首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.

Introduction

Rat adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) feature bone loss and systemic increases in TNFα, IL-1β, and receptor activator of NF-κB ligand (RANKL). Anti-IL-1 or anti-TNFα therapies consistently reduce inflammation in these models, but systemic bone loss often persists. RANKL inhibition consistently prevents bone loss in both models without reducing joint inflammation. Effects of these therapies on systemic markers of bone turnover and inflammation have not been directly compared.

Methods

Lewis rats with established AIA or CIA were treated for 10 days (from day 4 post onset) with either PBS (Veh), TNFα inhibitor (pegsunercept), IL-1 inhibitor (anakinra), or RANKL inhibitor (osteoprotegerin (OPG)-Fc). Local inflammation was evaluated by monitoring hind paw swelling. Bone mineral density (BMD) of paws and lumbar vertebrae was assessed by dual X-ray absorptiometry. Markers and mediators of bone resorption (RANKL, tartrate-resistant acid phosphatase 5b (TRACP 5B)) and inflammation (prostaglandin E2 (PGE2), acute-phase protein alpha-1-acid glycoprotein (α1AGP), multiple cytokines) were measured in serum (day 14 post onset).

Results

Arthritis progression significantly increased paw swelling and ankle and vertebral BMD loss. Anti-TNFα reduced paw swelling in both models, and reduced ankle BMD loss in AIA rats. Anti-IL-1 decreased paw swelling in CIA rats, and reduced ankle BMD loss in both models. Anti-TNFα and anti-IL-1 failed to prevent vertebral BMD loss in either model. OPG-Fc reduced BMD loss in ankles and vertebrae in both models, but had no effect on paw swelling. Serum RANKL was elevated in AIA-Veh and CIA-Veh rats. While antiTNFα and anti-IL-1 partially normalized serum RANKL without any changes in serum TRACP 5B, OPG-Fc treatment reduced serum TRACP 5B by over 90% in both CIA and AIA rats. CIA-Veh and AIA-Veh rats had increased serum α1AGP, IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL2), and AIA-Veh rats also had significantly greater serum PGE2, TNFα and IL-17. Anti-TNFα reduced systemic α1AGP, CCL2 and PGE2 in AIA rats, while anti-IL-1 decreased systemic α1AGP, IL-8 and PGE2. In contrast, RANKL inhibition by OPG-Fc did not lessen systemic cytokine levels in either model.

Conclusions

Anti-TNFα or anti-IL-1 therapy inhibited parameters of local and systemic inflammation, and partially reduced local but not systemic bone loss in AIA and CIA rats. RANKL inhibition prevented local and systemic bone loss without significantly inhibiting local or systemic inflammatory parameters.  相似文献   

2.

Objective

The aim of this study was to determine whether hypercholesterolemia increases articular damage in a rabbit model of chronic arthritis.

Methods

Hypercholesterolemia was induced in 18 rabbits by administrating a high-fat diet (HFD). Fifteen rabbits were fed normal chow as controls. Chronic antigen-induced arthritis (AIA) was induced in half of the HFD and control rabbits, previously immunized, by intra-articular injections of ovalbumin. After sacrifice, lipid and systemic inflammation markers were analyzed in blood serum. Synovium was analyzed by Krenn score, multinucleated cell counting, immunohistochemistry of RAM11 and CD31, and TNF-α and macrophage chemoattractant protein-1 (MCP-1) gene expression. Active bone resorption was assessed by protein expression of receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) and quantification of cathepsin K, contact surface and the invasive area of pannus into bone.

Results

Rabbits receiving the HFD showed higher total serum cholesterol, HDL, triglycerides and CRP levels than rabbits fed a normal diet. Synovitis score was increased in HFD, and particularly in AIA and AIA + HFD groups. AIA + HFD synovium was characterized by a massive infiltration of RAM11+ cells, higher presence of multinucleated foam cells and bigger vascularization than AIA. Cathepsin K+ osteoclasts and the contact surface of bone resorbing pannus were also increased in rabbits with AIA + HFD compared with AIA alone. Synovial TNF-α and MCP-1 gene expression was increased in AIA and HFD rabbits compared with healthy animals. RANKL protein expression in AIA and AIA + HFD groups was higher compared with either HFD or normal groups.

Conclusions

This experimental model demonstrates that hypercholesterolemia increments joint tissue damage in chronic arthritis, with foam macrophages being key players in this process.  相似文献   

3.

Introduction

Osteoclastogenesis plays an important role in the bone erosion of rheumatoid arthritis (RA). Recently, Notch receptors have been implicated in the development of osteoclasts. However, the responsible Notch ligands have not been identified yet. This study was undertaken to determine the role of individual Notch receptors and ligands in osteoclastogenesis.

Methods

Mouse bone marrow-derived macrophages or human peripheral blood monocytes were used as osteoclast precursors and cultured with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF) to induce osteoclasts. Osteoclasts were detected by tartrate-resistant acid phosphatase (TRAP) staining. K/BxN serum-induced arthritic mice and ovariectomized mice were treated with anti-mouse Delta-like 1 (Dll1) blocking monoclonal antibody (mAb).

Results

Blockade of a Notch ligand Dll1 with mAb inhibited osteoclastogenesis and, conversely, immobilized Dll1-Fc fusion protein enhanced it in both mice and humans. In contrast, blockade of a Notch ligand Jagged1 enhanced osteoclastogenesis and immobilized Jagged1-Fc suppressed it. Enhancement of osteoclastogenesis by agonistic anti-Notch2 mAb suggested that Dll1 promoted osteoclastogenesis via Notch2, while suppression by agonistic anti-Notch1 mAb suggested that Jagged1 suppressed osteoclastogenesis via Notch1. Inhibition of Notch signaling by a gamma-secretase inhibitor suppressed osteoclastogenesis, implying that Notch2/Dll1-mediated enhancement was dominant. Actually, blockade of Dll1 ameliorated arthritis induced by K/BxN serum transfer, reduced the number of osteoclasts in the affected joints and suppressed ovariectomy-induced bone loss.

Conclusions

The differential regulation of osteoclastogenesis by Notch2/Dll1 and Notch1/Jagged1 axes may be a novel target for amelioration of bone erosion in RA patients.  相似文献   

4.
5.

Objective

Subchondral bone modifications occur early in the development of osteoarthritis (OA). The level of bone resorption might impact cartilage remodeling. We therefore assessed the in vivo and in vitro effects of targeting bone resorption in OA and cartilage metabolism.

Methods

OA was induced by meniscectomy (MNX) in ovariectomized osteopenic mice (OP) treated with estradiol (E2), pamidronate (PAM), or phosphate buffered saline (PBS) for 6 weeks. We assessed the subchondral bone and cartilage structure and the expression of cartilage matrix proteases. To assess the involvement of bone soluble factors in cartilage metabolism, supernatant of human bone explants pre-treated with E2 or PAM were transferred to cartilage explants to assess proteoglycan release and aggrecan cleavage. OPG/RANKL mRNA expression was assessed in bone explants by real-time quantitative PCR. The role of osteoprotegerin (OPG) in the bone-cartilage crosstalk was tested using an OPG neutralizing antibody.

Results

Bone mineral density of OP mice and osteoclast number were restored by E2 and PAM (p<0.05). In OP mice, E2 and PAM decreased ADAMTS-4 and -5 expression, while only PAM markedly reduced OA compared to PBS (2.0±0.63 vs 5.2±0.95; p<0.05). OPG/RANKL mRNA was increased in human bone explants treated with both drugs (2.2–3.7-fold). Moreover, supernatants from bone explants cultured with E2 or PAM reduced aggrecan cleavage and cartilage proteoglycan release (73±8.0% and 80±22% of control, respectively, p<0.05). This effect was reversed with osteoprotegerin blockade.

Conclusion

The inhibition of bone resorption by pamidronate in osteopenic mice alleviates the histological OA score with a reduction in the expression of aggrecanases. Bone soluble factors, such as osteoprotegerin, impact the cartilage response to catabolic factors. This study further highlights the importance of subchondral bone in the regulation of joint cartilage damage in OA.  相似文献   

6.
IL-17 is a T cell-derived proinflammatory cytokine in experimental arthritis and is a stimulator of osteoclastogenesis in vitro. In this study, we report the effects of IL-17 overexpression (AdIL-17) in the knee joint of type II collagen-immunized mice on bone erosion and synovial receptor activator of NF-kappa B ligand (RANKL)/receptor activator of NF-kappa B/osteoprotegerin (OPG) expression. Local IL-17 promoted osteoclastic bone destruction, which was accompanied with marked tartrate-resistant acid phosphatase activity at sites of bone erosion in cortical, subchondral, and trabecular bone. Accelerated expression of RANKL and its receptor, receptor activator of NF-kappa B, was found in the synovial infiltrate and at sites of focal bone erosion, using specific immunohistochemistry. Interestingly, AdIL-17 not only enhanced RANKL expression but also strongly up-regulated the RANKL/OPG ratio in the synovium. Comparison of arthritic mice from the AdIL-17 collagen-induced arthritis group with full-blown collagen-arthritic mice having similar clinical scores for joint inflammation revealed lower RANKL/OPG ratio and tartrate-resistant acid phosphatase activity in the latter group. Interestingly, systemic OPG treatment prevented joint damage induced by local AdIL-17 gene transfer in type II collagen-immunized mice. These findings suggest T cell IL-17 to be an important inducer of RANKL expression leading to loss of the RANKL/OPG balance, stimulating osteoclastogenesis and bone erosion in arthritis.  相似文献   

7.

Introduction

Recent studies revealed that co-morbidity and mortality due to cardiovascular disease are increased in patients with rheumatoid arthritis (RA) but little is known about factors involved in these manifestations. This study aimed at characterizing the impact of arthritis on oxidative stress status and tissue fibrosis in the heart of rats with adjuvant-induced arthritis (AIA).

Methods

AIA was induced with complete Freund's adjuvant in female Lewis rats. Animals were treated by oral administration of vehicle or angiotensin-converting enzyme inhibitor ramipril (10 mg/kg/day) for 28 days, beginning 1 day after arthritis induction. Isolated adult cardiomyocytes were exposed to 10 μM 4-hydroxynonenal (HNE) for 24 hours in the presence or absence of 10 μM ramipril.

Results

Compared to controls, AIA rats showed significant 55 and 30% increase of 4-HNE/protein adducts in serum and left ventricular (LV) tissues, respectively. Cardiac mitochondrial NADP+-isocitrate dehydrogenase (mNADP-ICDH) activity decreased by 25% in AIA rats without any changes in its protein and mRNA expression. The loss of mNADP-ICDH activity was correlated with enhanced accumulation of HNE/mNADP-ICDH adducts as well as with decrease of glutathione and NADPH. Angiotensin II type 1 receptor (AT1R) expression and tissue fibrosis were induced in LV tissues from AIA rats. In isolated cardiomyocytes, HNE significantly decreased mNADP-ICDH activity and enhanced type I collagen and connective tissue growth factor expression. The oral administration of ramipril significantly reduced HNE and AT1R levels and restored mNADP-ICDH activity and redox status in LV tissues of AIA rats. The protective effects of this drug were also evident from the decrease in arthritis scoring and inflammatory markers.

Conclusion

Collectively, our findings disclosed that AIA induced oxidative stress and fibrosis in the heart. The fact that ramipril attenuates inflammation, oxidative stress and tissue fibrosis may provide a novel strategy to prevent heart diseases in RA.  相似文献   

8.
9.

Purpose

Osteoprotegerin (OPG) affects bone metabolism by intercepting the RANK-RANKL interaction which prevents osteoclastic differentiation and consequently reduces bone resorption. Different bone phenotypes of mice overexpressing OPG and of mice with knockdown of receptor activator of NF-κB (RANK) or RANK-ligand (RANKL) suggest that the mechanism of action of the OPG-RANKL-RANK system in regulating bone remodeling is not completely understood. Furthermore, OPG increases bone mass and density independently from reduced osteoclastogenesis which is consistent with the possibility that OPG may directly affect bone metabolism beyond its known role as decoy receptor for RANKL.

Methods

We treated primary human osteoblastic cells with OPG and inhibitory anti-RANKL antibodies and measured cellular ALP activity, in vitro mineralization, vitronectin receptor protein expression and ERK phosphorylation. We also analyzed the mRNA co-expression of ALP and OPG ex vivo in bone biopsies from acute and old stable vertebral fractures.

Results

OPG directly increased ALP activity and in vitro mineralization of HOC, enhanced expression of the vitronectin receptor thereby increasing adherence of HOC to vitronectin and stimulated ERK phosphorylation. All OPG-mediated effects could be prevented by RANKL antibodies or RANKL-siRNA transfection and MAPK inhibitor PD98059 reduced the stimulatory effect of OPG on integrin αv expression. In acutely fractured vertebrae OPG and ALP mRNA expression was significantly increased compared to stable vertebral fractures. In conclusion, OPG exerts direct osteoanabolic effects on HOC metabolism via RANKL in addition to its well described role as decoy receptor for RANKL.  相似文献   

10.

Background

Phenylketonuria (PKU) is a rare inborn error of metabolism often complicated by a progressive bone impairment of uncertain etiology, as documented by both ionizing and non- ionizing techniques.

Methodology

Peripheral blood mononuclear cell (PBMC) cultures were performed to study osteoclastogenesis, in the presence or absence of recombinant human monocyte-colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). Flow cytometry was utilized to analyze osteoclast precursors (OCPs) and T cell phenotype. Tumour necrosis factor α (TNF-α), RANKL and osteoprotegerin (OPG) were quantified in cell culture supernatants by ELISA. The effects of RANKFc and anti-TNF-α antibodies were also investigated to determine their ability to inhibit osteoclastogenesis. In addition, bone conditions and phenylalanine levels in PKU patients were clinically evaluated.

Principal Findings

Several in vitro studies in PKU patients'' cells identified a potential mechanism of bone formation inhibition commonly associated with this disorder. First, PKU patients disclosed an increased osteoclastogenesis compared to healthy controls, both in unstimulated and M-CSF/RANKL stimulated PBMC cultures. OCPs and the measured RANKL/OPG ratio were higher in PKU patients compared to healthy controls. The addition of specific antagonist RANKFc caused osteoclastogenesis inhibition, whereas anti-TNF-α failed to have this effect. Among PBMCs isolated from PKU patients, activated T cells, expressing CD69, CD25 and RANKL were identified. Confirmatory in vivo studies support this proposed model. These in vivo studies included the analysis of osteoclastogenesis in PKU patients, which demonstrated an inverse relation to bone condition assessed by phalangeal Quantitative Ultrasound (QUS). This was also directly related to non-compliance to therapeutic diet reflected by hyperphenylalaninemia.

Conclusions

Our results indicate that PKU spontaneous osteoclastogenesis depends on the circulating OCP increase and the activation of T cells. Osteoclastogenesis correlates with clinical parameters, suggesting its value as a diagnostic tool for an early assessment of an increased bone resorption in PKU patients.  相似文献   

11.

Introduction

We aimed to investigate the expression and therapeutic modulation of the receptor activator of the NF-κB ligand (RANKL) system in early-untreated rheumatoid arthritis (RA).

Methods

In this study, 15 patients with newly diagnosed RA (median symptom duration 7 months) were started on methotrexate (MTX) 20 mg weekly. Synovial biopsies were obtained by needle arthroscopy at baseline and 8 weeks after initiation of therapy. X-rays of the hands and feet were obtained at baseline and 1 year after diagnosis. Immunohistochemistry was performed to detect RANKL, receptor activator of nuclear factor-κB (RANK) and osteoprotegerin (OPG) in the synovial biopsies. The in vitro effect of MTX was tested on RA-derived primary fibroblasts and the osteoblasts-like osteosarcoma cell line (rtPCR, Western blot and ELISA) and in osteoclasts (tartrate-resistant acid phosphatase staining and dentine pit formation assay).

Results

MTX decreased synovial cellularity as well as RANK expression and the RANKL/OPG ratio. We confirmed this effect by a decrease of the mRNA and protein RANKL/OPG ratio in synovial-derived fibroblasts and osteoblasts-like tumoral cells exposed in vitro to methotrexate. Supernatants from MTX treated osteoblasts-like tumoral cells prevented pre-osteoclast formation in the absence of exogenous RANKL. Furthermore, MTX blocked osteoclastogenesis from peripheral blood mononuclear cells despite the presence of macrophage colony stimulating factor and RANKL, which indicates that MTX directly inhibits osteoclastogenesis.

Conclusions

The synovial membrane of early-untreated RA is characterized by a high RANKL/OPG ratio that can be reversed by methotrexate.  相似文献   

12.

Introduction

Endothelial dysfunction (ED) participates to atherogenesis associated to rheumatoid arthritis. We recently reported increased arginase activity/expression in vessels from adjuvant-induced arthritis (AIA) rats. In the present study, we investigated the effects of a curative treatment with the arginase inhibitor Nw-hydroxy-nor-L-arginine (nor-NOHA) on vascular dysfunction in AIA rats.

Methods

AIA rats were treated with nor-NOHA (40 mg/kg/d, ip) for 21 days after the onset of arthritis. A group of untreated AIA rats and a group of healthy rats served as controls. ED was assessed by the vasodilatory effect of acetylcholine (Ach) on aortic rings. The role of superoxide anions, prostanoids, endothelium-derived hyperpolarizing factor (EDHF) and nitric oxide synthase (NOS) pathway was studied. Plasma levels of IL-6 and vascular endothelial growth factor (VEGF) were determined by ELISA kits. Arthritis severity was estimated by a clinical, radiological and histological analysis.

Results

Nor-NOHA treatment fully restored the aortic response to Ach to that of healthy controls. The results showed that this beneficial effect is mediated by an increase in NOS activity and EDHF and reduced superoxide anion production as well as a decrease in the activity of cyclooxygenase (COX)-2, thromboxane and prostacyclins synthases. In addition, nor-NOHA decreased IL-6 and VEGF plasma levels in AIA rats. By contrast, the treatment did not modify arthritis severity in AIA rats.

Conclusions

The treatment with an arginase inhibitor has a potent effect on ED in AIA independently of the severity of the disease. Our results suggest that this new pharmacological approach has the potential as a novel add-on therapy in the treatment of RA.  相似文献   

13.
IntroductionWe designed OP3-4 (YCEIEFCYLIR), a cyclic peptide, to mimic the soluble osteoprotegerin (OPG), and was proven to bind to RANKL (receptor activator of NF-κB ligand), thereby inhibiting osteoclastogenesis. We recently found that another RANKL binding peptide, W9, could accelerate bone formation by affecting RANKL signaling in osteoblasts. We herein demonstrate the effects of OP3-4 on bone formation and bone loss in a murine model of rheumatoid arthritis.MethodsTwenty-four seven-week-old male DBA/1J mice were used to generate a murine model of collagen-induced arthritis (CIA). Then, vehicle or OP3-4 (9 mg/kg/day or 18 mg/kg/day) was subcutaneously infused using infusion pumps for three weeks beginning seven days after the second immunization. The arthritis score was assessed, and the mice were sacrificed on day 49. Thereafter, radiographic, histological and biochemical analyses were performed.ResultsThe OP3-4 treatment did not significantly inhibit the CIA-induced arthritis, but limited bone loss. Micro-CT images and quantitative measurements of the bone mineral density revealed that 18 mg/kg/day OP3-4 prevented the CIA-induced bone loss at both articular and periarticular sites of tibiae. As expected, OP3-4 significantly reduced the CIA-induced serum CTX levels, a marker of bone resorption. Interestingly, the bone histomorphometric analyses using undecalcified sections showed that OP3-4 prevented the CIA-induced reduction of bone formation-related parameters at the periarticular sites.ConclusionThe peptide that mimicked OPG prevented inflammatory bone loss by inhibiting bone resorption and stimulating bone formation. It could therefore be a useful template for the development of small molecule drugs for inflammatory bone loss.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0753-8) contains supplementary material, which is available to authorized users.  相似文献   

14.
Yang DC  Tsay HJ  Lin SY  Chiou SH  Li MJ  Chang TJ  Hung SC 《PloS one》2008,3(2):e1540

Background

Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown.

Methods and Findings

We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX) and forskolin enhances adipogenesis, the gene expression of PPARγ2 and LPL, and downregulates the gene expression of Runx2 and osteopontin, markers of osteogenesis. PKA activation also decreases the ratio of Receptor Activator of the NF-κB Ligand to Osteoprotegerin (RANKL/OPG) gene expression – the key factors of osteoclastogenesis. All these effects are mediated by the cAMP/PKA/CREB pathway by suppressing leptin, and may contribute to PKA stimulators-induced in vivo bone loss in developing zebrafish.

Conclusions

Using MSCs, the center of a newly proposed bone metabolic unit, we identified cAMP/PKA signaling, one of the many signaling pathways that regulate bone homeostasis via controlling cyto-differentiation of MSCs and altering RANKL/OPG gene expression.  相似文献   

15.

Background

Tissue-engineered cartilage has provided a promising method in the treatment of physeal growth arrest. This study was designed to investigate transplantation of microencapsulated allogeneic chondrocytes to treat the injured growth plate.

Methods

Allogeneic chondrocytes were encapsulated within alginate-polylysinealginate semipermeable membranes. Microencapsulated chondrocytes co-cultured with Bone Mesenchymal Stem Cells (BMSCs) were evaluated whether it could promote chondrogenesis of BMSCs. An experiment model of an injured growth plate was made by resecting the lateral half of the right distal femur physis in rabbits. Microencapsulated allogeneic chondrocytes, allogeneic chondrocytes as well as empty microcapsules were grafted into growth plate defects of 6-week-old rabbits. Histological and radiographic examinations were examined after transplantation up to 16 weeks.

Results

The histological study showed that BMSCs co-cultured with microencapsulated chondrocytes could produce GAG and II collagen similarly with chondrocytes. Angular deformity and length discrepancy in the group with microencapsulated allogeneic chondrocytes were less than those in other groups (p < 0.001). The histological study confirmed the viability of microencapsulated chondrocytes at 16 weeks postoperatively. The neogenetic chondrocytes of columnar arrangement have been found in the growth plate defect to prevent early ossification and closure of the growth plate.

Conclusions

The histological study confirmed the viability of microencapsulated chondrocytes at 16 weeks postoperatively. The neogenetic chondrocytes of columnar arrangement have been found in the growth plate defect to prevent early ossification and closure of the growth plate.  相似文献   

16.
Osteoprotegerin (OPG) and the receptor activator of nuclear factor (NF)-kB ligand (RANKL) are key regulators of osteoclastogenesis. The present study had the main aim of showing the localization of OPG and RANKL mRNA and protein in serial sections of the rat femurs and tibiae by immunohistochemistry (IHC) and in situ hybridization (ISH). The main results were: (1) OPG and RANKL mRNA and protein were co-localized in the same cell types, (2) maturative/hypertrophic chondrocytes, osteoblasts, lining cells, periosteal cells and early osteocytes were stained by both IHC and ISH, (3) OPG and RANKL proteins were mainly located in Golgi areas, and the ISH reaction was especially visible in active osteoblasts, (4) immunolabeling was often concentrated into cytoplasmic vacuoles of otherwise negative proliferative chondrocytes; IHC and ISH labeling increased from proliferative to maturative/hypertrophic chondrocytes, (5) the newly laid down bone matrix, cartilage-bone interfaces, cement lines, and trabecular borders showed light OPG and RANKL immunolabeling, (6) about 70% of secondary metaphyseal bone osteocytes showed OPG and RANKL protein expression; most of them were ISH-negative, (7) osteoclasts were mostly unstained by IHC and variably labeled by ISH. The co-expression of OPG and RANKL in the same bone cell types confirms their strictly coupled action in the regulation of bone metabolism.  相似文献   

17.

Introduction

Fibronectin fragments have been found in the articular cartilage and synovial fluid of patients with osteoarthritis and rheumatoid arthritis. These matrix fragments can stimulate production of multiple mediators of matrix destruction, including various cytokines and metalloproteinases. The purpose of this study was to discover novel mediators of cartilage destruction using fibronectin fragments as a stimulus.

Methods

Human articular cartilage was obtained from tissue donors and from osteoarthritic cartilage removed at the time of knee replacement surgery. Enzymatically isolated chondrocytes in serum-free cultures were stimulated overnight with the 110 kDa α5β1 integrin-binding fibronectin fragment or with IL-1, IL-6, or IL-7. Cytokines and matrix metalloproteinases released into the media were detected using antibody arrays and quantified by ELISA. IL-7 receptor expression was evaluated by flow cytometry, immunocytochemical staining, and PCR.

Results

IL-7 was found to be produced by chondrocytes treated with fibronectin fragments. Compared with cells isolated from normal young adult human articular cartilage, increased IL-7 production was noted in cells isolated from older adult tissue donors and from osteoarthritic cartilage. Chondrocyte IL-7 production was also stimulated by combined treatment with the catabolic cytokines IL-1 and IL-6. Chondrocytes were found to express IL-7 receptors and to respond to IL-7 stimulation with increased production of matrix metalloproteinase-13 and with proteoglycan release from cartilage explants.

Conclusion

These novel findings indicate that IL-7 may contribute to cartilage destruction in joint diseases, including osteoarthritis.  相似文献   

18.

Aim

The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.

Materials and Methods

Osteoarthritic (OA) human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM). The production of aggrecan, matrix metalloproteinase (MMP)-3, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-6 and nitric oxide (NO) and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC) or non-sclerotic (NSC) subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.

Results

In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008). MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01). TIMP-1 production was slightly increased at 3 μM (p = 0.02) and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05). IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.

Conclusions

Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in osteoblasts as similar results were obtained with anti-IL-6 antibody.  相似文献   

19.

Introduction

The aim of this prospective, randomized, controlled, double-blind study was to evaluate the effects of tiludronate (TLN), a bisphosphonate, on structural, biochemical and molecular changes and function in an experimental dog model of osteoarthritis (OA).

Methods

Baseline values were established the week preceding surgical transection of the right cranial/anterior cruciate ligament, with eight dogs serving as OA placebo controls and eight others receiving four TLN injections (2 mg/kg subcutaneously) at two-week intervals starting the day of surgery for eight weeks. At baseline, Week 4 and Week 8, the functional outcome was evaluated using kinetic gait analysis, telemetered locomotor actimetry and video-automated behaviour capture. Pain impairment was assessed using a composite numerical rating scale (NRS), a visual analog scale, and electrodermal activity (EDA). At necropsy (Week 8), macroscopic and histomorphological analyses of synovium, cartilage and subchondral bone of the femoral condyles and tibial plateaus were assessed. Immunohistochemistry of cartilage (matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS5)) and subchondral bone (cathepsin K) was performed. Synovial fluid was analyzed for inflammatory (PGE2 and nitrite/nitrate levels) biomarkers. Statistical analyses (mixed and generalized linear models) were performed with an α-threshold of 0.05.

Results

A better functional outcome was observed in TLN dogs than OA placebo controls. Hence, TLN dogs had lower gait disability (P = 0.04 at Week 8) and NRS score (P = 0.03, group effect), and demonstrated behaviours of painless condition with the video-capture (P < 0.04). Dogs treated with TLN demonstrated a trend toward improved actimetry and less pain according to EDA. Macroscopically, both groups had similar level of morphometric lesions, TLN-treated dogs having less joint effusion (P = 0.01), reduced synovial fluid levels of PGE2 (P = 0.02), nitrites/nitrates (P = 0.01), lower synovitis score (P < 0.01) and a greater subchondral bone surface (P < 0.01). Immunohistochemical staining revealed lower levels in TLN-treated dogs of MMP-13 (P = 0.02), ADAMTS5 (P = 0.02) in cartilage and cathepsin K (P = 0.02) in subchondral bone.

Conclusion

Tiludronate treatment demonstrated a positive effect on gait disability and joint symptoms. This is likely related to the positive influence of the treatment at improving some OA structural changes and reducing the synthesis of catabolic and inflammatory mediators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号