dimer as judged by molecular sieve filtration. The expressed enzyme was bifunctional with specific activities of 90 and 22 milliunits/mg of the kinase and the phosphatase activities, respectively. Various kinetic constants of the expressed fructose 6-P,2-kinase were KmFru 6-P = 85 microM and KmATP = 270 microM, and those of fructose 2,6-bisphosphatase were KmFru 2,6-P2 = 21 microM and KiFru 6-P = 3.4 microM. The enzyme was phosphorylated by Fru-2,6[2-32P]P2 and also by protein kinase C, but not by cAMP-dependent protein kinase, which is in contrast to the liver and heart isozymes.  相似文献   

19.
6-Phosphofructo-2-kinase was purified from rat liver and hepatoma (HTC) cells. The HTC cell enzyme had kinetic properties different from those of the liver enzyme (more sensitive to inhibition by citrate and not inhibited by sn-glycerol 3-phosphate) and was not a substrate of the cyclic-AMP-dependent protein kinase. Unlike the liver enzyme, which is bifunctional and phosphorylated by fructose 2,6-[2-32P]bisphosphate, the HTC cell enzyme contained no detectable fructose-2,6-bisphosphatase activity and phosphorylation by fructose 2,6-[2-32P]-bisphosphate could not be detected. HTC cell fructose-2,6-bisphosphatase could be separated from 6-phosphofructo-2-kinase activity by purification. Antibodies raised against liver 6-phosphofructo-2-kinase did not precipitate HTC cell fructose-2,6-bisphosphatase whose kinetic properties were completely different from those of the liver enzyme.  相似文献   

20.
Fructose 2,6-bisphosphate, a potent inhibitor of fructose-1,6-bisphosphatases, was found to be an inhibitor of the Escherichia coli enzyme. The substrate saturation curves in the presence of inhibitor were sigmoidal and the inhibition was much stronger at low than at high substrate concentrations. At a substrate concentration of 20 μM, 50% inhibition was observed at 4.8 μM fructose 2,6-bisphosphate. Escherichia coli fructose-1,6-bisphosphatase was inhibited by AMP (Kj = 16 μM) and phosphoenolpyruvate caused release of AMP inhibition. However, neither AMP inhibition nor its release by phosphoenolpyruvate was affected by the presence of fructose 2,6-bisphosphate. The results obtained, together with previous observations, provide further evidence for the fructose 2,6-bisphosphate-fructose-1,6-bisphosphatase active site interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号