首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The phosphorylation state of the putative signal transduction protein PII from the cyanobacterium Synechococcus sp. strain PCC 7942 depends on the cellular state of nitrogen and carbon assimilation. In this study, dephosphorylation of phosphorylated PII protein (PII-P) was investigated both in vivo and in vitro . The in vivo studies implied that PII-P dephosphorylation is regulated by inhibitory metabolites involved in the glutamine synthetase–glutamate synthase pathway of ammonium assimilation. An in vitro assay for PII-P dephosphorylation was established that revealed a Mg2+-dependent PII-P phosphatase activity. PII-P phosphatase and PII kinase activities could be separated biochemically. A partially purified PII-P phosphatase preparation also catalysed the dephosphorylation of phosphoserine/phosphothreonine residues on other proteins in a Mg2+-dependent manner. However, only dephosphorylation of PII-P was regulated by synergistic inhibition by ATP and 2-oxoglutarate. As the same metabolites stimulate the PII kinase activity, it appears that the phosphorylation state of PII is determined by ATP and 2-oxoglutarate-dependent reciprocal reactivity of PII towards its phosphatase and kinase.  相似文献   

2.
3.
Abstract In the filamentous cyanobacterium Calothrix PCC 7504, which fixes N2 aerobically, the modification state of the regulatory PII protein (GlnB) was shown to depend on nitrogen and carbon availability, as observed in the unicellular non-fixing strain Synechococcus PCC 7942. However, the conditions for modifications, the time dependence of the process and the electrophoretic behavior of the native PII isoforms differed somewhat between the two strains. In another strain, Calothrix PCC 7601, which has lost the capability to fix N2, PII was modified only if ammonia plus an inhibitor of glutamine synthetase were present. It is proposed that: (i) the behavior of the PII proteins depends upon the physiological properties of the strains; and (ii) the modification system of PII per se may differ between the two cyanobacterial genera.  相似文献   

4.
Abstract The PII protein in the glutamine synthetase cascade transduces the nitrogen signal, as sensed by uridylyltransferase, both to the NRII/NRI two-component system and to adenylyltransferase, to regulate the activity of glutamine synthetase. Here we describe the amplification of a chromosomal DNA fragment from Escherichia coli which contains the sequence of a PII homologue. The derived amino acid sequence of this DNA fragment is 67% identical to E. coli PII. It contains the conserved tyrosine residue which is known to be the site of uridylylation in PII. E. coli is the first organism in which two different PII proteins have been detected.  相似文献   

5.
The PII protein has been considered pivotal to the dual cascade regulating ammonia assimilation through glutamine synthetase activity. Here we show that PII, encoded by the glnB gene, is not always essential; for instance upon ammonia deprivation of a glnB deletion strain, glutamine synthetase can be deadenylylated as effectively as in the wild-type strain. We describe a new operon, glnK amtB , which encodes a homologue of PII and a putative ammonia transporter. We cloned and overexpressed glnK and found that the expressed protein had almost the same molecular weight as PII, reacted with polyclonal PII antibody, and was 67% identical in terms of amino acid sequence with Escherichia coli PII. Like PII, purified GlnK can activate the adenylylation of glutamine synthetase in vitro , and, in vivo , the GlnK protein is uridylylated in a glnD -dependent fashion. Unlike PII, however, the expression of glnK depends on the presence of UTase, nitrogen regulator I (NRI), and absence of ammonia. Because of a NRI and a σN54) RNA polymerase-binding consensus sequence upstream from the glnK gene, this suggests that glnK is regulated through the NRI/NRII two-component regulatory system. Indeed, in cells grown in the presence of ammonia, glutamine synthetase deadenylylation upon ammonia depletion depended on PII. Possible regulatory implications of this conditional redundancy of PII are discussed.  相似文献   

6.
The family of PII signal transduction proteins consists of one of the most highly conserved signalling proteins in nature. The cyanobacterial PII homologue transmits signals on the nitrogen and carbon status of the cells through phosphorylation of a seryl residue. Recently, we identified a protein phosphatase 2C (PP2C) homologue from the cyanobacterium Synechocystis PCC 6803, termed PphA, to be the cellular phospho-PII (PII-P) phosphatase. In this investigation, we characterized the enzymatic properties of PphA and investigated the regulation of its catalytic activity towards PII-P. PphA dephosphorylates phosphocasein and PII-P with similar efficiency in a strictly Mg2+- or Mn2+-dependent reaction. Low-molecular-weight phosphorylated molecules are poor substrates for PphA. Its reactivity towards PII-P, but not towards phosphocasein, is inhibited by various nucleotides, suggesting that this effect is based on specific properties of the PII protein. The inhibitory effect of ATP can be strongly enhanced by the addition of 2-oxoglutarate or oxaloacetate. At low concentrations of 2-oxoglutarate, changes in the ATP levels within the physiological range affect the degree of PII-Pase inhibition, whereas at 2-oxoglutarate levels beyond 0.1 mM, inhibition is almost complete at very low ATP levels. This suggests that PII dephosphorylation is not only sensitive to 2-oxoglutarate and oxaloacetate levels, it also integrates signals from the energy charge of the cells under specific cellular conditions.  相似文献   

7.
Dunalliella salina (Teodoresco) is a unicellular, wall-less, halotolerant green alga. Previous work has shown that levels of inositol phospholipiils in whole cells of D. salina fluctuate in response to hyper- and hypo-osmotic shock. In this paper, we report the effects of changes in the light environment on levels of phospholipids, including inositol phospholipids, in D. scilina. Utilizing both short-term and long-term labeling of phospholipids with 32PO4, we were able to compare both immediate and long-term changes in lipid metabolism during changes in the light environment. Relative to the other phospholipids. phosphotidic acid and the inositol phospholipids phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were rapidly labeled, even in the dark, suggesting that the metabolism of these compounds is more active than that of the bulk cellular phospholipids. There was little change in inositol phospholipid metabolism when cells were illuminated following a 1 h dark adaptation period, Furthermore, the inositol phospholipid signal transduction pathway did not respond to severe photoinhibition treatment. Apparently this plasma-membrane-based signal transduction pathway, which responds to changes in the external environment, is relatively insensitive to major changes in chloroplast metabolism.  相似文献   

8.
Abstract An open-reading frame (ORF111) upstream of the glutamine synthetase I structural gene ( glnA ) in Rhizobium leguminosarum biovar viceae encodes a protein which is highly homologous to the PII protein (encoded by glnB ) of enteric bacteria. ORF111 was cloned in a number of different plasmid vectors and shown to complement a K. pneumoniae glnB mutant. We propose that ORF111 encodes the PII protein of R. leguminosarum and that it should be designated glnB .  相似文献   

9.
The PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942 signals the cellular N status by being phosphorylated or dephosphorylated at a seryl residue. Here we show that the PII-modifying system responds to the activity of ammonium assimilation via the glutamine synthase-glutamate synthase pathway and to the state of CO2 fixation. To identify possible functions of PII in this microorganism, a PII-deficient mutant was created and its general phenotype was characterized. The analysis shows that the PII protein interferes with the regulation of enzymes required for nitrogen assimilation, although ammonium repression is still detectable in the PII-deficient mutant. We suggest that the phosphorylation and dephosphorylation of PII are part of a complex signal transduction network involved in global nitrogen control in cyanobacteria. In this regulatory process, PII might be involved in mediating the tight coordination between carbon and nitrogen assimilation.  相似文献   

10.
11.
The cheA gene encodes two overlapping polypeptides with a common carboxyl terminus: CheAL and CheAS. CheAL plays a central role in the Escherichia coli chemotaxis signalling pathway by autophosphorylation and transferring the phosphate to both CheY and CheB. On the other hand, the physiological functions of CheAS remain unknown.
We have observed that overproduction of CheAS in wild-type cells increased counterclockwise-biased flagellar rotation, and this effect is dependent on the presence of CheZ. CheZ specifically facilitates CheY-phosphate (CheY-P) dephosphorylation and generates a smooth swimming signal. A physical interaction was detected between CheZ and CheAS in wild-type cell lysates by immunoprecipitation. The CheAS/CheZ interaction does not require other chemotaxis components, as we could form the complex using purified CheAS and CheZ proteins. The ability of CheAS to bind to CheZ depends on its being in the reduced state. We found that under non-reducing conditions, CheAS appears to form intermolecular disulphide bonds and loses the ability to bind to CheZ. Finally, the CheAS/CheZ complex formed in vitro shows a greater dephosphorylating activity on CheY-P than does free CheZ.  相似文献   

12.
Neuromodulators, such as dopamine (DA), control motor activity in many systems. To begin to understand how DA modulates motor behaviors, we study a well-defined model: the crustacean stomatogastric nervous system (STNS). The spiny lobster STNS receives both neuromodulatory and neurohormonal dopaminergic input, and extensive background information exists on the cellular and network effects of DA. However, there is a void of information concerning the mechanisms of DA signal transduction in this system. In this study, we show that Gs, Gi, and Gq are activated in response to DA in STNS membrane preparations from five crustacean species representing distant clades in the order Decapoda. Three evolutionarily conserved DA receptors mediate this response in spiny lobsters: D1αPan, D1βPan and D2αPan. G protein coupling for these receptors can vary with the cell type. In the native membrane, the D1αPan receptor couples with Gs and Gq, the D1βPan receptor couples with Gs, and the D2αPan receptor couples with Gi. All three receptors are localized exclusively to the synaptic neuropil and most likely generate global biochemical signals that alter ion channels in distant compartments, as well as local signals.  相似文献   

13.
Polyunsaturated fatty acids induce stomatal opening (Y. Lee, H. Lee, R. C. Crain, A. Lee and S. J. Korn. 1994. Cell Signal. 6: 181–186), but it is not known whether they function as second messengers in guard cells exposed to signals that open stomata. To test the hypothesis that phospholipase A2 (PLA2), which produces fatty acids and lysophospholipids, is involved in light signal transduction in guard cells, we treated epidermal peels of Commelina communis L. with PLA2 inhibitors and followed the changes in stomatal apertures in response to light. Stomatal opening by white, blue, or red light was inhibited by 2–3 different PLA2 inhibitors in concentration ranges that have been reported to inhibit PLA2 activity. However, the PLA2 inhibitors could not block stomatal opening induced by a polyunsaturated fatty acid. These results suggest that PLA2 functions as a signal transducer for both blue and red light in guard cells.  相似文献   

14.
Several lines of evidence suggest that salicylic acid (SA) is an endogenous signal for the activation of several plant defense responses, including the expression of genes encoding pathogenesis-related (PR) proteins such as the acidic PR-1 proteins. During recent years, studies have suggested that interaction of SA with catalase and ascorbate peroxidase leads to two signals in tobacco - elevated H2O2 levels and lipid peroxides. However, to date, relatively little is known about the molecular and biochemical mechanisms that mediate transduction beyond these signals or through other SA-effector proteins. Using protein kinase and phosphatase inhibitors, this study demonstrates that PR-1 gene induction can be mediated by dephosphorylation of serine/threonine residue(s) of two or more unidentified phosphoproteins. The protein phosphatase inhibitors, okadaic acid and calyculin A blocked SA-mediated induction of PR-1 genes, implying the involvement of a phosphoprotein downstream of SA. The protein kinase inhibitors K-252a and staurosporine induced PR-1 gene expression. PR-1 gene induction by K-252a was suppressed by okadaic acid. Surprisingly, this induction was also suppressed in NahG transgenic tobacco plants which convert SA to catechol. Moreover, K-252a stimulated production of SA and its glucoside, suggesting that another phosphoprotein acts upstream of SA. Taken together, these results suggest that there are two (or more) phosphoproteins which function in the same signal transduction pathway leading to PR-1 gene induction. The SA-inducible acidic PR-2 genes were similarly affected by the inhibitors, while the genes for actin and phenylalanine ammonia lyase were not.  相似文献   

15.
Light is the main environmental signal (zeitgeber) for practically all circadian systems, but little is known about the transduction mechanisms by which light signals reach the circadian oscillator. To identify components involved in the circadian light transduction pathway in the unicellular alga Gonyaulax polyedra Stein, we assayed inhibitors of pigment synthesis and of flavo-enzymes for their effects on circadian properties such as phase and period. We found that allopurinol, an inhibitor of xanthine oxidoreductase, specifically inhibits the period and phase effects mediated by the blue-light-sensitive input pathway, while the other light input of the Gonyaulax circadian system, that is sensitive to both red and blue light, appears to be unaffected. Received: 27 November 1996 / Accepted: 30 January 1997  相似文献   

16.
PII signal transduction plays a pervasive role in microbial nitrogen control. Different phylogenetic lineages have developed various signal transduction schemes around the highly conserved core of the signalling system, which consists of the PII proteins. Among all various bacterial PII signalling systems, the one in cyanobacteria is so far unique: in unicellular strains, the mode of covalent modification is by serine phosphorylation and the interpretation of the cellular nitrogen status occurs by measuring the 2-oxoglutarate levels. Recent advances have been the identification of the phospho-PII phosphatase, the resolution of the crystal structure of PII proteins from Synechococcus and Synechocystis strains and the identification of novel functions of PII regulation in cyanobacteria, which highlight the central role of PII signalling for the acclimation to changing carbon-nitrogen regimes.  相似文献   

17.
Rhizobial lipochitooligosaccharides (Nod factors) function as symbiotic signals that trigger root hair deformations and cortical cell divisions on the roots of leguminous plants in a host-specific manner. By using pH-sensitive microelectrodes, it is shown that alfalfa root hair cells respond to Rhizobium meliloti Nod factors with a rapid intracellular alkalinization of 0.2–0.3 pH units. This alkalinization remained as long as the Nod factor was present, but slowly reversed after removal of the signal. The response was most sensitive to the sulfated tetrameric Nod factor, NodRm-IV(C16:2,S), which is morphogenic on the host plant alfalfa, suggesting a role in a signal transduction cascade. Non-sulfated Nod factor as well as chitooligosaccharides elicited a pHc change only at elevated concentrations. The increase of PHc in response to sulfated Nod factor was concomitant with a depolarization of the plasma membrane potential whereas the PHc change in response to non-sulfated Nod factor occurred in the absence of membrane depolarization. In addition, whereas a first dose of sulfated Nod factor inhibited the subsequent response to a second dose of the same molecule, it did not significantly repress the activity of non-sulfated Nod factor. These results indicate that sulfated and non-sulfated Nod factors act independently and suggest the existence of two Nod signal perception systems, one transmitting the host-specific signal, the other representing an ancient reception system for a generic Nod factor structure.  相似文献   

18.
Abstract: We investigated for the first time the effect of lipopolysaccharide and the signal transduction pathway on the biosynthesis of tetrahydrobiopterin [(6 R - l - erythro -1',2'-dihydroxypropyl)-2-amino-4-hydroxy-5,6,7,8-tetrahydropteridine], the cofactor for the enzymatic hydroxylation of the aromatic amino acids, in the murine neuroblastoma cell line N1E-115, which synthesizes tetrahydrobiopterin constitutively. Activation of N1E-115 cells with 1 µg/ml lipopolysaccharide resulted in statistically significant increases in both intracellular tetrahydrobiopterin contents and the activity ( V max) of GTP cyclohydrolase I, a rate-limiting enzyme in tetrahydrobiopterin de novo biosynthesis. Following simultaneous addition of the inhibitors of protein tyrosine kinases and GTP-binding proteins into serum-free culture media with lipopolysaccharide, we analyzed the transduction pathway of lipopolysaccharide signal toward the tetrahydrobiopterin biosynthetic system in N1E-115 cells. Our data indicate the following conclusions: (a) Protein tyrosine kinase systems are involved in mediating lipopolysaccharide signal to tetrahydrobiopterin production, and (b) there may be a cross-talk between GTP-binding protein and the protein tyrosine kinase system in mediating lipopolysaccharide signal. These observations suggest that a neuronal cell such as N1E-115, which barely expresses CD14 on its cell surface, responds to lipopolysaccharide like macrophages and monocytes in the absence of soluble CD14.  相似文献   

19.
Synaptic Membrane G Proteins Are Complexed with Tubulin In Situ   总被引:2,自引:1,他引:1  
Abstract: The G proteins Gs and Gi1 appear to be capable of binding to tubulin specifically, and it has been suggested that such binding results in G protein activation via direct transfer of GTP. This study was undertaken to demonstrate that consequences of G protein activation by tubulin, i.e., stimulation or inhibition of adenylyl cyclase, were dependent on the G proteins expressed as well as unique aspects of the membrane or cytoskeleton in a given cell type. Membranes from rat C6 glioma cells, which express G but not Giα1, responded to the addition of tubulin with a stable activation of adenylyl cyclase. Conversely, membranes from rat cerebral cortex, which contain both Gs and Gi1, responded to exogenous tubulin with a stable inhibition of adenylyl cyclase. Unlike C6 membranes, cerebral cortex membranes are richly endowed with tubulin, and antitubulin antibodies immunoprecipitated complexes of tubulin and Gi1 or Gs from detergent extracts of these membranes. Nearly 90% of the G from Triton X-114 extracts coimmunoprecipitated with tubulin, suggesting that these proteins exist as a complex in the synaptic membrane. Such complexes may provide the framework for a G protein-cytoskeleton link that participates in the modulation of cellular signal transduction.  相似文献   

20.
Abstract: α-Secretase cleaves the full-length Alzheimer's amyloid precursor protein (APP) within the amyloid β peptide sequence, thus precluding amyloid formation. The resultant soluble truncated APP is constitutively secreted. This nonamyloidogenic processing of APP is increased on stimulation of the phospholipase C/protein kinase C pathway by phorbol esters. Here we used C6 cells transfected with APP751 to examine whether the α-secretase cleavage is regulated by the adenylate cyclase signal transduction pathway. Forskolin, an activator of adenylate cyclase, inhibited both the constitutive and phorbol ester-stimulated secretion of nexin II (NXII), the secreted product of the α-secretase cleavage of APP751. At 1 µ M , forskolin inhibited secretion of NXII by ∼50% without affecting either the intracellular levels of total APP or the secretion of secretory alkaline phosphatase. In contrast, 1,9-dideoxyforskolin, an inactive analogue of forskolin, did not affect secretion of NXII. These results indicated that forskolin specifically inhibited the α-secretase cleavage of APP751. Forskolin treatment increased the intracellular concentration of cyclic AMP (cAMP), suggesting that the forskolin effects on APP cleavage may be mediated by cAMP. In support of this suggestion, both dibutyryl cAMP, a cAMP analogue, and isoproterenol, an activator of adenylate cyclase, also inhibited secretion of NXII. These data indicate that forskolin inhibition of the nonamyloidogenic cleavage of APP is mediated by the second messenger cAMP, which together with the protein kinase C signal transduction pathway modulates the secretory cleavage of APP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号