首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Effector CD4 T cells represent a key component of the host’s anti-tuberculosis immune defense. Successful differentiation and functioning of effector lymphocytes protects the host against severe M. tuberculosis (Mtb) infection. On the other hand, effector T cell differentiation depends on disease severity/activity, as T cell responses are driven by antigenic and inflammatory stimuli released during infection. Thus, tuberculosis (TB) progression and the degree of effector CD4 T cell differentiation are interrelated, but the relationships are complex and not well understood. We have analyzed an association between the degree of Mtb-specific CD4 T cell differentiation and severity/activity of pulmonary TB infection.

Methodology/Principal Findings

The degree of CD4 T cell differentiation was assessed by measuring the percentages of highly differentiated CD27low cells within a population of Mtb- specific CD4 T lymphocytes (“CD27lowIFN-γ+” cells). The percentages of CD27lowIFN-γ+ cells were low in healthy donors (median, 33.1%) and TB contacts (21.8%) but increased in TB patients (47.3%, p<0.0005). Within the group of patients, the percentages of CD27lowIFN-γ+ cells were uniformly high in the lungs (>76%), but varied in blood (12–92%). The major correlate for the accumulation of CD27lowIFN-γ+ cells in blood was lung destruction (r = 0.65, p = 2.7×10−7). A cutoff of 47% of CD27lowIFN-γ+ cells discriminated patients with high and low degree of lung destruction (sensitivity 89%, specificity 74%); a decline in CD27lowIFN-γ+cells following TB therapy correlated with repair and/or reduction of lung destruction (p<0.01).

Conclusions

Highly differentiated CD27low Mtb-specific (CD27lowIFN-γ+) CD4 T cells accumulate in the lungs and circulate in the blood of patients with active pulmonary TB. Accumulation of CD27lowIFN-γ+ cells in the blood is associated with lung destruction. The findings indicate that there is no deficiency in CD4 T cell differentiation during TB; evaluation of CD27lowIFN-γ+ cells provides a valuable means to assess TB activity, lung destruction, and tissue repair following TB therapy.  相似文献   

2.
Sun M  Yang Y  Yang P  Lei B  Du L  Kijlstra A 《PloS one》2011,6(5):e19870

Background

Experimental autoimmune uveoretinitis (EAU) serves as a model for human intraocular inflammation. IFN-β has been used in the treatment of certain autoimmune diseases. Earlier studies showed that it ameliorated EAU; however, the mechanisms involved in this inhibition are still largely unknown.

Methodology/Principal Findings

B10RIII mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 161–180 in Complete Freund''s adjuvant. Splenocytes from different time points after immunization were used to evaluate the expression of IFN-β. An increased expression of IFN-β was observed during EAU and its highest expression was observed on day 16, 3 days after the peak of intraocular inflammation. Splenocytes and draining lymph node cells from mice immunized with IRBP161-180 on day 13 and control mice were activated with anti-CD3/anti-CD28 antibodies or IRBP161-180 to evaluate the production of IFN-γ and IL-17. The results showed that IFN-γ and IL-17 were significantly higher in immunized mice as compared to the control mice when exposed to anti-CD3/anti-CD28 antibodies. However, the production of IFN-γ and IL-17 was detected only in immunized mice, but not in the control mice when stimulated with IRBP161-180. Multiple subcutaneous injections of IFN-β significantly inhibited EAU activity in association with a down-regulated expression of IFN-γ, IL-17 and an enhanced IL-10 production. In an in vitro system using cells from mice, IFN-β suppressed IFN-γ production by CD4+CD62L T cells, IL-17 production by CD4+CD62L+/- T cells and proliferation of CD4+CD62L+/- T cells. IFN-β inhibited the secretion of IL-6, but promoted the secretion of IL-10 by monocytes. IFN-β-treated monocytes inhibited IL-17 secretion by CD4+CD62L+/- T cells, but did not influence IFN-γ expression and T cell proliferation.

Conclusions/Significance

IFN-β may exert its inhibitory effect on EAU by inhibiting Th1, Th17 cells and modulating relevant cytokines. IFN-β may provide a potential treatment for diseases mediated by Th1 and Th17 cells.  相似文献   

3.

Background

Administration of interferon-α (IFN-α) represents an approved adjuvant therapy as reported for malignancies like melanoma and several viral infections. In malignant diseases, tolerance processes are critically involved in tumor progression. In this study, the effect of IFN-α on tolerance induction by human tolerogenic dendritic cells (DC) was analyzed. We focussed on tolerogenic IL-10-modulated DC (IL-10 DC) that are known to induce anergic regulatory T cells (iTregs).

Methodology/Principal Findings

IFN-α promoted an enhanced maturation of IL-10 DC as demonstrated by upregulation of the differentiation marker CD83 as well as costimulatory molecules. IFN-α treatment resulted in an increased capacity of DC to stimulate T cell activation compared to control tolerogenic DC. We observed a strengthened T cell proliferation and increased IFN-γ production of CD4+ and CD8+ T cells stimulated by IFN-α-DC, demonstrating a restoration of the immunogenic capacity of tolerogenic DC in the presence of IFN-α. Notably, restimulation experiments revealed that IFN-α treatment of tolerogenic DC abolished the induction of T cell anergy and suppressor function of iTregs. In contrast, IFN-α neither affected the priming of iTregs nor converted iTregs into effector T cells.

Conclusions/Significance

IFN-α inhibits the induction of T cell tolerance by reversing the tolerogenic function of human DC.  相似文献   

4.
SP Yeh  YM Liao  WJ Lo  CL Lin  LY Bai  CY Lin  CY Hsieh  YC Chang  YT Huang  CF Chiu 《PloS one》2012,7(9):e44416

Background

CD4+interferon (IFN)-γ+ T cell (Th1) and CD4+interleukin (IL)-4+ T cell (Th2) polarizations are crucial in the pathogenesis of graft-versus-host disease (GVHD). However, this hypothesis is largely based on animal experiments of Parent-into-F1 GVHD model. The causal relationship between kinetics of Th1, Th2 and associated cytokines and the clinical activity of GVHD in a real world situation remains unknown.

Methodology

Peripheral blood was collected every week prospectively from Day 0 to Day 210 (patients without GVHD) or Day 300 (patients with chronic GVHD) after allogeneic peripheral blood stem cell transplantation in consecutive 27 patients. The frequencies of Th1 and Th2 within CD4+ T cells were determined by flow cytometry and pplasma IFN-γ, IL-12, IL-4, and IL-10 were determined by ELISA.

Principal Findings

Kinetics of Th1, Th2 frequency, and the plasma IL-10 and IFN-γ more commonly coincided with, rather than predicted, the activity of GVHD. These markers are significantly higher when acute or chronic GVHD developed. The kinetics of IL-10 is especially correlated well with the activity of GVHD during clinical course of immunosuppressive treatment. For patients with hepatic GVHD, there is a positive correlation between plasma IL-10 levels and the severity of hepatic injury. The frequency of Th2 is also significant higher in acute GVHD and tends to be higher in chronic GVHD. Interestingly, there is a very good positive correlation between the frequency of Th1 and Th2 (r = 0.951, p<0.001). The plasma level of IL-4 and IL-12 are not associated with the activity of GVHD.

Conclusions

The frequency of Th1, Th2 within CD4+ T cells and plasma IL-10 and IFN-γ are good biomarkers of GVHD. Plasma IL-10 can also be used to monitor the therapeutic responsiveness. Furthermore, both Th1 and Th2 likely contribute to the pathogenesis of GVHD.  相似文献   

5.
6.
7.

Background

Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA–induced pathologies, which mechanisms are poorly understood.

Methods and Findings

Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8+ T cells and IFN-γ drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6–12 days post-infection, at a time when mice develop ECM. Other cells types like CD4+ T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-α did not influence the early increase of total parasite biomass and IRBC accumulation in different organs.

Conclusions

CD8+ T cells and IFN-γ are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues.  相似文献   

8.
Zou Q  Hu Y  Xue J  Fan X  Jin Y  Shi X  Meng D  Wang X  Feng C  Xie X  Zhang Y  Kang Y  Liang X  Wu B  Wang M  Wang B 《PloS one》2012,7(4):e34865

Background

H5N1 is a highly pathogenic influenza A virus, which can cause severe illness or even death in humans. Although the widely used killed vaccines are able to provide some protection against infection via neutralizing antibodies, cytotoxic T-lymphocyte responses that are thought to eradicate viral infections are lacking.

Methodology/Principal Findings

Aiming to promote cytotoxic responses against H5N1 infection, we extended our previous finding that praziquantel (PZQ) can act as an adjuvant to induce IL-17-producing CD8+ T cells (Tc17). We found that a single immunization of 57BL/6 mice with killed viral vaccine plus PZQ induced antigen-specific Tc17 cells, some of which also secreted IFN-γ. The induced Tc17 had cytolytic activities. Induction of these cells was impaired in CD8 knockout (KO) or IFN-γ KO mice, and was even lower in IL-17 KO mice. Importantly, the inoculation of killed vaccine with PZQ significantly reduced virus loads in the lung tissues and prolonged survival. Protection against H5N1 virus infection was obtained by adoptively transferring PZQ-primed wild type CD8+ T cells and this was more effective than transfer of activated IFN-γ KO or IL-17 KO CD8+ T cells.

Conclusions/Significance

Our results demonstrated that adding PZQ to killed H5N1 vaccine could promote broad Tc17-mediated cytotoxic T lymphocyte activity, resulting in improved control of highly pathogenic avian influenza virus infection.  相似文献   

9.
10.
11.
12.

Background

There have been conflicting reports of the role of Type I interferons (IFN) in inflammatory bowel disease (IBD). Clinical trials have shown potent efficacy of systemic interferon-beta (IFN-β) in inducing remission of ulcerative colitis. Likewise, IFNAR1−/− mice display an increased sensitivity to dextran sulfate sodium (DSS)-induced colitis, suggesting Type I IFN play a protective role during inflammation of the gut. Curiously, however, there have also been reports detailing the spontaneous development of IBD in patients receiving systemic IFN-β therapy for multiple sclerosis or hepatitis.

Methodology/Principal Findings

To investigate the effects of local administration of IFN-β on a murine model of colitis, we developed a transgenic Lactobacillus acidophilus strain that constitutively expresses IFN-β (La-IFN-β). While pretreatment of mice with control Lactobacillus (La-EV) provided slight protective benefits, La-IFN-β increased sensitivity to DSS. Analysis showed colitic mice pretreated with La-IFN-β had increased production of TNF-α, IFN-γ, IL-17A and IL-13 by intestinal tissues and decreased regulatory T cells (Tregs) in their small intestine. Examination of CD103+ dendritic cells (DCs) in the Peyer''s patches revealed that IFNAR1 expression was dramatically reduced by La-IFN-β. Similarly, bone marrow-derived DCs matured with La-IFN-β experienced a 3-fold reduction of IFNAR1 and were impaired in their ability to induce Tregs.

Conclusions/Significance

Our IFNAR1 expression data identifies a correlation between the loss/downregulation of IFNAR1 on DCs and exacerbation of colitis. Our data show that Lactobacillus secreting IFN-β has an immunological effect that in our model results in the exacerbation of colitis. This study underscores that the selection of therapeutics delivered by a bacterial vehicle must take into consideration the simultaneous effects of the vehicle itself.  相似文献   

13.

Background

Both regulatory T cells (Tregs) and T helper IL-17-producing cells (Th17 cells) have been found to be involved in human malignancies, however, the possible implication of Tregs in regulating generation and differentiation of Th17 cells in malignant pleural effusion remains to be elucidated.

Methods

The numbers of both CD39+Tregs and Th17 cells in malignant pleural effusion and peripheral blood from patients with lung cancer were determined by flow cytometry. The regulation and mechanism of Tregs on generation and differentiation of Th17 cells were explored.

Results

Both CD39+Tregs and Th17 cells were increased in malignant pleural effusion when compared with blood, and the numbers of CD39+Tregs were correlated negatively with those of Th17 cells. It was also noted that high levels of IL-1β, IL-6, and TGF-β1 could be observed in malignant pleural effusion when compared the corresponding serum, and that pleural CD39+Tregs could express latency-associated peptide on their surface. When naïve CD4+ T cells were cocultured with CD39+Tregs, Th17 cell numbers decreased as CD39+Treg numbers increased, addition of the anti-latency-associated peptide mAb to the coculture reverted the inhibitory effect exerted by CD39+Tregs.

Conclusions

Therefore, the above results indicate that CD39+Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.  相似文献   

14.

Introduction

Hepatocyte growth factor (HGF) is a potent proangiogenic molecule that induces neovascularization. The HGF antagonist, NK4, competitively antagonizes HGF binding to its receptor. In the present study, we determined the inhibitory effect of NK4 in a rheumatoid arthritis (RA) model using SKG mice.

Methods

Arthritis was induced in SKG mice by a single intraperitoneal injection of β-glucan. Recombinant adenovirus containing NK4 cDNA (AdCMV.NK4) was also injected intravenously at the time of or 1 month after β-glucan injection. Ankle bone destruction was examined radiographically. The histopathologic features of joints were examined using hematoxylin and eosin and immunohistochemical staining. Enzyme-linked immunosorbent assays were used to determine the serum levels of HGF, interferon γ (IFN-γ, interleukin 4 (IL-4) and IL-17 production by CD4+ T cells stimulated with allogeneic spleen cells.

Results

The intravenous injection of AdCMV.NK4 into SKG mice suppressed the progression of β-glucan-induced arthritis. Bone destruction was also inhibited by NK4 treatment. The histopathologic findings of the ankles revealed that angiogenesis, inflammatory cytokines and RANKL expression in synovial tissues were significantly inhibited by NK4 treatment. Recombinant NK4 (rNK4) proteins inhibited IFN-γ, IL-4 and IL-17 production by CD4+ T cells stimulated with allogeneic spleen cells.

Conclusions

These results indicate that NK4 inhibits arthritis by inhibition of angiogenesis and inflammatory cytokine production by CD4+ T cells. Therefore, molecular targeting of angiogenic inducers by NK4 can potentially be used as a novel therapeutic approach for the treatment of RA.  相似文献   

15.

Background

Cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), an inflammatory lung disorder. COPD is characterized by an increase in CD8+ T cells within the central and peripheral airways. We hypothesized that the CD8+ T cells in COPD patients have increased Toll-like receptor (TLR) expression compared to control subjects due to the exposure of cigarette smoke in the airways.

Methods

Endobronchial biopsies and peripheral blood were obtained from COPD patients and control subjects. TLR4 and TLR9 expression was assessed by immunostaining of lung tissue and flow cytometry of the peripheral blood. CD8+ T cells isolated from peripheral blood were treated with or without cigarette smoke condensate (CSC) as well as TLR4 and TLR9 inhibitors. PCR and western blotting were used to determine TLR4 and TLR9 expression, while cytokine secretion from these cells was detected using electrochemiluminescence technology.

Results

No difference was observed in the overall expression of TLR4 and TLR9 in the lung tissue and peripheral blood of COPD patients compared to control subjects. However, COPD patients had increased TLR4 and TLR9 expression on lung CD8+ T cells. Exposure of CD8+ T cells to CSC resulted in an increase of TLR4 and TLR9 protein expression. CSC exposure also caused the activation of CD8+ T cells, resulting in the production of IL-1β, IL-6, IL-10, IL-12p70, TNFα and IFNγ. Furthermore, inhibition of TLR4 or TLR9 significantly attenuated the production of TNFα and IL-10.

Conclusions

Our results demonstrate increased expression of TLR4 and TLR9 on lung CD8+ T cells in COPD. CD8+ T cells exposed to CSC increased TLR4 and TLR9 levels and increased cytokine production. These results provide a new perspective on the role of CD8+ T cells in COPD.  相似文献   

16.

Introduction

Myeloid dendritic cells (mDCs) are potent T cell-activating antigen-presenting cells that have been suggested to play a crucial role in the regulation of immune responses in many disease states, including rheumatoid arthritis (RA). Despite this, studies that have reported on the capacity of naturally occurring circulating mDCs to regulate T cell activation in RA are still lacking. This study aimed to evaluate the phenotypic and functional properties of naturally occurring CD1c (BDCA-1)+ mDCs from synovial fluid (SF) compared to those from peripheral blood (PB) of RA patients.

Methods

CD1c+ mDC numbers and expression of costimulatory molecules were assessed by fluorescence-activated cell sorting (FACS) analysis in SF and PB from RA patients. Ex vivo secretion of 45 inflammatory mediators by mDCs from SF and PB of RA patients was determined by multiplex immunoassay. The capacity of mDCs from SF to activate autologous CD4+ T cells was measured.

Results

CD1c+ mDC numbers were significantly increased in SF versus PB of RA patients (mean 4.7% vs. 0.6%). mDCs from SF showed increased expression of antigen-presenting (human leukocyte antigen (HLA) class II, CD1c) and costimulatory molecules (CD80, CD86 and CD40). Numerous cytokines were equally abundantly produced by mDCs from both PB and SF (including IL-12, IL-23, IL-13, IL-21). SF mDCs secreted higher levels of interferon γ-inducible protein-10 (IP-10), monokine induced by interferon γ (MIG) and, thymus and activation-regulated chemokine (TARC), but lower macrophage-derived chemokine (MDC) levels compared to mDCs from PB. mDCs from SF displayed a strongly increased capacity to induce proliferation of CD4+ T cells associated with a strongly augmented IFNγ, IL-17, and IL-4 production.

Conclusions

This study suggests that increased numbers of CD1c+ mDCs in SF are involved in the inflammatory cascade intra-articularly by the secretion of specific T cell-attracting chemokines and the activation of self-reactive T cells.  相似文献   

17.
18.

Background

Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure.

Methods

Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation.

Results

Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice.

Conclusion

Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure.  相似文献   

19.

Introduction

Properdin amplifies the alternative pathway of complement activation. In the present study, we evaluated its role in the development of collagen antibody-induced arthritis (CAIA).

Methods

Arthritis was induced by intraperitoneal injection of a collagen antibody cocktail into properdin-deficient (KO) and wild-type (WT) C57BL/6 mice. Symptoms of disease were evaluated daily. The degree of joint damage was assessed histologically and with immunostaining for bone-resorption markers. Phenotypes of cell populations, their receptor expression, and intracellular cytokine production were determined with flow cytometry. Osteoclast differentiation of bone marrow (BM) precursors was evaluated by staining for tartrate-resistant acid phosphatase (TRAP).

Results

Properdin-deficient mice developed less severe CAIA than did WT mice. They showed significantly improved clinical scores and downregulated expression of bone-resorption markers in the joints at day 10 of disease. The frequencies of Ly6G+CD11b+ cells were fewer in BM, blood, and synovial fluid (SF) of KO than of WT CAIA mice. The receptor activator of nuclear factor κB ligand (RANKL) was downregulated on arthritic KO neutrophils from BM and the periphery. Decreased C5a amounts in KO SF contributed to lower frequencies of CD5aR+-bearing neutrophils. In blood, surface C5aR was detected on KO Ly6G+ cells as a result of low receptor engagement. Circulating CD4+ T cells had an altered ability to produce interleukin (IL)-17 and interferon (IFN)-γ and to express RANKL. In KO CAIA mice, decreased frequencies of CD4+ T cells in the spleen were related to low CD86 expression on Ly6GhighCD11b+ cells. Arthritic KO T cells spontaneously secreted IFN-γ but not IL-17 and IL-6, and responded to restimulation with less-vigorous cytokine production in comparison to WT cells. Fewer TRAP-positive mature osteoclasts were found in KO BM cell cultures.

Conclusions

Our data show that the active involvement of properdin in arthritis is related to an increased proinflammatory cytokine production and RANKL expression on immune cells and to a stimulation of the RANKL-dependent osteoclast differentiation.  相似文献   

20.

Background

The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.

Methodology/Principal Findings

We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepitelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.

Conclusion/Significance

Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号