首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
Novel antisense peptide nucleic acid (PNA) constructs targeting p75NTR as a potential therapeutic strategy for amyotrophic lateral sclerosis (ALS) were designed, synthesised and evaluated against phosphorothioate oligonucleotide sequences (PS-ODN). An 11-mer antisense PNA directed at the initiation codon dose-dependently inhibited p75NTR expression and death signalling by nerve growth factor in Schwann cell cultures. Inhibition of p75NTR production was not detected in cultures treated with the nonsense PNA or antisense PNA directed at the 3'-terminus sequence. The 19-mer PS-ODN sequences also failed to confer any activity against p75NTR but, unlike the PNA sequences, were toxic in vitro at comparable doses.  相似文献   

2.
Reactive astrocytes frequently surround degenerating motor neurons in patients and transgenic animal models of amyotrophic lateral sclerosis (ALS). We report here that reactive astrocytes in the ventral spinal cord of transgenic ALS-mutant G93A superoxide dismutase (SOD) mice expressed nerve growth factor (NGF) in regions where degenerating motor neurons expressed p75 neurotrophin receptor (p75(NTR)) and were immunoreactive for nitrotyrosine. Cultured spinal cord astrocytes incubated with lipopolysaccharide (LPS) or peroxynitrite became reactive and accumulated NGF in the culture medium. Reactive astrocytes caused apoptosis of embryonic rat motor neurons plated on the top of the monolayer. Such motor neuron apoptosis could be prevented when either NGF or p75(NTR) was inhibited with blocking antibodies. In addition, nitric oxide synthase inhibitors were also protective. Exogenous NGF stimulated motor neuron apoptosis only in the presence of a low steady state concentration of nitric oxide. NGF induced apoptosis in motor neurons from p75(NTR +/+) mouse embryos but had no effect in p75(NTR -/-) knockout embryos. Culture media from reactive astrocytes as well as spinal cord lysates from symptomatic G93A SOD mice-stimulated motor neuron apoptosis, but only when incubated with exogenous nitric oxide. This effect was prevented by either NGF or p75(NTR) blocking-antibodies suggesting that it might be mediated by NGF and/or its precursor forms. Our findings show that NGF secreted by reactive astrocytes induce the death of p75-expressing motor neurons by a mechanism involving nitric oxide and peroxynitrite formation. Thus, reactive astrocytes might contribute to the progressive motor neuron degeneration characterizing ALS.  相似文献   

3.
Fibroblast growth factor-1 (FGF1 or acidic FGF) is highly expressed in motor neurons. FGF-1 is released from cells by oxidative stress, which might occur from SOD-1 aberrant function in amyotrophic lateral sclerosis (ALS). Although FGF-1 is known to be neuroprotective after spinal cord injury or axotomy, we found that FGF-1 could activate spinal cord astrocytes in a manner that decreased motor neuron survival in co-cultures. FGF-1 induced accumulation of the FGF receptor 1 (FGFR1) in astrocyte nuclei and potently stimulated nerve growth factor (NGF) expression and secretion. The FGFR1 tyrosine kinase inhibitor PD166866 prevented these effects. Previously, we have shown that NGF secretion by reactive astrocytes induces motor neuron apoptosis through a p75(NTR)-dependent mechanism. Embryonic motor neurons co-cultured on the top of astrocytes exhibiting activated FGFR1 underwent apoptosis, which was prevented by PD166866 or by adding either anti-NGF or anti-p75(NTR) neutralizing antibodies. In the degenerating spinal cord of mice carrying the ALS mutation G93A of Cu, Zn superoxide dismutase, FGF-1 was no longer localized only in the cytosol of motor neurons, while FGFR1 accumulated in the nuclei of reactive astrocytes. These results suggest that FGF-1 released by oxidative stress from motor neurons might have a role in activating astrocytes, which could in turn initiate motor neuron apoptosis in ALS through a p75(NTR)-dependent mechanism.  相似文献   

4.
Nogo/reticulon (RTN)-4 has been strongly implicated as a disease marker for the motor neuron disease amyotrophic lateral sclerosis (ALS). Nogo isoforms, including Nogo-A, are ectopically expressed in the skeletal muscle of ALS mouse models and patients and their levels correlate with the disease severity. The notion of a direct involvement of Nogo-A in ALS aetiology is supported by the findings that Nogo-A deletion in mice reduces muscle denervation and prolongs survival, whereas overexpression of Nogo-A destabilizes motor nerve terminals and promotes denervation. Another intriguing, and somewhat paradoxical, recent finding revealed that binding of the Nogo-66 receptor (NgR) by either agonistic or antagonistic Nogo-66-derived peptides protects against p75 neurotrophin receptor (p75(NTR))-dependent motor neuron death. Ligand binding by NgR could result in subsequent engagement of p75(NTR), and this association could preclude pro-apoptotic signalling by the latter. Understanding the intricate interplay among Nogo isoforms, NgR and p75(NTR) in ALS disease progression may provide important, therapeutically exploitable information.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron degeneration, paralysis, and death. Mutant Cu,Zn-superoxide dismutase (SOD1) causes a subset of ALS by an unidentified toxic property. Increasing evidence suggests that chaperone dysfunction plays a role in motor neuron degeneration in ALS. To investigate the relationship between mutant SOD1 expression and chaperone dysfunction, we measured chaperone function in central nervous system tissue lysates from normal mice and transgenic mice expressing human SOD1 variants. We observed a significant decrease in chaperone activity in tissues from mice expressing ALS-linked mutant SOD1 but not control mice expressing human wild type SOD1. This decrease was detected only in the spinal cord, became apparent by 60 days of age (before the onset of muscle weakness and significant motor neuron loss), and persisted throughout the late stages. In addition, this impairment of chaperone activity occurred only in cytosolic but not in mitochondrial and nuclear fractions. Furthermore, multiple recombinant human SOD1 mutants with differing biochemical and biophysical properties inhibited chaperone function in a cell-free extract of normal mouse spinal cords. Thus, mutant SOD1 proteins may impair chaperone function independent of gene expression in vivo, and this inhibition may be a shared property of ALS-linked mutant SOD1 proteins.  相似文献   

6.
Prostate apoptosis response-4 (Par-4), a protein containing a leucine zipper domain within a death domain, is up-regulated in prostate cancer cells and hippocampal neurons induced to undergo apoptosis. Here, we report higher Par-4 levels in lumbar spinal cord samples from patients with amyotrophic lateral sclerosis (ALS) than in lumbar spinal cord samples from neurologically normal patients. We also compared the levels of Par-4 in lumbar spinal cord samples from wild-type and transgenic mice expressing the human Cu/Zn-superoxide dismutase gene with a familial ALS mutation. Relative to control samples, higher Par-4 levels were observed in lumbar spinal cord samples prepared from the transgenic mice at a time when they had hind-limb paralysis. Immunohistochemical analyses of human and mouse lumbar spinal cord sections revealed that Par-4 is localized to motor neurons in the ventral horn region. In culture studies, exposure of primary mouse spinal cord motor neurons or NSC-19 motor neuron cells to oxidative insults resulted in a rapid and large increase in Par-4 levels that preceded apoptosis. Pretreatment of the motor neuron cells with a Par-4 antisense oligonucleotide prevented oxidative stress-induced apoptosis and reversed oxidative stress-induced mitochondrial dysfunction that preceded apoptosis. Collectively, these data suggest a role for Par-4 in models of motor neuron injury relevant to ALS.  相似文献   

7.
Growth inhibitory proteins in the central nervous system (CNS) block axon growth and regeneration by signaling to Rho, an intracellular GTPase. It is not known how CNS trauma affects the expression and activation of RhoA. Here we detect GTP-bound RhoA in spinal cord homogenates and report that spinal cord injury (SCI) in both rats and mice activates RhoA over 10-fold in the absence of changes in RhoA expression. In situ Rho-GTP detection revealed that both neurons and glial cells showed Rho activation at SCI lesion sites. Application of a Rho antagonist (C3-05) reversed Rho activation and reduced the number of TUNEL-labeled cells by approximately 50% in both injured mouse and rat, showing a role for activated Rho in cell death after CNS injury. Next, we examined the role of the p75 neurotrophin receptor (p75NTR) in Rho signaling. After SCI, an up-regulation of p75NTR was detected by Western blot and observed in both neurons and glia. Treatment with C3-05 blocked the increase in p75NTR expression. Experiments with p75NTR-null mutant mice showed that immediate Rho activation after SCI is p75NTR dependent. Our results indicate that blocking overactivation of Rho after SCI protects cells from p75NTR-dependent apoptosis.  相似文献   

8.
9.
Mutations in copper/zinc superoxide dismutase (SOD1) are associated with a familial form of amyotrophic lateral sclerosis (ALS), and their expression in transgenic mice produces an ALS-like syndrome. Here we show that, during the course of the disease, the spinal cord of transgenic mice expressing mutant SOD1 (mSOD1) is the site not only of a progressive loss of motor neurons, but also of a dramatic gliosis characterized by reactive astrocytes and activated microglial cells. These changes are absent from the spinal cord of age-matched transgenic mice expressing normal SOD1 and of wild-type mice. We also demonstrate that, during the course of the disease, the expression of inducible nitric oxide synthase (iNOS) increases. In both early symptomatic and end-stage transgenic mSOD1 mice, numerous cells with the appearance of glial cells are strongly iNOS-immunoreactive. In addition, iNOS mRNA level and catalytic activity are increased significantly in the spinal cord of these transgenic mSOD1 mice. None of these alterations are seen in the cerebellum of these animals, a region unaffected by mSOD1. Similarly, no up-regulation of iNOS is detected in the spinal cord of age-matched transgenic mice expressing normal SOD1 or of wild-type mice. The time course of the spinal cord gliosis and iNOS up-regulation parallels that of motor neuronal loss in transgenic mSOD1 mice. Neuronal nitric oxide synthase expression is only seen in neurons in the spinal cord of transgenic mSOD1 mice, regardless of the stage of the disease, and of age-matched transgenic mice expressing normal SOD1 and wild-type mice. Collectively, these data suggest that the observed alterations do not initiate the death of motor neurons, but may contribute to the propagation of the neurodegenerative process. Furthermore, the up-regulation of iNOS, which in turn may stimulate the production of nitric oxide, provides further support to the presumed deleterious role of nitric oxide in the pathogenesis of ALS. This observation also suggests that iNOS may represent a valuable target for the development of new therapeutic avenues for ALS.  相似文献   

10.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with selective degeneration of motor neurons in the central nervous system. The pathophysiology of ALS is not well understood. We have used 1H-[13C]-NMR spectroscopy together with an administration of [1,6-13C2]glucose and [2-13C]acetate in female and male SOD1G37R mice to assess neuronal and astroglial metabolic activity, respectively, in the central nervous system in ALS condition. The female (p?=?0.0008) and male (p?<?0.0001) SOD1G37R mice exhibited decreased forelimb strength when compared with wild-type mice. There was a reduction in N-acetylaspartylglutamate level, and elevation in myo-inositol in the spinal cord of female and male SOD1G37R mice. The transgenic male mice exhibited increased acetate oxidation in the spinal cord (p?=?0.05) and cerebral cortex (p?=?0.03), while females showed an increase in the spinal cord (p?=?0.02) only. As acetate is transported and preferentially metabolized in the astrocytes, the finding of increased rate of acetate oxidation in the transgenic mice is suggestive of astrocytic involvement in the pathogenesis of ALS. The rates of glucose oxidation in glutamatergic (p?=?0.0004) and GABAergic neurons (p?=?0.0052) were increased in the cerebral cortex of male SOD1G37R mice when compared with the controls. The female mice showed an increase in glutamatergic (p?=?0.039) neurometabolic activity only. The neurometabolic activity was unperturbed in the spinal cord of either sex. These data suggest differential changes in neurometabolic activity across the central nervous system in SOD1G37R mice.

  相似文献   

11.
12.
Amyotrophic lateral sclerosis (ALS) is an age-related, fatal motor neuron degenerative disease occurring both sporadically (sALS) and heritably (fALS), with inherited cases accounting for approximately 10% of diagnoses. Although multiple mechanisms likely contribute to the pathogenesis of motor neuron injury in ALS, recent advances suggest that oxidative stress may play a significant role in the amplification, and possibly the initiation, of the disease. Lipid peroxidation is one of the several outcomes of oxidative stress. Since the central nervous system (CNS) is enriched with polyunsaturated fatty acids, it is particularly vulnerable to membrane-associated oxidative stress. Peroxidation of cellular membrane lipids or circulating lipoprotein molecules generates highly reactive aldehydes, among which is 4-hydroxy-2-nonenal (HNE). HNE levels are increased in spinal cord motor neurons of ALS patients, indicating that lipid peroxidation is associated with the motor neuron degeneration in ALS. In the present study, we used a parallel proteomic approach to identify HNE-modified proteins in the spinal cord tissue of a model of fALS, G93A-SOD1 transgenic mice, in comparison to the nontransgenic mice. We found three significantly HNE-modified proteins in the spinal cord of G93A-SOD1 transgenic mice: dihydropyrimidinase-related protein 2 (DRP-2), heat-shock protein 70 (Hsp70), and possibly alpha-enolase. These results support the role of oxidative stress as a major mechanism in the pathogenesis of ALS. Structural alteration and activity decline of functional proteins may consistently contribute to the neurodegeneration process in ALS.  相似文献   

13.
14.
The work is a continuation of studies on tau expression and alternative splicing in the central nervous system of transgenic mice harboring human SOD1 with G93A amyotrophic lateral sclerosis (ALS)-associated mutation. Since age is an important risk factor for ALS, we expanded the studies into younger animals (age 5 and 25 days). We also included cerebellum, a structure not studied in the context of neurodegeneration in ALS. We found decreased total tau-mRNA expression in hippocampus but not in cortex and spinal cord of young transgenics, and a lack of exon 10 in 5-day-old mice. In cerebellum, the total tau-mRNA expression was increased in transgenic animals during the whole period of life, however at the symptomatic stage of ALS (age 120 days) the level of protein was decreased. It can be concluded that the SOD1 G93A mutation causes early alterations of tau expression in cns, which are not exclusively restricted to the upper and lower motor neuron.  相似文献   

15.
16.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease characterized by the loss of neuronal function in the motor cortex, brain stem, and spinal cord. Familial ALS cases, accounting for 10-15% of all ALS disease, are caused by a gain-of-function mutation in Cu,Zn-superoxide dismutase (SOD1). Two hypotheses have been proposed to explain the toxic gain of function of mutant SOD (mSOD). One is that mSOD can directly promote reactive oxygen species and reactive nitrogen species generation, whereas the other hypothesis suggests that mSODs are prone to aggregation due to instability or association with other proteins. However, the hypotheses of oxidative stress and protein aggregation are not mutually exclusive. G93A-SOD1 transgenic mice show significantly increased protein carbonyl levels in their spinal cord from 2 to 4 months and eventually develop ALS-like motor neuron disease and die within 5-6 months. Here, we used a parallel proteomics approach to investigate the effect of the G93A-SOD1 mutation on protein oxidation in the spinal cord of G93A-SOD1 transgenic mice. Four proteins in the spinal cord of G93A-SOD1 transgenic mice have higher specific carbonyl levels compared to those of non-transgenic mice. These proteins are SOD1, translationally controlled tumor protein (TCTP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and, possibly, alphaB-crystallin. Because oxidative modification can lead to structural alteration and activity decline, our current study suggests that oxidative modification of UCH-L1, TCTP, SOD1, and possibly alphaB-crystallin may play an important role in the neurodegeneration of ALS.  相似文献   

17.
Metallothionein (MT) mRNA expression was investigated in a rodent model (G93A SOD1 transgenic mouse) for a lethal motor neuron disease, amyotrophic lateral sclerosis (ALS). In 8-wk-old mice that did not yet exhibit motor paralysis, MT-I mRNA expression was already significantly upregulated in the region of the spinal cord responsible for motor paralysis. The expression of another isoform, MT-III, was not changed. In the cerebellum, which is not responsible for motor paralysis in ALS, neither the expression profiles of MT-I nor MT-III were altered. In 16-wk-old mice exhibiting motor paralysis, the expression of MT-I mRNA remained upregulated and the MT-III level tended to be elevated. Although no significant differences were found in the levels of both isoforms in the liver or kidney of 8-wk-old mice, the MT-I mRNA expression level was significantly upregulated in the kidney and liver of 16-wk-old mice. These results indicated that the MT-I isoform, but not the MT-III isoform, is associated with motor neuron death in ALS and suggested that the disease might be a systemic disorder to which the spinal cord is particularly susceptible.  相似文献   

18.
Peripherin, a neuronal intermediate filament protein associated with axonal spheroids in amyotrophic lateral sclerosis (ALS), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. To further clarify the selectivity and mechanism of peripherin-induced neuronal death, we analyzed the effects of peripherin overexpression in primary neuronal cultures. Peripherin overexpression led to the formation of cytoplasmic protein aggregates and caused the death not only of motor neurons, but also of dorsal root ganglion (DRG) neurons that were cultured from dissociated spinal cords of peripherin transgenic embryos. Apoptosis of DRG neurons containing peripherin aggregates was dependent on the proinflammatory central nervous system environment of spinal cultures, rich in activated microglia, and required TNF-alpha. This synergistic proapoptotic effect may contribute to neuronal selectivity in ALS.  相似文献   

19.
Medulloblastoma (MB) is the most devastating and common pediatric brain tumor. Tumor cells invading into surrounding tissue and disseminating through cerebrospinal fluid make treatment extremely difficult. Identifying the mechanisms of MB cells is therefore imperative for the development of novel treatments. A research group demonstrated recently that the multifunctional signaling protein neurotrophin receptor p75(NTR) is a central regulator for glioma invasion. γ-secretase mediated processing of the p75(NTR) is a major contributor to the highly invasive nature of malignant gliomas. In this study we examine the p75(NTR) expression and processing in medulloblastoma cells. Results show that p75(NTR) is a critical regulator of medulloblastoma spinal metastasis. γ-secretase inhibitor, which blocks p75(NTR) proteolytic processing, significantly abrogates p75(NTR) induced medulloblastoma migration and invasion in vitro and in vivo. This data suggests that p75(NTR) is also an important therapeutic target for MB. γ-secretase inhibitor may be a potentially effective clinical application for the treatment of medulloblastoma spinal metastasis.  相似文献   

20.
To examine the mechanisms that underlie the neurotrophin-induced, apoptosis-driven hair follicle involution (catagen), the expression and function of p75 neurotrophin receptor (p75NTR), which is implicated in apoptosis control, were studied during spontaneous catagen development in murine skin. By RT-PCR, high steady-state p75NTR mRNA skin levels were found during the anagen-catagen transition of the hair follicle. By immunohistochemistry, p75NTR alone was strongly expressed in TUNEL+/Bcl2- keratinocytes of the regressing outer root sheath, but both p75NTR and TrkB and/or TrkC were expressed by the nonregressing TUNEL-/Bcl2+ secondary hair germ keratinocytes. To determine whether p75NTR is functionally involved in catagen control, spontaneous catagen development was compared in vivo between p75NTR knockout (-/-) and wild-type mice. There was significant catagen retardation in p75NTR knockout mice as compared to wild-type controls (P<0.05). Instead, transgenic mice-overexpressing NGF (promoter: K14) showed substantial acceleration of catagen (P<0.001). Although NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3) accelerated catagen in the organ-cultured skin of C57BL/6 mice, these neurotrophins failed to promote catagen development in the organ-cultured p75NTR null skin. These findings suggest that p75NTR signaling is involved in the control of kerotinocyte apoptosis during catagen and that pharmacological manipulation of p75NTR signaling may prove useful for the treatment of hair disorders that display premature entry into catagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号