首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator, and shows elevated levels in regions of severe injury and inflammatory diseases. CTGF is abundantly expressed in osteoarthritis (OA). However, the relationship between CTGF and IL-6 in OA synovial fibroblasts (OASFs) is mostly unknown.

Methodology/Principal Findings

OASFs showed significant expression of CTGF, and expression was higher than in normal SFs. OASFs stimulation with CTGF induced concentration-dependent increases in IL-6 expression. CTGF mediated IL-6 production was attenuated by αvβ5 integrin neutralized antibody and apoptosis signal-regulating kinase 1 (ASK1) shRNA. Pretreatment with p38 inhibitor (SB203580), JNK inhibitor (SP600125), AP-1 inhibitors (Curcumin and Tanshinone IIA), and NF-κB inhibitors (PDTC and TPCK) also inhibited the potentiating action of CTGF. CTGF-mediated increase of NF-κB and AP-1 luciferase activity was inhibited by SB203580 and SP600125 or ASK1 shRNA or p38 and JNK mutant.

Conclusions/Significance

Our results suggest that CTGF increased IL-6 production in OASFs via the αvβ5 integrin, ASK1, p38/JNK, and AP-1/NF-κB signaling pathways.  相似文献   

2.

Background

Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family that is associated with the disease status and outcomes of osteoarthritis (OA). Here, we investigated the intracellular signaling pathways involved in CCL2-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human OA synovial fibroblasts (OASFs).

Methodology/Principal Findings

Stimulation of OASFs with CCL2 induced VCAM-1 expression. CCL2-mediated VCAM-1 expression was attenuated by CCR2 inhibitor (RS102895), PKCδ inhibitor (rottlerin), p38MAPK inhibitor (SB203580), and AP-1 inhibitors (curcumin and tanshinone IIA). Stimulation of cells with CCL2 increased PKCδ and p38MAPK activation. Treatment of OASFs with CCL2 also increased the c-Jun phosphorylation and c-Jun binding to the AP-1 element on the VCAM-1 promoter. Moreover, CCL2-mediated CCR2, PKCδ, p38MAPK, and AP-1 pathway promoted the adhesion of monocytes to the OASFs monolayer.

Conclusions/Significance

Our results suggest that CCL2 increases VCAM-1 expression in human OASFs via the CCR2, PKCδ, p38MAPK, c-Jun, and AP-1 signaling pathway. The CCL2-induced VCAM-1 expression promoted monocytes adhesion to human OASFs.  相似文献   

3.

Introduction

Osteoarthritis (OA) is the most common degenerative joint disease that is involved in the degradation of articular cartilage. The exact etiology of OA is not completely understood. CCN4 is related to up-regulation in the cartilage of patients with osteoarthritis. Previous studies have shown that CCN4 might be associated with the pathogenesis of OA, but the exact signaling pathways in CCN4-mediated IL-6 expression in synovial fibroblasts (SF) are largely unknown. Therefore, we explored the intracellular signaling pathway involved in CCN4-induced IL-6 production in human synovial fibroblast cells.

Methods

CCN4-induced IL-6 production was assessed with quantitative real-time qPCR and ELISA. The mechanisms of action of CCN4 in different signaling pathways were studied by using Western blotting. Neutralizing antibodies of integrin were used to block the integrin signaling pathway. Luciferase assays were used to study IL-6 and NF-κB promoter activity. Immunocytochemistry was used to examine the translocation activity of p65.

Results

Osteoarthritis synovial fibroblasts (OASFs) showed significant expression of CCN4 and the expression was higher than in normal SFs. OASF stimulation with CCN4 induced concentration- and time-dependent increases in IL-6 production. Pretreatment of OASFs with αvβ5 but not α5β1 and αvβ3 integrin antibodies reduced CCN4-induced IL-6 production. CCN4-mediated IL-6 production was attenuated by PI3K inhibitor (LY294002 and Wortmannin), Akt inhibitor (Akti), and NF-κB inhibitor (PDTC and TPCK). Stimulation of cells with CCN4 also increased PI3K, Akt, and NF-κB activation.

Conclusions

Our results suggest that CCN4 activates αvβ5 integrin, PI3K, Akt, and NF-κB pathways, leading to up-regulation of IL-6 production. According to our results, CCN4 may be an appropriate target for drug intervention in OA in the future.  相似文献   

4.
5.

Background

Angiogenesis is essential for the progression of osteoarthritis (OA). Hepatocyte growth factor (HGF) is an angiogenic mediator, and it shows elevated levels in regions of OA. However, the relationship between HGF and vascular endothelial growth factor (VEGF-A) in OA synovial fibroblasts (OASFs) is mostly unknown.

Methodology/Principal Findings

Here we found that stimulation of OASFs with HGF induced concentration- and time-dependent increases in VEGF-A expression. Pretreatment with PI3K inhibitor (Ly294002), Akt inhibitor, or mTORC1 inhibitor (rapamycin) blocked the HGF-induced VEGF-A production. Treatment of cells with HGF also increased PI3K, Akt, and mTORC1 phosphorylation. Furthermore, HGF increased the stability and activity of HIF-1 protein. Moreover, the use of pharmacological inhibitors or genetic inhibition revealed that c-Met, PI3K, Akt, and mTORC1 signaling pathways were potentially required for HGF-induced HIF-1α activation.

Conclusions/Significance

Taken together, our results provide evidence that HGF enhances VEGF-A expression in OASFs by an HIF-1α-dependent mechanism involving the activation of c-Met/PI3K/Akt and mTORC1 pathways.  相似文献   

6.

Introduction

Rheumatoid synovial fibroblasts (RASFs) mediate joint inflammation and destruction in rheumatoid arthritis (RA). Endothelial protein C receptor (EPCR) is a specific receptor for the natural anticoagulant activated protein C (APC). It mediates the cytoprotective properties of APC and is expressed in rheumatoid synovial tissue. A recent report shows that group V secretory phospholipase A2 (sPLA2V) prevents APC from binding to EPCR in endothelium and inhibits EPCR/APC function. The aim of this study was to investigate the expression and function of EPCR on RASFs.

Methods

Human synovial fibroblasts (SFs) were isolated from RA or osteoarthritis (OA) synovial tissues and treated with control, EPCR, or sPLA2V small interfering RNA (siRNA); recombinant human APC, tumor necrosis factor-alpha (TNF-α), or sPLA2V. RASF viability and migration/invasion were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and collagen gel migration/invasion assays, respectively, and cartilage degradation by 1,9-dimethylmethylene blue (DMMB) assay in the presence of human OA articular cartilage explants. The expression or activation of cytokines, EPCR, cadherin-11, mitogen-activated protein (MAP) kinases, and nuclear factor-kappa-B (NF-κB) or both were detected by enzyme-linked immunosorbent assay, Western blotting, or immunostaining.

Results

EPCR was expressed by both OASFs and RASFs but was markedly increased in RASFs. When EPCR was suppressed by siRNA or blocking antibody cell viability, cell invasion and cartilage degradation were reduced by more than 30%. Inflammatory mediators interleukin-1-beta (IL-1β), cadherin-11, and NF-κB were significantly reduced by EPCR suppression under control or TNF-α-stimulated conditions. The expression or activation (or both) of MAP kinases ERK, p38, and JNK were also markedly decreased in cells transfected with EPCR siRNA. Further analysis revealed that sPLA2V co-localized with EPCR on RASFs. Suppression of sPLA2V reduced cell viability and cartilage degradation and increased APC binding to RASFs. Conversely, recombinant sPLA2V increased cartilage degradation, blocked APC binding to RASFs, and could not rescue the effects induced by EPCR suppression.

Conclusions

Our results demonstrate that EPCR is overexpressed by RASFs and mediates the aggressive behavior of RASFs. This function of EPCR is contrary to its cytoprotective role in other settings and is likely driven by sPLA2V.  相似文献   

7.

Introduction

Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytokines regulate DKK1 synthesis in synovial fibroblasts during inflammatory arthritis.

Methods

We examined expression and regulation of DKK1 in primary cultures of human synovial fibroblasts isolated from patients with inflammatory arthritis. The effect of TNFα, IL-1β and glucocorticoids on DKK1 mRNA and protein expression was examined by real-time PCR and ELISA. The ability of inflammatory cytokine-induced expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to sensitise fibroblasts to endogenous glucocorticoids was explored. Global expression of Wnt signalling and target genes in response to TNFα and glucocorticoids was assessed using a custom array.

Results

DKK1 expression in human synovial fibroblasts was directly regulated by glucocorticoids but not proinflammatory cytokines. Glucocorticoids, but not TNFα, regulated expression of multiple Wnt agonists and antagonists in favour of inhibition of Wnt signalling. However, TNFα and IL-1β indirectly stimulated DKK1 production through increased expression of 11β-HSD1.

Conclusions

These results demonstrate that in rheumatoid arthritis synovial fibroblasts, DKK1 expression is directly regulated by glucocorticoids rather than TNFα. Consequently, the links between synovial inflammation, altered Wnt signalling and bone remodelling are not direct but are dependent on local activation of endogenous glucocorticoids.  相似文献   

8.
SE Lee  H Yang  SI Jeong  YH Jin  CS Park  YS Park 《PloS one》2012,7(7):e41676

Background

Crotonaldehyde, an alpha, beta-unsaturated aldehyde present in cigarette smoke, is an environmental pollutant and a product of lipid peroxidation. It also produces adverse effects to humans and is considered as a risk factor for various diseases. Heme oxygenase-1 (HO-1) plays important roles in protecting cells against oxidative stress as a prime cellular defense mechanism. However, HO-1 may be associated with cell proliferation and resistance to apoptosis in cancer cells. The aim of this study was to examine the effects of HO-1 induction on cell survival in crotonaldehyde-stimulated human hepatocellular carcinoma (HepG2) cells.

Methods

To investigate the signaling pathway involved in crotonaldehyde-induced HO-1 expression, we compared levels of inhibition efficiency of specific inhibitors and specific small interfering RNAs (siRNAs) of several kinases. The cell-cycle and cell death was measured by FACS and terminal dUTP nick-end labeling (TUNEL) staining.

Results

Treatment with crotonaldehyde caused a significant increase in nuclear translocation of NF-E2 related factor (Nrf2). Treatment with inhibitors of the protein kinase C-δ (PKC-δ) and p38 pathways resulted in obvious blockage of crotonaldehyde-induced HO-1 expression. Furthermore, treatment with HO-1 siRNA and the specific HO-1 inhibitor zinc-protoporphyrin produced an increase in the G0/G1 phase of the cell cycle in crotonaldehyde-stimulated HepG2 cells.

Conclusions

Taken together, the results support an anti-apoptotic role for HO-1 in crotonaldehyde-stimulated human hepatocellular carcinoma cells and provide a mechanism by which induction of HO-1 expression via PKC-δ–p38 MAPK–Nrf2 pathway may promote tumor resistance to oxidative stress.  相似文献   

9.

Objective

Thrombin, the final coagulation product of the coagulation cascade, has been demonstrated to have many physiological effects, including pro-fibrotic actions via protease-activated receptor (PAR)-1. Recent investigations have demonstrated that activation of the cardiac local coagulation system was associated with atrial fibrillation. However, the distribution of thrombin in the heart, especially difference between the atria and the ventricle, remains to be clarified. We herein investigated the expression of thrombin and other related proteins, as well as tissue fibrosis, in the human left atria and left ventricle.

Methods

We examined the expression of thrombin and other related molecules in the autopsied hearts of patients with and without atrial fibrillation. An immunohistochemical analysis was performed in the left atria and the left ventricle.

Results

The thrombin was immunohistologically detected in both the left atria and the left ventricles. Other than in the myocardium, the expression of thrombin was observed in the endocardium and the subendocardium of the left atrium. Thrombin was more highly expressed in the left atrium compared to the left ventricle, which was concomitant with more tissue fibrosis and inflammation, as detected by CD68 expression, in the left atrium. We also confirmed the expression of prothrombin in the left atrium. The expression of PAR-1 was observed in the endocardium, subendocardium and myocardium in the left atrium. In patients with atrial fibrillation, strong thrombin expression was observed in the left atrium.

Conclusions

The strong expression levels of thrombin, prothrombin and PAR-1 were demonstrated in the atrial tissues of human autopsied hearts.  相似文献   

10.

Aims

This study is to investigate the mechanisms by which macrophage-activating lipopeptide-2 (MALP-2) induces heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme, in human monocytes.

Methods

Human monocytic THP-1 cells were cultured for transient transfection with plasmids and stimulation with MALP-2 for indicative time intervals. After incubation with MALP-2, cells were collected and disrupted, before being tested for promoter activity using luciferase assay. For analysis of proteins, immunoreactive bands were detected using an enhanced chemiluminescence Western blotting system, and the band intensity was measured by densitometryic analysis. For the detection of co-immunoprecipitation, SDS-PAGE was performed and the membranes were probed using respective antibodies. To investigate the cellular localization of NF-E2-related factor 2 (Nrf2), cells underwent immunofluorescence staining and confocal microscopy, and were analyzed using electrophoretic mobility shift assay.

Results

MALP-2-induced HO-1 expression and promoter activity were abrogated by transfection with dominant negative (DN) plasmids of TLR2 and TLR6, or their neutralizing antibodies. However, inhibition of MyD88 or transfection with the DN-MyD88 was insufficient to attenuate HO-1 expression. In contrast, mutation or silencing of MyD88 adapter-like (Mal) by DN-Mal or siRNA almost completely blocked HO-1 induction. Btk, c-Src and PI3K were also involved in MALP-2-induced HO-1 expression, as revealed by specific inhibitors LFM-A13, PP1 and LY294002, or by transfection with siRNA of c-Src. MALP-2-induced activation of PI3K was attenuated by transfection with DN mutant of Mal, and by pretreatment with LFM-A13 or PP1. Furthermore, MALP-2 stimulated the translocation of Nrf2 from the cytosol to the nucleus and Nrf2 binding to the ARE site in the HO-1 promoter, which could also be inhibited by pretreatment with a PI3K inhibitor, LY294002.

Conclusions

These results indicated that MALP-2 required TLR2/6, Btk, Mal and c-Src to activate PI3K, which in turn initiated the activation of Nrf2 for efficient HO-1 induction.  相似文献   

11.

Introduction

We previously reported that sialyl Lewisy, synthesized by fucosyltransferases, is involved in angiogenesis. Fucosyltransferase 1 (fut1) is an α(1,2)-fucosyltransferase responsible for synthesis of the H blood group and Lewisy antigens. However, the angiogenic involvement of fut 1 in the pathogenesis of rheumatoid arthritis synovial tissue (RA ST) has not been clearly defined.

Methods

Assay of α(1,2)-linked fucosylated proteins in RA was performed by enzyme-linked lectin assay. Fut1 expression was determined in RA ST samples by immunohistological staining. We performed angiogenic Matrigel assays using a co-culture system of human dermal microvascular endothelial cells (HMVECs) and fut1 small interfering RNA (siRNA) transfected RA synovial fibroblasts. To determine if fut1 played a role in leukocyte retention and cell proliferation in the RA synovium, myeloid THP-1 cell adhesion assays and fut1 siRNA transfected RA synovial fibroblast proliferation assays were performed.

Results

Total α(1,2)-linked fucosylated proteins in RA ST were significantly higher compared to normal (NL) ST. Fut1 expression on RA ST lining cells positively correlated with ST inflammation. HMVECs from a co-culture system with fut1 siRNA transfected RA synovial fibroblasts exhibited decreased endothelial cell tube formation compared to control siRNA transfected RA synovial fibroblasts. Fut1 siRNA also inhibited myeloid THP-1 adhesion to RA synovial fibroblasts and RA synovial fibroblast proliferation.

Conclusions

These data show that α(1,2)-linked fucosylated proteins are upregulated in RA ST compared to NL ST. We also show that fut1 in RA synovial fibroblasts is important in angiogenesis, leukocyte-synovial fibroblast adhesion, and synovial fibroblast proliferation, all key processes in the pathogenesis of RA.  相似文献   

12.

Background

High fat diet-induced hyperglycemia and palmitate-stimulated apoptosis was prevented by specific inhibition of protein kinase C delta (PKCδ) in β-cells. To understand the role of PKCδ in more detail the impact of changes in PKCδ activity on proliferation and survival of insulin-secreting cells was analyzed under stress-free conditions.

Methodology and Principal Findings

Using genetic and pharmacological approaches, the effect of reduced and increased PKCδ activity on proliferation, apoptosis and cell cycle regulation of insulin secreting cells was examined. Proteins were analyzed by Western blotting and by confocal laser scanning microscopy. Increased expression of wild type PKCδ (PKCδWT) significantly stimulated proliferation of INS-1E cells with concomitant reduced expression and cytosolic retraction of the cell cycle inhibitor p21Cip1/WAF1. This nuclear extrusion was mediated by PKCδ-dependent phosphorylation of p21Cip1/WAF1 at Ser146. In kinase dead PKCδ (PKCδKN) overexpressing cells and after inhibition of endogenous PKCδ activity by rottlerin or RNA interference phosphorylation of p21Cip1/WAF1 was reduced, which favored its nuclear accumulation and apoptotic cell death of INS-1E cells. Human and mouse islet cells express p21Cip1/WAF1 with strong nuclear accumulation, while in islet cells of PKCδWT transgenic mice the inhibitor resides cytosolic.

Conclusions and Significance

These observations disclose PKCδ as negative regulator of p21Cip1/WAF1, which facilitates proliferation of insulin secreting cells under stress-free conditions and suggest that additional stress-induced changes push PKCδ into its known pro-apoptotic role.  相似文献   

13.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory and destructive disease of the joint. The synovial lining consists of two main types of cells: synovial fibroblasts and macrophages. The macrophage-derived cytokine TNFα stimulates RA synovial fibroblasts to proliferate and produce growth factors, chemokines, proteinases and adhesion molecules, making them key players in the RA disease process. If proteins are not correctly folded, cellular stress occurs that can be relieved in part by increased degradation of the aberrant proteins by the proteasome or autophagy. We hypothesized that the activity of the protein degradation pathways would be increased in response to TNFα stimulation in RA synovial fibroblasts compared with control fibroblasts.

Methods

Endoplasmic reticulum (ER) stress markers were examined in synovial fibroblasts by immunoblotting and PCR. Use of the autophagy and proteasome protein degradation pathways in response to TNFα stimulation was determined using a combination of experiments involving chemical inhibition of the autophagy or proteasome pathways followed by immunoblotting for the autophagy marker LC3, measurement of proteasome activity and long-lived protein degradation, and determination of cellular viability.

Results

RA synovial fibroblasts are under acute ER stress, and the stress is increased in the presence of TNFα. Autophagy is the main pathway used to relieve the ER stress in unstimulated fibroblasts, and both autophagy and the proteasome are more active in RA synovial fibroblasts compared with control fibroblasts. In response to TNFα, the autophagy pathway but not the proteasome is consistently stimulated, yet there is an increased dependence on the proteasome for cell viability. If autophagy is blocked in the presence of TNFα, an increase in proteasome activity occurs in RA synovial fibroblasts but not in control cells.

Conclusions

TNFα stimulation of synovial fibroblasts results in increased expression of ER stress markers. Survival of synovial fibroblasts is dependent on continuous removal of proteins by both the lysosome/autophagy and ubiquitin/proteasome protein degradation pathways. Both pathways are more active in RA synovial fibroblasts compared with control fibroblasts. These results may provide a better understanding of the mechanism of TNFα on prolonging the survival of synovial fibroblasts in RA tissue.  相似文献   

14.

Objectives

Chikungunya virus causes chronic infection with manifestations of joint pain. Human synovial fibroblasts get infected with CHIKV and could lead to pro-inflammatory responses. MicroRNAs have potentials to regulate the gene expression of various anti-viral and pro-inflammatory genes. The study aims to investigate the role of miR-146a in modulation of inflammatory responses of human synovial fibroblasts by Chikungunya virus.

Methods

To study the role of miR-146a in CHIKV pathogenesis in human synovial cells and underlying inflammatory manifestations, we performed CHIKV infection in primary human synovial fibroblasts. Western blotting, real-time PCR, luciferase reporter assay, overexpression and knockdown of cellular miR-146a strategies have been employed to validate the role of miR-146a in regulation of pro-inflammatory NF-κB pathway.

Results

CHIKV infection induced the expression of cellular miR-146a, which resulted into down-regulation of TRAF6, IRAK1, IRAK2 and increased replication of CHIKV in human synovial fibroblasts. Exogenous expression of miR-146a in human synovial fibroblasts led to decreased expression of TRAF6, IRAK1, IRAK2 and decreased replication of CHIKV. Inhibition of cellular miR-146a by anti-miR-146a restored the expression levels of TRAF6, IRAK1 and IRAK2. Downregulation of TRAF6, IRAK1 and IRAK2 led to downstream decreased NF-κB activation through negative feedback loop.

Conclusion

This study demonstrated the mechanism of exploitation of cellular miR-146a by CHIKV in modulating the host antiviral immune response in primary human synovial fibroblasts.  相似文献   

15.

Introduction

Synovial cells are potential sources of inflammatory mediators in bacterial-induced arthritis but their involvement in the inflammatory response to Candida albicans-induced septic arthritis is largely unknown.

Methods

Primary cultures of rat synovial fibroblasts were infected with C. albicans (ATCC90028). Immunocytochemistry, western blotting, and RT-PCR were performed to assess cyclo-oxygenase 2 induction. Phosphorylation of extracellular-regulated kinase (ERK1/2) following infection in the absence or presence of U0126 was assessed by western blotting whilst prostaglandin E2 production was measured by ELISA. Nuclear factor κB (NFκB) translocation was evaluated by an electrophoretic mobility shift assay.

Results

Infection of synovial fibroblasts with C. albicans resulted in cyclo-oxygenase 2 expression and prostaglandin E2 production. Cyclo-oxygenase 2 expression and prostaglandin E2 production was dependent upon extracellular-regulated kinase 1/2 phosphorylation, associated with activation of NFκB and significantly elevated in the presence of laminarin, an inhibitor of dectin-1 activity. Synovial fibroblasts adjacent to C. albicans hyphae aggregates appeared to be the major contributors to the increased levels of cyclo-oxygenase 2 and phosphorylated extracellular-regulated kinase 1/2.

Conclusions

C. albicans infection of synovial fibroblasts in vitro results in upregulation of cyclo-oxygenase 2 and prostaglandin E2 by mechanisms that may involve activation of extracellular-regulated kinase 1/2 and are associated with NFκB activation.  相似文献   

16.

Introduction

Synovial fibroblasts invade cartilage and bone, leading to joint destruction in rheumatoid arthritis. However, the mechanisms that regulate synovial fibroblast invasion are not well understood. Focal adhesion kinase (FAK) has been implicated in cellular invasion in several cell types, and FAK inhibitors are in clinical trials for cancer treatment. Little is known about the role of FAK in inflammatory arthritis, but, given its expression in synovial tissue, its known role in invasion in other cells and the potential clinical availability of FAK inhibitors, it is important to determine if FAK contributes to synovial fibroblast invasion and inflammatory arthritis.

Methods

After treatment with FAK inhibitors, invasiveness of human rheumatoid synovial fibroblasts was determined with Matrigel invasion chambers. Migration and focal matrix degradation, two components of cellular invasion, were assessed in FAK-inhibited rheumatoid synovial fibroblasts by transwell assay and microscopic examination of fluorescent gelatin degradation, respectively. Using mice with tumor necrosis factor α (TNFα)–induced arthritis in which fak could be inducibly deleted, invasion and migration by FAK-deficient murine arthritic synovial fibroblasts were determined as described above and arthritis was clinically and pathologically scored in FAK-deficient mice.

Results

Inhibition of FAK in human rheumatoid synovial fibroblasts impaired cellular invasion and migration. Focal matrix degradation occurred both centrally and at focal adhesions, the latter being a novel site for matrix degradation in synovial fibroblasts, but degradation was unaltered with FAK inhibitors. Loss of FAK reduced invasion in murine arthritic synovial fibroblasts, but not migration or TNFα-induced arthritis severity and joint erosions.

Conclusions

FAK inhibitors reduce synovial fibroblast invasion and migration, but synovial fibroblast migration and TNFα-induced arthritis do not rely on FAK itself. Thus, inhibition of FAK alone is unlikely to be sufficient to treat inflammatory arthritis, but current drugs that inhibit FAK may inhibit multiple factors, which could increase their efficacy in rheumatoid arthritis.  相似文献   

17.

Background

Protein kinase C (PKC) ε, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCε in lung cancer metastasis has not yet been established.

Principal Findings

Here we show that RNAi-mediated knockdown of PKCε in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCε depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCε with εV1-2, a specific PKCε inhibitor. PKCε was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCε-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis.

Conclusions

Our results implicate PKCε as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target.  相似文献   

18.

Introduction

Patients with rheumatoid arthritis (RA) have disturbances in the hypothalamic-pituitary-adrenal (HPA) axis. These are reflected in altered circadian rhythm of circulating serum cortisol, melatonin and IL-6 levels and in chronic fatigue. We hypothesized that the molecular machinery responsible for the circadian timekeeping is perturbed in RA. The aim of this study was to investigate the expression of circadian clock in RA.

Methods

Gene expression of thirteen clock genes was analyzed in the synovial membrane of RA and control osteoarthritis (OA) patients. BMAL1 protein was detected using immunohistochemistry. Cell autonomous clock oscillation was started in RA and OA synovial fibroblasts using serum shock. The effect of pro-inflammatory stimulus on clock gene expression in synovial fibroblasts was studied using IL-6 and TNF-α.

Results

Gene expression analysis disclosed disconcerted circadian timekeeping and immunohistochemistry revealed strong cytoplasmic localization of BMAL1 in RA patients. Perturbed circadian timekeeping is at least in part inflammation independent and cell autonomous, because RA synovial fibroblasts display altered circadian expression of several clock components, and perturbed circadian production of IL-6 and IL-1β after clock resetting. However, inflammatory stimulus disturbs the rhythm in cultured fibroblasts. Throughout the experiments ARNTL2 and NPAS2 appeared to be the most affected clock genes in human immune-inflammatory conditions.

Conclusion

We conclude that the molecular machinery controlling the circadian rhythm is disturbed in RA patients.  相似文献   

19.
20.

Objective

To investigate whether lipoxin A4 (LXA4) increases expression of heme oxygenase-1(HO-1) in cardiomyocytes, whether LXA4-induced HO-1 protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury, and what are the mechanisms involved in the LXA4-induced HO-1 induction.

Methods

Rat cardiomyocytes were exposed to H/R injury with or without preincubation with LXA4 or HO-1 inhibitor ZnPP-IX or various signal molecule inhibitors. Expressions of HO-1 protein and mRNA were analyzed by using Western blot and RT-PCR respectively. Activity of nuclear factor E2-related factor 2 (Nrf2) binding to the HO-1 E1 enhancer was assessed by chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE) were measured by using electrophoretic mobility shift assay.

Results

Pretreatment of the cells undergoing H/R lesion with LXA4 significantly reduced the lactate dehydrogenase and creatine kinase productions, increased the cell viability, and increased the expressions of HO-1 protein and mRNA and HO-1 promoter activity. HO-1 inhibition abolished the protective role of LXA4 on the cells undergoing H/R lesion. LXA4 increased p38 mitogen-activated protein kinase (p38 MAPK) activation, nuclear translocation of Nrf2, Nrf2 binding to the HO-1 ARE and E1 enhancer in cardiomyocytes with or without H/R exposure.

Conclusion

The protection role of LXA4 against H/R injury of cardiomyocytes is related to upregulation of HO-1, via activation of p38 MAPK pathway and nuclear translocation of Nrf2 and Nrf2 binding to the HO-1 ARE and E1 enhancer, but not via activation of phosphatidyinositol-3-kinase or extracellular signal-regulated kinase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号