首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisome degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is present in two forms, namely an unmodified (Pex14p) and a phosphorylated form (Pex14p(Pi)) that are differently induced during peroxisome proliferation. The data suggest that Pex14p is required for peroxisome biogenesis during organelle proliferation and Pex14p(Pi) in macropexophagy. Finally, we show that macropexophagy is not coupled to normal peroxisome assembly, because Pex14p is required in only catalytic amounts to allow initiation of the selective peroxisome degradation process.  相似文献   

2.
《Autophagy》2013,9(3):183-188
We showed before that the two oppositely directed processes of peroxisome biogenesis and selective peroxisome degradation (macropexophagy) converge at the peroxisomal membrane protein Pex14p. Here we show that this protein is not required for peroxisomal degradation during nitrogen starvation-induced general autophagy, thereby limiting its function to the selective degradation process. Pex14p is present in two forms, namely an unmodified (Pex14p) and a phosphorylated form (Pex14pPi) that are differently induced during peroxisome proliferation. The data suggest that Pex14p is required for peroxisome biogenesis during organelle proliferation and Pex14pPi in macropexophagy. Finally, we show that macropexophagy is not coupled to normal peroxisome assembly and is required in only catalytic amounts to allow initiation of the selective peroxisome degradation process.  相似文献   

3.
We have analyzed the functions of two vacuolar t-SNAREs, Vam3p and Vam7p, in peroxisome degradation in the methylotrophic yeast Hansenula polymorpha. A Hp-vam7 mutant was strongly affected in peroxisome degradation by selective macropexophagy as well as non-selective microautophagy. Deletion of Hp-Vam3p function had only a minor effect on peroxisome degradation processes. Both proteins were located at the vacuolar membrane, with Hp-Vam7p also having a partially cytosolic location. Previously, in baker's yeast Vam3p and Vam7p have been demonstrated to be components of a t-SNARE complex essential for vacuole biogenesis. We speculate that the function of this complex in macropexophagy includes a role in membrane fusion processes between the outer membrane layer of sequestered peroxisomes and the vacuolar membrane. Our data suggest that Hp-Vam3p may be functionally redundant in peroxisome degradation. Remarkably, deletion of Hp-VAM7 also significantly affected peroxisome biogenesis and resulted in organelles with multiple, membrane-enclosed compartments. These morphological defects became first visible in cells that were in the mid-exponential growth phase of cultivation on methanol, and were correlated with accumulation of electron-dense extensions that were connected to mitochondria.  相似文献   

4.
Evidence is accumulating that damaged components of eukaryotic cells are removed by autophagic degradation (e.g., mitophagy). Here we show that peroxisomes that are damaged by the abrupt removal of the membrane protein Pex3 are massively and rapidly degraded even when the cells are placed at peroxisome-inducing conditions and hence need the organelles for growth. Pex3 degradation was induced by a temperature shift using Hansenula polymorpha pex3Δ cells producing a Pex3 fusion protein containing an N-terminal temperature sensitive degron sequence. The massive peroxisome degradation process, associated with Pex3 degradation, showed properties of both micro- and macropexophagy and was dependent on Atg1 and Ypt7. This mode of peroxisome degradation is of physiological significance as it was also observed at conditions that excessive ROS is formed from peroxisome metabolism, i.e., when methanol-grown wild-type cells are exposed to methanol excess conditions.  相似文献   

5.
《Autophagy》2013,9(8):863-872
Evidence is accumulating that damaged components of eukaryotic cells are removed by autophagic degradation (e.g., mitophagy). Here we show that peroxisomes that are damaged by the abrupt removal of the membrane protein Pex3 are massively and rapidly degraded even when the cells are placed at peroxisome-inducing conditions and hence need the organelles for growth. Pex3 degradation was induced by a temperature shift using Hansenula polymorpha pex3Δ cells producing a Pex3 fusion protein containing an N-terminal temperature sensitive degron sequence. The massive peroxisome degradation process, associated with Pex3 degradation, showed properties of both micro- and macropexophagy and was dependent on Atg1 and Ypt7. This mode of peroxisome degradation is of physiological significance as it was also observed at conditions that excessive ROS is formed from peroxisome metabolism, i.e., when methanol-grown wild-type cells are exposed to methanol excess conditions.  相似文献   

6.
Dynamins and dynamin-like proteins play important roles in organelle division. In Saccharomyces cerevisiae, the dynamin-like protein Vps1p (vacuolar protein sorting protein 1) is involved in peroxisome fission, as cells deleted for the VPS1 gene contain reduced numbers of enlarged peroxisomes. What relationship Vps1p has with peroxisomes remains unclear. Here we show that Vps1p interacts with Pex19p, a peroxin that acts as a shuttling receptor for peroxisomal membrane proteins or as a chaperone assisting the assembly/stabilization of proteins at the peroxisome membrane. Vps1p contains two putative Pex19p recognition sequences at amino acids 509-523 and 633-647. Deletion of the first (but not the second) sequence results in reduced numbers of enlarged peroxisomes in cells, as in vps1delta cells. Deletion of either sequence has no effect on vacuolar morphology or vacuolar protein sorting, suggesting that the peroxisome and vacuole biogenic functions of Vps1p are separate and separable. Substitution of proline for valine at position 516 of Vps1p abrogates Pex19p binding and gives the peroxisome phenotype of vps1delta cells. Microscopic analysis showed that overexpression of Pex19p or redirection of Pex19p to the nucleus does not affect the normal cellular distribution of Vps1p in the cytosol and in punctate structures that are not peroxisomes, suggesting that Pex19p does not function in targeting Vps1p to peroxisomes. Subcellular fractionation showed that a fraction of Vps1p is associated with peroxisomes and that deletion or mutation of the first Pex19p recognition sequence abrogates this association. Our results are consistent with Pex19p acting as a chaperone to stabilize the association of Vps1p with peroxisomes and not as a receptor involved in targeting Vps1p to peroxisomes.  相似文献   

7.
In the methylotrophic yeast Hansenula polymorpha non-selective autophagy, induced by nitrogen starvation, results in the turnover of cytoplasmic components, including peroxisomes. We show that the uptake of these components occurs by invagination of the vacuolar membrane without their prior sequestration and thus differs from the mechanism described for bakers yeast. A selective mode of autophagy in H. polymorpha, namely glucose-induced peroxisome degradation, involves sequestration of individual peroxisomes tagged for degradation by membrane layers that subsequently fuse with the vacuole where the organelle is digested. H. polymorpha pdd mutants are blocked in selective peroxisome degradation. We observed that pdd1-201 is also impaired in non-selective autophagy, whereas this process still normally functions in pdd2-4. These findings suggest that mechanistically distinct processes as selective and non-selective autophagy involve common but also unique genes.  相似文献   

8.
The organization of eukaryotic cells into membrane-bound compartments must be faithfully sustained for survival of the cell. A subtle equilibrium exists between the degradation and the proliferation of organelles. Commonly, proliferation is initiated by a membrane remodeling process. Here, we dissect the function of proteins driving organelle proliferation in the particular case of peroxisomes. These organelles are formed either through a growth and division process from existing peroxisomes or de novo from the endoplasmic reticulum (ER). Among the proteins involved in the biogenesis of peroxisomes, peroxins, members of the Pex11 protein family participate in peroxisomal membrane alterations. In the yeast Saccharomyces cerevisiae, the Pex11 family consists of three proteins, Pex11p, Pex25p and Pex27p. Here we demonstrate that yeast mutants lacking peroxisomes require the presence of Pex25p to regenerate this organelle de novo. We also provide evidence showing that Pex27p inhibits peroxisomal function and illustrate that Pex25p initiates elongation of the peroxisomal membrane. Our data establish that although structurally conserved each of the three Pex11 protein family members plays a distinct role. While ScPex11p promotes the proliferation of peroxisomes already present in the cell, ScPex25p initiates remodeling at the peroxisomal membrane and ScPex27p acts to counter this activity. In addition, we reveal that ScPex25p acts in concert with Pex3p in the initiation of de novo peroxisome biogenesis from the ER.  相似文献   

9.
ATG genes are required for autophagy-related processes that transport proteins/organelles destined for proteolytic degradation to the vacuole. Here, we describe the identification and characterisation of the Hansenula polymorpha ATG21 gene. Its gene product Hp-Atg21p, fused to eGFP, had a dual location in the cytosol and in peri-vacuolar dots. We demonstrate that Hp-Atg21p is essential for two separate modes of peroxisome degradation, namely glucose-induced macropexophagy and nitrogen limitation-induced microautophagy. In atg21 cells subjected to macropexophagy conditions, sequestration of peroxisomes tagged for degradation is initiated but fails to complete.  相似文献   

10.
The reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p was examined. Using a Pex3-green fluorescent protein (Pex3-GFP) fusion protein, expressed under the control of an inducible promoter, it was observed that, initially on induction of Pex3-GFP synthesis, GFP fluorescence was localized to the endoplasmic reticulum and the nuclear envelope. Subsequently, a single organelle developed per cell that increased in size and multiplied by division. At these stages, GFP fluorescence was confined to peroxisomes. Fractionation experiments on homogenates of pex3 cells, in which the endoplasmic reticulum and nuclear envelope were marked with GFP, identified a small amount of GFP in peroxisomes present in the initial stage of peroxisome reassembly. Our data suggest a crucial role for the endoplasmic reticulum/nuclear envelope in peroxisome reintroduction on complementation of pex3 cells by the PEX3 gene.  相似文献   

11.
The abundance of peroxisomes within a cell can rapidly decrease by selective autophagic degradation (also designated pexophagy). Studies in yeast species have shown that at least two modes of peroxisome degradation are employed, namely macropexophagy and micropexophagy. During macropexophagy, peroxisomes are individually sequestered by membranes, thus forming a pexophagosome. This structure fuses with the vacuolar membrane, resulting in exposure of the incorporated peroxisome to vacuolar hydrolases. During micropexophagy, a cluster of peroxisomes is enclosed by vacuolar membrane protrusions and/or segmented vacuoles as well as a newly formed membrane structure, the micropexophagy-specific membrane apparatus (MIPA), which mediates the enclosement of the vacuolar membrane. Subsequently, the engulfed peroxisome cluster is degraded. This review discusses the current state of knowledge of pexophagy with emphasis on studies on methylotrophic yeast species.  相似文献   

12.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.  相似文献   

13.
Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16 degrees C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16 degrees C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes.  相似文献   

14.
The peroxin Pex19p is important for the formation of functional peroxisomal membranes. Here we show that Hansenula polymorpha Pex19p is also required for peroxisome inheritance. Peroxisome inheritance is partly defective when Pex19p farnesylation is blocked, whereas deletion of PEX19 resulted in a severe defect in partitioning of peroxisomal structures. Time lapse imaging revealed that in newly formed buds, which had not inherited a peroxisome from the mother cell, new peroxisomes are formed that derive from the nuclear envelope/endoplasmic reticulum. This process was impaired upon deletion of EMP24 and ERP3, genes that encode p24 proteins. p24 Proteins are components of coated vesicles that mediate trafficking between the endoplasmic reticulum and Golgi apparatus. In an H. polymorpha wild-type background, deletion of EMP24 and ERP3 resulted in a strong reduction of organelle number in conjunction with an increase in the size of individual peroxisomes. This observation suggests that p24 proteins also play a role in peroxisome development in wild-type H. polymorpha cells.  相似文献   

15.
We show that the dynamin-like proteins Dnm1p and Vps1p are not required for re-introduction of peroxisomes in Hansenula polymorpha pex3 cells upon complementation with PEX3-GFP. Instead, Dnm1p, but not Vps1p, plays a crucial role in organelle proliferation via fission. In H. polymorpha DNM1 deletion cells (dnm1) a single peroxisome is present that forms long extensions, which protrude into developing buds and divide during cytokinesis. Budding pex11.dnm1 double deletion cells lack these peroxisomal extensions, suggesting that the peroxisomal membrane protein Pex11p is required for their formation. Life cell imaging revealed that fluorescent Dnm1p-GFP spots fluctuate between peroxisomes and mitochondria. On the other hand Pex11p is present over the entire organelle surface, but concentrates during fission at the basis of the organelle extension in dnm1 cells.Our data indicate that peroxisome fission is the major pathway for peroxisome multiplication in H. polymorpha.  相似文献   

16.
The import of matrix proteins into peroxisomes in yeast requires the action of the ubiquitin-conjugating enzyme Pex4p and a complex consisting of the ubiquitin E3 ligases Pex2p, Pex10p and Pex12p. Together, this peroxisomal ubiquitination machinery is thought to ubiquitinate the cycling receptor protein Pex5p and members of the Pex20p family of co-receptors, a modification that is required for receptor recycling. However, recent reports have demonstrated that this machinery plays a role in additional peroxisome-associated processes. Hence, our understanding of the function of these proteins in peroxisome biology is still incomplete. Here, we identify a role for the peroxisomal ubiquitination machinery in the degradation of the peroxisomal membrane protein Pex13p. Our data demonstrate that Pex13p levels build up in cells lacking members of this machinery and also establish that Pex13p undergoes rapid degradation in wild-type cells. Furthermore, we show that Pex13p is ubiquitinated in wild-type cells and also establish that Pex13p ubiquitination is reduced in cells lacking a functional peroxisomal E3 ligase complex. Finally, deletion of PEX2 causes Pex13p to build up at the peroxisomal membrane. Taken together, our data provide further evidence that the role of the peroxisomal ubiquitination machinery in peroxisome biology goes much deeper than receptor recycling alone.  相似文献   

17.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

18.
Pex18p is constitutively degraded during peroxisome biogenesis   总被引:1,自引:0,他引:1  
Pex18p and Pex21p are structurally related yeast peroxins (proteins required for peroxisome biogenesis) that are partially redundant in function. One or the other is essential for the import into peroxisomes of proteins with type 2 peroxisomal targeting sequences (PTS2). These sequences bind to the soluble PTS2 receptor, Pex7p, which in turn binds to Pex18p (or Pex21p or possibly both). Here we show that Pex18p is constitutively degraded with a half-time of less than 10 min in wild-type Saccharomyces cerevisiae. This degradation probably occurs in proteasomes, because it requires the related ubiquitin-conjugating enzymes Ubc4p and Ubc5p and occurs normally in a mutant lacking the Pep4p vacuolar protease. The turnover of Pex18p stops, and Pex18p accumulates to a much higher than normal abundance in pex mutants in which the import of all peroxisomal matrix proteins is blocked. This includes mutants that lack peroxins involved in receptor docking at the membrane (Deltapex13 or Deltapex14), a mutant that lacks the peroxisomal member of the E2 family of ubiquitin-conjugating enzymes (Deltapex4), and others (Deltapex1). This stabilization in a variety of pex mutants indicates that Pex18p turnover is associated with its normal function. A Pex18p-Pex7p complex is detected by immunoprecipitation in wild type cells, and its abundance increases considerably in the Deltapex14 peroxisome biogenesis mutant. Cells that lack Pex7p fail to stabilize and accumulate Pex18p, indicating an important role for complex formation in the stabilization. Mono- and diubiquitinated forms of Pex18p are detected in wild-type cells, and there is no Pex18p turnover in a yeast doa4 mutant in which ubiquitin homeostasis is defective. These data represent, to the best of our knowledge, the first instance of an organelle biogenesis factor that is degraded constitutively and rapidly.  相似文献   

19.
We have isolated a peroxisome-degradation-deficient (pdd) mutant of the methylotrophic yeast Hansenula polymorpha via gene tagging mutagenesis. Sequencing revealed that the mutant was affected in the HpATG8 gene. HpAtg8 is a protein with high sequence similarity to both Pichia pastoris and Saccharomyces cerevisiae Atg8 and appeared to be essential for selective peroxisome degradation (macropexophagy) and nitrogen-limitation induced microautophagy. Fluorescence microscopy revealed that a GFP.Atg8 fusion protein was located close to the vacuole. After induction of macropexophagy, the GFP.Atg8 containing spot extended to engulf an individual peroxisome. In cells of a constructed deletion strain, sequestration of individual organelles was never completed; analysis of series of serial sections revealed that invariably a minor diaphragm-like opening remained. We hypothesize that H. polymorpha Atg8 facilitates sealing of the sequestering membranes during selective peroxisome degradation.  相似文献   

20.
Diverse cellular processes such as autophagic protein degradation require phosphoinositide signaling in eukaryotic cells. In the methylotrophic yeast Pichia pastoris, peroxisomes can be selectively degraded via two types of pexophagic pathways, macropexophagy and micropexophagy. Both involve membrane fusion events at the vacuolar surface that are characterized by internalization of the boundary domain of the fusion complex, indicating that fusion occurs at the vertex. Here, we show that PpAtg24, a molecule with a phosphatidylinositol 3-phosphate-binding module (PX domain) that is indispensable for pexophagy, functions in membrane fusion at the vacuolar surface. CFP-tagged PpAtg24 localized to the vertex and boundary region of the pexophagosome-vacuole fusion complex during macropexophagy. Depletion of PpAtg24 resulted in the blockage of macropexophagy after pexophagosome formation and before the fusion stage. These and other results suggest that PpAtg24 is involved in the spatiotemporal regulation of membrane fusion at the vacuolar surface during pexophagy via binding to phosphatidylinositol 3-phosphate, rather than the previously suggested function in formation of the pexophagosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号