首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The presence of marker genes conferring antibiotic or herbicide resistance in transgenic plants has been a serious problem for their public acceptance and commercialization. MAT (multi-auto-transformation) vector system has been one of the strategies to excise the selection marker gene from transgenic plants. Agrobacterium tumefaciens strain EHA105 harboring a rol-type MAT vector, pMAT101, was used to produce morphologically normal transgenic Petunia hybrida ‘Dainty Lady’ employing rol gene as the selection marker gene. LacZ gene was used as a model gene of interest. Infected explants were cultured on plant growth regulator (PGR)- and antibiotic-free half-strength MS medium. Sixty-five percent of the infected explants produced hairy roots. The hairy roots were separated and proliferated on 1/2 MS hormone-free medium. Shoots produced from the hairy roots on 1/2 MS medium supplemented with benzylaminopurine (BA) and naphthalene acetic acid (NAA) exhibited hairy root syndrome (Ri syndrome) such as dwarfed, reduced apical dominance, short internodes and increased rooting, but subsequently produced normal-looking marker-free shoots. Molecular analysis of DNA from the hairy roots, shoots with Ri syndrome and morphologically normal shoots revealed that the normal shoots had only LacZ gene, and the removable cassette consisting of rol, R (recombinase) and GUS genes was excised. From this study it can be concluded that the chimeric rol genes can be used as a selection marker for Agrobacterinum-mediated transformation of Petunia hybrida and that the production of marker-free normal transgenic plants is possible without using selective chemical agents employing rol-type MAT vector.  相似文献   

2.
The promoter of the protoplast auxin-regulated (parAt) gene of tobacco, which is expressed throughout the tissues of hairy roots, can be useful for developing a bioconversion system with hairy roots. The parAt gene is shown to be expressed in roots of seedlings and in those of mature tobacco plants. The 5-upstream region of parAt was fused to the coding sequence of the ß-d-glucuronidase (GUS) gene to generate the parAt-GUS fusion gene, which was introduced into the binary vector for Agrobacterium. Hairy roots that carried the fusion gene were obtained (parAt-GUS/hairy root) by infecting tobacco plants with A. rhizogenes carrying the fusion gene in the binary vector. Biochemical analysis with 4-methylumbelliferyl ß-d-glucuronide (MUG), a substrate for GUS, showed that the level of GUS activity was tenfold higher than that of hairy roots carrying the reporter GUS gene, which is linked to the cauliflower mosaic virus 35S RNA promoter (35S-GUS/hairy root). We also examined the rate of conversion of MUG to 4-methylumbel-liferone (MU) by hairy roots when MUG was added to the culture medium of the parAt-GUS/hairy roots. The hairy roots converted MUG to MU at more than ten times as high efficiency as the 35S-GUS/hairy roots. In addition to tobacco, the parAt-GUS gene was similarly expressed in hairy roots from Atropa and Arabidopsis. These results suggest that the promoter of the parAt gene is a useful tool for conversion of various metabolites by hairy root cultures. Correspondence to: Y. Machida  相似文献   

3.
Transgenic Mexican lime [Citrus aurantifolia (Christm.) Swing] plants were regenerated from tissues transformed by Agrobacterium rhizogenes strain A4, containing the wild-type plasmid pRiA4 and the binary vector pESC4 with nos-npt II and cab-gus genes. Transgenic shoots were generated by two different approaches. The first approach used internodal stem segments cocultured with A. rhizogenes. These were placed onto regeneration medium containing Murashige and Skoog salts and B5 organic compounds supplemented with 8 g ⋅ l–1 agar, 7.5 mg ⋅ l–1 6-benzylaminopurine, 1.0 mg ⋅ l–1 -naphthaleneacetic acid, 300 mg ⋅ l–1 cefotaxime and 80 mg ⋅ l–1 kanamycin as a selective agent, and incubated under continuous light at 25 °C. Under these conditions, 76% of the explants produced shoots directly with no hairy root phase, with a mean of 1.3 shoots per explant, and 88% of these shoots were genetically transformed as determined by β-glucuronidase (GUS) assays. In the second approach, segments of transformed roots (15 mm long) obtained from internodal stem segments cocultured with A. rhizogenes were cultured on the above regeneration medium under similar conditions. Forty-one percent of these transformed root segments produced adventitious shoots, with a mean of 2.2 shoots per explant and with 90% of shoots transformed. GUS activity was evident in the transformed roots and in all parts of both transformed shoots and regenerated plants. The presence of the npt II and rolB genes in the regenerated plants was confirmed by PCR analysis. The presence of the npt II gene in the regenerated plants was also confirmed by Southern blot. Using these transformation systems, more than 300 Mexican lime transgenic plants were obtained, 60 of which were adapted to growing in soil. Received: 15 March 1997 / Revision received: 30 December 1997 / Accepted: 19 January 1998  相似文献   

4.
 A dual marker plasmid comprising the reporter gene sgfp (green fluorescent protein) and the selectable bar gene (Basta tolerance) was constructed by replacing the uidA (β-glucuronidase, GUS) gene in a uidA-bar construct with sgfp. A particle inflow gun was used to propel tungsten particles coated with this plasmid into immature inflorescence-derived embryogenic callus of switchgrass (Panicum virgatum L.). GFP was observed in leaf tissue and pollen of transgenic plants. Nearly 100 plants tolerant to Basta were obtained from the experiments, and Southern blot hybridization confirmed the presence of both the bar and sgfp genes. Plants regenerated from in vitro cultures of transgenic plants grew on medium with 10 mg l–1 bialaphos. When the pH indicator chlorophenol red was in the medium, the transgenic plantlets changed the medium from red to yellow. Basta tolerance was observed in T1 plants resulting from crosses between transgenic and nontransgenic control plants, indicating inheritance of the bar transgene. Received: 11 May 2000 / Revision received: 21 August 2000 / Accepted: 22 August 2000  相似文献   

5.
 Embryo axes of four accessions of chickpea (Cicer arietinum L.) were treated with Agrobacterium tumefaciens strains C58C1/GV2260 carrying the plasmid p35SGUSINT and EHA101 harbouring the plasmid pIBGUS. In both vectors the GUS gene is interrupted by an intron. After inoculation shoot formation was promoted on MS medium containing 0.5 mg/l BAP under a selection pressure of 100 mg/l kanamycin or 10 mg/l phosphinothricin, depending on the construct used for transformation. Expression of the chimeric GUS gene was confirmed by histochemical localization of GUS activity in regenerated shoots. Resistant shoots were grafted onto 5-day-old dark-grown seedlings, and mature plants could be recovered. T-DNA integration was confirmed by Southern analysis by random selection of putative transformants. The analysis of 4 plantlets of the T1 progeny revealed that none of them was GUS-positive, whereas the presence of the nptII gene could be detected by polymerase chain reaction. Received: 30 May 1997 / Revision received: 18 September 1997 / Accepted: 22 March 1999  相似文献   

6.
The technologies allowing the production of transgenic plants without selectable marker genes, is of great interest in public and environmental safety. For generating such marker-free transgenic plants, possibility has been offered by Multi-Auto-Transformation [MAT] vector system, which combines positive selection, using the isopentenyl transferase (ipt) gene, with a site-specific recombination that generates marker-free plants. In this study Agrobacterium tumefaciens strain EHA105 harboring an ipt-type MAT vector, pMAT21, containing lacZ, gus genes and the removable cassette in the T-DNA region was used to produce marker-free transgenic Kalanchoe blossfeldiana Poelln., employing ipt gene as the selectable marker gene. Co-cultivated explants were cultured on hormone- and selective agent-free MS medium, and 85% of the regenerated shoots showed ipt-shooty phenotype with GUS expression. Forty-one morphologically normal shoots were produced during the subculture. More than ninety percent of the normal shoots were ipt , gus but lacZ + as determined by PCR analyses. These results indicate that the ipt phenotype was clearly distinguishable from non-transgenic as well as transgenic marker-free shoots. This study opens interesting perspective for the generation of marker-free transgenic K. blossfeldiana with objective useful transgene.  相似文献   

7.
 In comparison with the production of transgenic plants, the generation of hairy roots has the advantage that more independent transgenic lines can be produced in a shorter period of time. Therefore, we wanted to combine this approach with the promoter-trapping strategy to identify nematode-induced plant promoters. For the efficient production and culture of transgenic hairy root lines of Arabidopsis thaliana, the standard Agrobacterium rhizogenes transformation procedure was modified to avoid rapid callusing of the hairy roots. An average of 0.72 independent kanamycin-resistant (KmR) roots were obtained per leaf piece. However, a much lower frequency of reporter gene activation was obtained than expected from experiments with the same vectors in Agrobacterium tumefaciens: of more than 700 independent KmR hairy roots tested, only 8 were β-glucuronidase (GUS) positive. DNA hybridization was done on ten hairy root lines, of which one had a single truncated T-DNA and the others multiple copies of T-DNA that led to complex hybridization patterns. In a parallel analysis of A. thaliana plants transformed with the same vectors using A. tumefaciens, relatively simple T-DNA integration patterns were obtained. The low occurrence of GUS-positive hairy root lines in our experiments could be explained by the multiple T-DNA copies, especially in inverted array, that result in high frequencies of gene inactivation. Received: 11 August 1998 / Revision received: 17 February 1999 / Accepted: 18 March 1999  相似文献   

8.
Shoot cultures of nickel hyperaccumulating Alyssum murale were established from epicotyl explants of seedlings aseptically germinated on hormone-free MS medium. They were further maintained on media with 0–0.92 μM kinetin. Optimal shoot multiplication was at 0.46 μM kinetin. Inoculation by shoot wounding was performed with overnight suspension of A. rhizogenes A4M70GUS which contains GUS gene cointegrated in pRiA4. After 30 days hairy roots were produced at the wounding site in 31 explant (25% out of 124). Hairy roots were excised and further propagated on hormone-free medium as separate clones. In the first passage clones 3 and 6 could be distinguished by fast growth and spontaneous shoot regeneration. In other clones (12, 23 and 25) shoot regeneration required presence of cytokinins. The five shoot culture clones regenerated from hairy roots were further cultured on media with 0.46 μM kinetin. These shoots were characterized by good elongation and lateral shoot branching, short internodes, minute slightly curled leaves and well developed plagiotropic root system spreading over the surface of media. Thus all plants regenerated from hairy root cultures manifested the characteristic Ri syndrome phenotype. They all had a strong positive GUS reaction. PCR analysis confirmed presence of uidA sequence from the gus construct. They were also tolerant to nickel accumulating up to 24,700 μg g−1 dry weight.  相似文献   

9.
Expression of the Commelina yellow mottle virus promoter in transgenic oat   总被引:2,自引:0,他引:2  
The Commelina yellow mottle virus (CoYMV) infects the monocot weed Commelina diffusa. The objective of this study was to investigate the transgene expression conferred by the CoYMV promoter in a monocot species. Friable, embryogenic oat (Avena sativa L.) tissue cultures were stably transformed with the CoYMV promoter fused to the coding region of E. coli β-glucuronidase (uidA, GUS). Developmental and tissue-specific expression of the CoYMV-GUS construct was investigated in regenerated plants and their progeny. Histochemical GUS staining was primarily localized in the vascular tissues of shoots, leaves, floral bracts and in roots. While ovaries stained intensely, no staining was detected in anthers or the endosperm in mature seed. The scutellum of mature and germinating seed exhibited GUS activity. Received: 16 April 1997 / Revision received: 23 July 1997 / Accepted: 2 August 1997  相似文献   

10.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   

11.
 Intron-containing fragments derived from the 5′ untranslated regions of the maize ubi1, maize adh1, rice act1 and sugarcane rbcS genes were tested for their enhancing effects on the banana bunchy top virus DNA-6 promoter (BT6.1) in banana (Musa spp. cv. Bluggoe) embryogenic cells. The rice act1 and maize ubi1 introns provided the highest levels of intron-mediated enhancement of GUS expression, increasing native BT6.1 promoter activity by about 300-fold and 100-fold, respectively. The sugarcane rbcS intron increased expression about tenfold, whereas the adh1 intron had no significant effect. In regenerated transgenic banana plants, the ubi1 intron significantly enhanced BT6.1 promoter activity to levels similar to that of the CaMV 35 S promoter and did not appear to affect the tissue specificity of the promoter. Received: 28 July 2000 / Revision received: 21 August 2000 / Accepted: 4 October 2000  相似文献   

12.
Seedling hypocotyls of Lithospermum erythrorhizon were infected with Agrobacterium rhizogenes (strain 15834) harboring a binary vector with an intron-bearing the β-glucuronidase (GUS) gene driven by cauliflower mosaic virus (CaMV) 35S promoter as well as the hygromycin phosphotransferase (HPT) gene as the selection marker. About 20% of the hairy roots isolated were hygromycin resistant and had co-integrated GUS and HPT genes in their Lithospermum genomic DNA. Because GUS activity was detected in almost all the hygromycin-resistant root tissues, the CaMV 35S promoter seems to be ubiquitously active in L. erythrorhizon hairy roots. In pigment production medium M9, the hairy root cultures had shikonin productivity similar to that of cell suspension cultures of Lithospermum. They also showed light-dependent inhibition of shikonin biosynthesis similar to that of Lithospermum cell cultures. These findings suggest that this hairy root system transformable with A. rhizogenes is a suitable model system for molecular characterization of shikonin biosynthesis via reverse genetics. Received: 2 March 1998 / Revision received: 25 May 1998 / Accepted: 8 July 1998  相似文献   

13.
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.  相似文献   

14.
 A procedure for producing transgenic Chinese cabbage plants by inoculating cotyledonary explants with Agrobacterium tumefaciens strain EHA101 carrying a binary vector pIG121Hm, which contains kanamycin-resistance and hygromycin-resistance genes and the GUS reporter gene, is described. Infection was most effective (highest infection frequency) when explants were infected with Agrobacterium for 15 min and co-cultivated for 3 days in co-cultivation medium at pH 5.2 supplemented with 10 mg/l acetosyringone. Transgenic plants of all three cultivars used were obtained with frequencies of 1.6–2.7% when the explants were regenerated in shoot regeneration medium solidified with 1.6% agar. A histochemical GUS assay and PCR and Southern blot analyses confirmed that transformation had occurred. Genetic analysis of T1 progeny showed that the transgenes were inherited in a Mendelian fashion. Received: 15 December 1998 / Revision received: 2 July 1999 · Accepted: 8 July 1999  相似文献   

15.
W. Tang 《Plant cell reports》2001,20(2):163-168
 Adventitious buds were induced from organogenic callus derived from mature zygotic embryos of three lines (E-311, E-440, and E-822) of loblolly pine (Pinus taeda L.) within 27 weeks of culture. The influence of cytokinins, silver nitrate, and low-temperature treatment on the differentiation of adventitious buds was analyzed. Elongation of adventitious buds was achieved on TE medium supplemented with 0.5 mg/l indole-3-butyric acid (IBA) and 1 mg/l 6-benzyladenine (BA). After adventitious shoots had rooted on TE medium supplemented with 0.5 mg/l IBA, 2 mg/l BA, and 0.5 mg/l gibberellic acid, 498 regenerated plantlets were transferred to a perlite:peatmoss:vermiculite (1 :>: 1) soil mixture; 351 of these survived in the field. Total DNA was extracted from 21 regenerated plantlets randomly chosen from the 151 regenerated plantlets of line E-822. Random amplified polymorphic DNA (RAPD) analysis using 80 arbitrary oligonucleotide 10-mers showed that 21 primers gave 107 clear reproducible bands, with the amplification products being monomorphic for all of the plantlets of line E-822 tested. A total of 2,247 bands obtained from these studies exhibited no aberration in RAPD banding patterns among the tested plantlets. These results suggest that somatic organogenesis can be used for clonal micropropagation of some lines of loblolly pine without the fear of the appearance of unwanted somaclonal variants. Received: 5 August 2000 / Revision received: 5 September 2000 / Accepted: 10 October 2000  相似文献   

16.
Cho HJ  Farrand SK  Noel GR  Widholm JM 《Planta》2000,210(2):195-204
Cotyledon explants of 10 soybean [Glycine max (L.) Merr.] cultivars were inoculated with Agrobacterium rhizogenes strain K599 with and without binary vectors pBI121 or pBINm-gfp5-ER possessing both neomycin phosphotransferase II (nptII) and β-glucuronidase (gus) or nptII and green fluorescent protein (gfp) genes, respectively. Hairy roots were produced from the wounded surface of 54–95% of the cotyledon explants on MXB selective medium containing 200 μg ml−1 kanamycin and 500 μg ml−1 carbenicillin. Putative individual transformed hairy roots were identified by cucumopine analysis and were screened for transgene incorporation using polymerase chain reaction. All of the roots tested were found to be co-transformed with T-DNA from the Ri-plasmid and the transgene from the binary vectors. Southern blot analysis confirmed the presence of the 35S-gfp5 gene in the plant genomes. Transgene expression was also confirmed by histochemical GUS assay and Western blot analysis for the GFP. Attempts to induce shoot formation from the hairy roots failed. Infection of hairy roots of the soybean cyst nematode (Heterodera glycines Ichinohe)-susceptible cultivar, Williams 82, with eggs of H. glycines race 1, resulted in the development of mature cysts about 4–5 weeks after inoculation. Thus the soybean cyst nematode could complete its entire life cycle in transformed soybean hairy-root cultures expressing GFP. This system should be ideal for testing genes that might impart resistance to soybean cyst nematode. Received: 13 July 1999 / Accepted: 8 August 1999  相似文献   

17.
The ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) large subunit (LS) ɛ N-methyltransferase (Rubisco LSMT) catalyzes post-translational methylation of the ɛ-amino group of lysine-14 in the LS of Rubisco. The entire nucleotide sequence for the tobacco (Nicotiana tabacum) Rubisco LSMT (rbcMT-T) gene including the putative promoter region was recently reported, and sequence analysis of the promoter region revealed seven GT-1 motifs. The ability of several truncated rbcMT-T promoter fragments to confer light responsiveness to reporter gene expression in transgenic soybean (Glycine max) hairy roots was examined. Chimeric constructs consisting of the rbcMT-T promoter fused to a bacterial β-glucuronidase (GUS) reporter gene and transferred to soybean via Agrobacterium rhizogenes were evaluated. The rbcMT-T promoter fragments conferred expression of the reporter gene in transgenic hairy roots, callus, and cell suspension cultures based on histochemical and fluorometric GUS analyses. The results suggest a quantitative role for the number of GT-1 motifs in determining differential expression between light and dark conditions. Received: 7 January 1998 / Revision received: 23 March 1998 / Accepted: 13 April 1998  相似文献   

18.
A simple and easy transformation strategy was accomplished on field growing plants of Phyllanthus amarus, an anti-hepatitis B drug plant. Infection of Agrobacterium rhizogenes strains A4M70GUS and ATCC 15834 on decapitated shoots of field growing P. amarus induced hairy roots and crown gall, respectively. Infection with A4M70GUS yielded a mean of 23.2 roots from 40% plants in 40-day period. The crown gall induced on 30% plants after infection with ATCC 15834 grew to 5–10 mm in diameter. The roots and crown galls established in vitro on Murashige and Skoog (MS) basal medium grew well. The hairy roots yielded fivefold (6.91 g) biomass in half-strength MS liquid medium to that of the adventitious roots derived from internode explants in MS medium with 8.0 μM α-naphthaleneacetic acid (1.39 g). Histochemical assay and PCR analysis using the primers of uidA coding region confirmed the hairy roots induced by A4M70GUS. The crown galls induced by ATCC 15834 were confirmed by PCR analysis using rolB gene primers. The protocol enables an easy and early accomplishment of hairy roots.  相似文献   

19.
Hairy roots of snapdragon (Antirrhinum ma-jus L.: Scrophulariaceae) induced by a wild-type strain of Agrobacterium rhizogenes were cultured on media containing various concentrations of a phosphinothricin-based herbicide, bialaphos, or plant growth regulators (PGRs). Adventitious shoot regeneration from hairy roots was observed with a low frequency (10%) on half-strength Murashige and Skoog medium. Addition of α-naphthalene-acetic acid in combination with 6-benzylaminopurine, thidiazuron, or zeatin to the medium had no effect on shoot regeneration from hairy roots. Although bialaphos at 0.9 mg l–1 or more was toxic to hairy roots, it significantly increased the shoot regeneration frequency up to 56% at 0.5 mg l–1. In contrast, non-transformed roots and leaves regenerated no shoots on media with or without bialaphos. Regenerated shoots detached from host roots readily developed roots on gellan-gum-solidified medium. Regenerated plants were successfully transferred to the greenhouse, but did not produce seed. Received: 24 February 1997 / Revision received: 10 July 1997 / Accepted: 28 July 1997  相似文献   

20.
 A protocol was developed for establishing embryogenic suspension cultures from in vitro-grown, thin shoot-tip sections of the banana cultivar Rasthali. The best medium for callus induction was an MS-based medium supplemented with 2 mg/l 2,4-D and 0.2 mg/l zeatin. The callus was transferred to liquid medium to establish embryogenic cell suspensions. These cultures were subsequently used for Agrobacterium-mediated transformation. The Agrobacterium tumefaciens strain EHA105 containing the binary vector pVGSUN with the als gene as a selectable marker and an intron-containing the gusA gene as a reporter gene was used for transformations. The herbicide Glean was used as a selection agent. Two hundred putative transformants were recovered, of which a set of 16 was tested by histochemical analysis for GUS expression and by Southern blot analysis with a probe for the gusA gene. The plants were positive for GUS expression and integration of the gusA gene. Two of the transformants were grown to maturity under greenhouse conditions. Bananas were harvested to test GUS expression by histochemical analysis. The fruit from both transgenics tested positive for GUS expression. Received: 22 February 2000 / Revision received: 2 October 2000 / Accepted: 5 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号